Skip to main content

Abstract

Techniques for cannulating the large central veins have evolved over the last 70 years. Aubaniac first described central venous access in 1952 reporting on his 10-year experience cannulating the subclavian vein to resuscitate wounded soldiers on the battlefield (Aubaniac, Presse Med 60(68):1456, 1952). In 1973, Broviac and colleagues developed a small-diameter catheter with a Dacron cuff that was tunneled under the skin to provide long-term central access for parenteral nutrition (Broviac et al., Surg Gynecol Obstet 136(4):602–606, 1973). A hematologist named Hickman later modified the catheter to meet the needs of bone marrow transplant patients (Hickman et al., Surg Gynecol Obstet 148(6):871–875, 1979). Venous access (VA) remains one of the most basic and important components of care across all clinical settings. In the USA alone, approximately 8 % of hospitalized patients require some form of central venous access, and more than five million central venous catheters are inserted each year (Ruesch et al., Crit Care Med 30(2):454–460, 2002; Thomson et al., Anesthesiology 51(4):359–362, 1979). Dependable and safe access is important in daily practice, and understanding the types of VA available will aid in counseling patients and their families. Decisions regarding which type of VA to use should align with the needs of the patient. In this chapter, we will review the basic principles of VA including reasons for placement, types of catheters, access sites, patient preparation, insertion technique, and complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aubaniac R. [Subclavian intravenous injection; advantages and technic]. Presse Med. 1952;60(68):1456.

    PubMed  CAS  Google Scholar 

  2. Broviac JW, Cole JJ, Scribner BH. A silicone rubber atrial catheter for prolonged parenteral alimentation. Surg Gynecol Obstet. 1973;136(4):602–6.

    PubMed  CAS  Google Scholar 

  3. Hickman RO, et al. A modified right atrial catheter for access to the venous system in marrow transplant recipients. Surg Gynecol Obstet. 1979;148(6):871–5.

    PubMed  CAS  Google Scholar 

  4. Ruesch S, Walder B, Tramer MR. Complications of central venous catheters: internal jugular versus subclavian access–a systematic review. Crit Care Med. 2002;30(2):454–60.

    PubMed  Google Scholar 

  5. Thomson IR, et al. Right bundle-branch block and complete heart block caused by the Swan-Ganz catheter. Anesthesiology. 1979;51(4):359–62.

    PubMed  CAS  Google Scholar 

  6. Haas B, Chittams JL, Trerotola SO. Large-bore tunneled central venous catheter insertion in patients with coagulopathy. J Vasc Interv Radiol. 2010;21(2):212–7.

    PubMed  Google Scholar 

  7. Polderman KH, Girbes AJ. Central venous catheter use. Part 1: mechanical complications. Intensive Care Med. 2002;28(1):1–17.

    PubMed  Google Scholar 

  8. Bishop L, et al. Guidelines on the insertion and management of central venous access devices in adults. Int J Lab Hematol. 2007;29(4):261–78.

    PubMed  CAS  Google Scholar 

  9. Morris D, Mulvihill D, Lew WY. Risk of developing complete heart block during bedside pulmonary artery catheterization in patients with left bundle-branch block. Arch Intern Med. 1987;147(11):2005–10.

    PubMed  CAS  Google Scholar 

  10. Unnikrishnan D, Idris N, Varshneya N. Complete heart block during central venous catheter placement in a patient with pre-existing left bundle branch block. Br J Anaesth. 2003;91(5):747–9.

    PubMed  CAS  Google Scholar 

  11. Farkas JC, et al. Single- versus triple-lumen central catheter-related sepsis: a prospective randomized study in a critically ill population. Am J Med. 1992;93(3):277–82.

    PubMed  CAS  Google Scholar 

  12. Dezfulian C, et al. Rates of infection for single-lumen versus multilumen central venous catheters: a meta-analysis. Crit Care Med. 2003;31(9):2385–90.

    PubMed  Google Scholar 

  13. Rupp SM, et al. Practice guidelines for central venous access: a report by the American Society of Anesthesiologists Task Force on Central Venous Access. Anesthesiology. 2012;116(3):539–73.

    PubMed  Google Scholar 

  14. Knutstad K, Hager B, Hauser M. Radiologic diagnosis and management of complications related to central venous access. Acta Radiol. 2003;44(5):508–16.

    PubMed  CAS  Google Scholar 

  15. Knebel P, et al. Insertion of totally implantable venous access devices: an expertise-based, randomized, controlled trial (NCT00600444). Ann Surg. 2011;253(6):1111–7.

    PubMed  Google Scholar 

  16. Marik PE, Flemmer M, Harrison W. The risk of catheter-related bloodstream infection with femoral venous catheters as compared to subclavian and internal jugular venous catheters: a systematic review of the literature and meta-analysis. Crit Care Med. 2012;40(8):2479–85.

    PubMed  Google Scholar 

  17. Ganeshan A, Warakaulle DR, Uberoi R. Central venous access. Cardiovasc Intervent Radiol. 2007;30(1):26–33.

    PubMed  Google Scholar 

  18. Karakitsos D, et al. Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients. Crit Care. 2006;10(6):R162.

    PubMed  PubMed Central  Google Scholar 

  19. Schillinger F, et al. Post catheterisation vein stenosis in haemodialysis: comparative angiographic study of 50 subclavian and 50 internal jugular accesses. Nephrol Dial Transplant. 1991;6(10):722–4.

    PