Skip to main content

Motor Control: On the Way to Physics of Living Systems

  • Conference paper
  • First Online:
Progress in Motor Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 826))

Abstract

We accept two axioms: (1) the central nervous system is a physical/physiological object, not a computational one, and (2) the neural control of natural voluntary movements is organized in a hierarchical way. At the top level of the hierarchy, referent values for a few salient, task-specific variables are reflected in a set of neural signals (possibly, subthreshold depolarization levels of neuronal pools). Further, as a result of a sequence of few-to-many mappings, these signals result in sets of activation thresholds of the alpha-motoneuronal pools for the many muscles involved in the planned movement. This scheme naturally results in synergies stabilizing the values (time profiles) of task-specific, salient variables. In this context, “synergies” are defined as covaried across repetitive trials adjustments within a redundant set of elemental variables that ensure stability of a performance variable to which they all contribute. Several consequences of this scheme have received experimental support in recent studies. In particular, a novel phenomenon of feed-forward motor control, anticipatory synergy adjustments, has been discovered. Another nontrivial prediction of this scheme is that transient perturbations are expected to lead to equifinality at the level of task–relevant variables, but not necessarily at the level of elemental variables. Results of two recent experiments have confirmed this prediction for multi-joint positional tasks and multi-digit force production tasks. These results provide direct support for the ideas of control with referent configurations organized into a hierarchical system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert F, Diermayr G, McIsaac TL, Gordon AM. Coordination of grasping and walking in Parkinson’s disease. Exp Brain Res 2010; 202: 709–722.

    Article  PubMed  Google Scholar 

  • Alexandrov AV, Frolov AA, Massion J. Biomechanical analysis of movement strategies in human forward trunk bending. I. Modeling. Biol Cybern 2001; 84: 425–434.

    Article  CAS  Google Scholar 

  • Babinski F. De l’asynergie cerebelleuse. Revue Neurol 1899; 7: 806–816.

    Google Scholar 

  • Bernstein NA. On the construction of movements. Medgiz: Moscow (in Russian); 1947.

    Google Scholar 

  • Bernstein NA. The co-ordination and regulation of movements. Pergamon Press, Oxford; 1967.

    Google Scholar 

  • Bizzi E, Polit A, Morasso P. Mechanisms underlying achievement of final head position. J Neurophysiol 1976; 39: 435–444.

    PubMed  CAS  Google Scholar 

  • Danna-Dos-Santos A, Slomka K, Zatsiorsky VM, Latash ML. Muscle modes and synergies during voluntary body sway. Exp Brain Res 2007; 179: 533–550.

    Article  PubMed  Google Scholar 

  • d’Avella A, Saltiel P, Bizzi E. Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci 2003; 6: 300–308.

    Article  PubMed  Google Scholar 

  • DiZio P, Lackner JR. Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm. J Neurophysiol 1995; 74: 1787–1792.

    PubMed  CAS  Google Scholar 

  • Feldman AG. Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II. Controllable parameters of the muscle. Biophysics 1966; 11: 565–578.

    Google Scholar 

  • Feldman AG. Superposition of motor programs. I. Rhythmic forearm movements in man. Neurosci 1980; 5: 81–90.

    Article  CAS  Google Scholar 

  • Feldman AG. Once more on the equilibrium-point hypothesis (λ-model) for motor control. J Mot Behav 1986; 18: 17–54.

    Article  PubMed  CAS  Google Scholar 

  • Feldman AG. Origin and advances of the equilibrium-point hypothesis. Adv Exp Med Biol 2009; 629: 637–643.

    Article  PubMed  Google Scholar 

  • Feldman AG, Latash ML. Interaction of afferent and efferent signals underlying joint position sense: Empirical and theoretical approaches. J Mot Behav 1982; 14: 174–193.

    Article  CAS  Google Scholar 

  • Feldman AG, Latash ML. Testing hypotheses and the advancement of science: Recent attempts to falsify the equilibrium-point hypothesis. Exp Brain Res 2005; 161: 91–103.

    Article  PubMed  Google Scholar 

  • Feldman AG, Levin MF. Positional frames of reference in motor control: their origin and use. Behav Brain Sci 1995; 18: 723–806.

    Article  Google Scholar 

  • Feldman AG, Krasovsky T, Bania MC, Lamontagne A, Levin MF. Changes in the referent body location and configuration may underlie human gait, as confirmed by findings of multi-muscle activity minimizations and phase resetting. Exp Brain Res 2011; 210: 91–115.

    Article  PubMed  Google Scholar 

  • Gelfand IM, Latash ML. On the problem of adequate language in movement science. Motor Control 1998 2: 306–313.

    PubMed  CAS  Google Scholar 

  • Gordon J, Ghez C. Trajectory control in targeted force impulses. II. Pulse height control. Exp Brain Res 1987; 67: 241–252.

    Article  PubMed  CAS  Google Scholar 

  • Gorniak S, Zatsiorsky VM, Latash ML. Emerging and disappearing synergies in a hierarchically controlled system. Exp Brain Res 2007; 183: 259–270.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorniak SL, Zatsiorsky VM, Latash ML. Hierarchical control of static prehension: II. Multi-digit synergies. Exp Brain Res 2009; 194: 1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gottlieb GL, Corcos DM, Agarwal GC. Strategies for the control of voluntary movements with one mechanical degree of freedom. Behav Brain Sci 1989; 12: 189–250.

    Article  Google Scholar 

  • Hasan Z. The human motor control system’s response to mechanical perturbation: should it, can it, and does it ensure stability? J Mot Behav 2005; 37: 484–493.

    Article  PubMed  CAS  Google Scholar 

  • Hinder MR, Milner TE. The case for an internal dynamics model versus equilibrium point control in human movement. J Physiol 2003; 549: 953–963.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hughlings Jackson J. On the comparative study of disease of the nervous system. Brit Med J 1899; Aug. 17: 355–362.

    Google Scholar 

  • Ivanenko YP, Poppele RE, Lacquaniti F. Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 2004; 556: 267–282.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ivanenko YP, Cappellini G, Dominici N, Poppele RE, Lacquaniti F. Coordination of locomotion with voluntary movements in humans. J Neurosci 2005; 25: 7238–7253.

    Article  PubMed  CAS  Google Scholar 

  • Johansson RS, Westling G. Programmed and triggered actions to rapid load changes during precision grip. Exp Brain Res 1988; 71: 72–86.

    PubMed  CAS  Google Scholar 

  • Jobin A, Levin MF. Regulation of stretch reflex threshold in elbow flexors in children with cerebral palsy: a new measure of spasticity. Dev Med Child Neurol 2000; 42: 531–540.

    Article  PubMed  CAS  Google Scholar 

  • Kawato M. Internal models for motor control and trajectory planning. Curr Opinion Neurobiol 1999; 9: 718–727.

    Article  CAS  Google Scholar 

  • Kelso JA, Holt KG. Exploring a vibratory systems analysis of human movement production. J Neurophysiol 1980; 43: 1183–1196.

    PubMed  CAS  Google Scholar 

  • Klous M, Mikulic P, Latash ML. Two aspects of feed-forward postural control: Anticipatory postural adjustments and anticipatory synergy adjustments. J Neurophysiol 2011; 105: 2275–2288.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnamoorthy V, Latash ML, Scholz JP, Zatsiorsky VM. Muscle synergies during shifts of the center of pressure by standing persons. Exp Brain Res 2003; 152: 281–292.

    Article  PubMed  Google Scholar 

  • Kugler PN, Turvey MT. Information, natural law, and the self-assembly of rhythmic movement. Hillsdale, NJ: Erlbaum; 1987.

    Google Scholar 

  • Lackner JR, DiZio P. Rapid adaptation to Coriolis force perturbations of arm trajectory. J Neurophysiol 1994; 72: 1–15.

    Google Scholar 

  • Latash ML. Synergy Oxford University Press: New York; 2008.

    Google Scholar 

  • Latash ML. Motor synergies and the equilibrium-point hypothesis. Motor Control 2010; 14: 294–322.

    PubMed  PubMed Central  Google Scholar 

  • Latash ML. The bliss (not the problem) of motor abundance (not redundancy). Exp Brain Res 2012; 217: 1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Latash ML, Gottlieb GL. Compliant characteristics of single joints: Preservation of equifinality with phasic reactions. Biol Cybern 1990; 62: 331–336.

    Article  PubMed  CAS  Google Scholar 

  • Latash ML, Scholz JF, Danion F, Schöner G. Structure of motor variability in marginally redundant multi-finger force production tasks. Exp Brain Res 2001; 141: 153–165.

    Article  PubMed  CAS  Google Scholar 

  • Latash ML, Shim JK, Smilga AV, Zatsiorsky V. A central back-coupling hypothesis on the organization of motor synergies: a physical metaphor and a neural model. Biol Cybern 2005; 92: 186–191.

    Article  PubMed  PubMed Central  Google Scholar 

  • Latash ML, Scholz JP, Schöner G. Toward a new theory of motor synergies. Motor Control 2007; 11: 276–308.

    PubMed  Google Scholar 

  • Latash ML, Friedman J, Kim SW, Feldman AG, Zatsiorsky VM. Prehension synergies and control with referent hand configurations. Exp Brain Res 2010; 202: 213–229.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma S, Feldman AG. Two functionally different synergies during arm reaching movements involving the trunk. J Neurophysiol 1995; 73: 2120–2122.

    PubMed  CAS  Google Scholar 

  • Martin V, Scholz JP, Schöner G. Redundancy, self-motion, and motor control. Neural Comput 2009; 21: 1371–1414.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martin JR, Budgeon MK, Zatsiorsky VM, Latash ML. Stabilization of the total force in multi-finger pressing tasks studied with the ‘inverse piano’ technique. Hum Move Sci 2011; 30: 446–458.

    Article  CAS  Google Scholar 

  • Massion J. Movement, posture and equilibrium interaction and coordination. Prog Neurobiol 1992; 38: 35–56.

    Article  PubMed  CAS  Google Scholar 

  • Mattos D, Latash ML, Park E, Kuhl J, Scholz JP. Unpredictable elbow joint perturbation during reaching results in multijoint motor equivalence. J Neurophysiol 2011; 106: 1424–1436.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mattos D, Kuhl J, Scholz JP, Latash ML. Motor equivalence (ME) during reaching: Is ME observable at the muscle level? Motor Control 2013; 17: 145–175.

    PubMed  Google Scholar 

  • Muratori LM, McIsaac TL, Gordon AM, Santello M. Impaired anticipatory control of force sharing patterns during whole-hand grasping in Parkinson’s disease. Exp Brain Res 2008; 185: 41–52.

    Article  PubMed  Google Scholar 

  • Nowak DA, Topka H, Timmann D, Boecker H, Hermsdörfer J. The role of the cerebellum for predictive control of grasping. Cerebellum 2007; 6: 7–17.

    Article  PubMed  Google Scholar 

  • Olafsdottir H, Yoshida N, Zatsiorsky VM, Latash ML. Anticipatory covariation of finger forces during self-paced and reaction time force production. Neurosci Lett 2005; 381: 92–96.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Olafsdottir H, Yoshida N, Zatsiorsky VM, Latash ML. Elderly show decreased adjustments of motor synergies in preparation to action. Clin Biomech 2007; 22: 44–51.

    Article  Google Scholar 

  • Olafsdottir HB, Zatsiorsky VM, Latash ML. The effects of strength training on finger strength and hand dexterity in healthy elderly individuals. J Appl Physiol 2008; 105: 1166–1178.

    Article  PubMed  PubMed Central  Google Scholar 

  • Park J, Zatsiorsky VM, Latash ML. Optimality vs. variability: An example of multi-finger redundant tasks. Exp Brain Res 2010; 207: 119–132.

    Article  PubMed  PubMed Central  Google Scholar 

  • Park J, Wu Y-H, Lewis MM, Huang X, Latash ML. Changes in multi-finger interaction and coordination in Parkinson’s disease. J Neurophysiol 2012; 108: 915–924.

    Article  PubMed  PubMed Central  Google Scholar 

  • Park J, Lewis MM, Huang X, Latash ML. Effects of olivo-ponto-cerebellar atrophy (OPCA) on finger interaction and coordination. Clin Neurophysiol 2013; 124: 991 998.

    Google Scholar 

  • Prilutsky BI, Zatsiorsky VM. Optimization-based models of muscle coordination. Exer Sport Sci Rev 2002; 30: 32–38.

    Article  Google Scholar 

  • Reisman D, Scholz JP. Aspects of joint coordination are preserved during pointing in persons with post-stroke hemiparesis. Brain 2003; 126: 2510–2527.

    Article  PubMed  Google Scholar 

  • Scheidt RA, Ghez C. Separate adaptive mechanisms for controlling trajectory and final position in reaching. J Neurophysiol 2007; 98: 3600–3613.

    Article  PubMed  Google Scholar 

  • Schmidt RA, McGown C. Terminal accuracy of unexpected loaded rapid movements: Evidence for a mass-spring mechanism in programming. J Mot Behav 1980; 12: 149–161.

    Article  PubMed  CAS  Google Scholar 

  • Scholz JP, Schöner G. The uncontrolled manifold concept: Identifying control variables for a functional task. Exp Brain Res 1999; 126: 289–306.

    Article  PubMed  CAS  Google Scholar 

  • Scholz JP, Schöner G, Latash ML. Identifying the control structure of multijoint coordination during pistol shooting. Exp Brain Res 2000; 135: 382–404.

    Article  PubMed  CAS  Google Scholar 

  • Scholz JP, Kang N, Patterson D, Latash ML. Uncontrolled manifold analysis of single trials during multi-finger force production by persons with and without Down syndrome. Exp Brain Res 2003; 153: 45–58.

    Article  PubMed  Google Scholar 

  • Schöner G. Recent developments and problems in human movement science and their conceptual implications. Ecol Psychol 1995; 8: 291–314.

    Article  Google Scholar 

  • Seif-Naraghi AH, Winters JM. Optimal strategies for scaling goal-directed arm movements. In: Winters JM, Woo SL-Y (eds.) Multiple muscle systems: biomechanics and movement organization. Springer-Verlag, New York, pp. 312–334; 1990.

    Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA. Adaptive representation of dynamics during learning of a motor task. J Neurosci 1994; 14: 3208–3224.

    PubMed  CAS  Google Scholar 

  • Shadmehr R, Wise SP. The computational neurobiology of reaching and pointing. MIT Press: Cambridge, MA; 2005.

    Google Scholar 

  • Shim JK, Olafsdottir H, Zatsiorsky VM, Latash ML. The emergence and disappearance of multi-digit synergies during force production tasks. Exp Brain Res 2005; 164: 260–270.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shim JK, Park J, Zatsiorsky VM, Latash ML. Adjustments of prehension synergies in response to self-triggered and experimenter-triggered load and torque perturbations. Exp Brain Res 2006; 175: 641–653.

    Article  PubMed  PubMed Central  Google Scholar 

  • Slifkin AB, Vaillancourt DE, Newell KM. Intermittency in the control of continuous force production. J Neurophysiol 2000; 84: 1708–1718.

    PubMed  CAS  Google Scholar 

  • Ting LH, Macpherson JM. A limited set of muscle synergies for force control during a postural task. J Neurophysiol 2005; 93: 609–613.

    Article  PubMed  Google Scholar 

  • Todorov E, Jordan MI. Optimal feedback control as a theory of motor coordination. Nat Neurosci 2002; 5: 1226–1235.

    Article  PubMed  CAS  Google Scholar 

  • Tresch MC, Cheung VC, d’Avella A. Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J Neurophysiol 2006; 95: 2199–2212.

    Article  PubMed  Google Scholar 

  • Vaillancourt DE, Russell DM. Temporal capacity of short-term visuomotor memory in continuous force production. Exp Brain Res 2002; 145: 275–285.

    Article  PubMed  Google Scholar 

  • Wilhelm L, Zatsiorsky VM, Latash ML. Equifinality and its violations in a redundant system: Multi-finger accurate force production. J Neurophysiol 2013; 110: 1965–1973.

    Google Scholar 

  • Woollacott MH, Manchester DL. Anticipatory postural adjustments in older adults: are changes in response characteristics due to changes in strategy? J Gerontol 1993; 48: M64–M70.

    Google Scholar 

  • Wu Y-H, Pazin N, Zatsiorsky VM, Latash ML. Practicing elements vs. practicing coordination: Changes in the structure of variance. J Mot Behav 2012; 44: 471–478.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Y-H, Pazin N, Zatsiorsky VM, Latash ML. Improving finger coordination in young and elderly persons. Exp Brain Res 2013; 226: 273–283.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J-F, Scholz JP, Latash ML. The role of kinematic redundancy in adaptation of reaching. Exp Brain Res 2007; 176: 54–69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Solnik S, Wu Y-H, Latash ML. Equifinality and its violations in a redundant system: Control with referent configurations in a multi-joint positional task. Motor Control 2014; (in press).

    Google Scholar 

  • Zhou T, Wu Y-H, Bartsch A, Cuadra C, Zatsiorsky VM, Latash ML. Anticipatory synergy adjustments: Preparing a quick action in an unknown direction. Exp Brain Res 2013; 226: 565–573.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Preparation of this paper was in part supported by NIH grants NS-035032 and AR-048563.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Latash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Latash, M. (2014). Motor Control: On the Way to Physics of Living Systems. In: Levin, M. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 826. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1338-1_1

Download citation

Publish with us

Policies and ethics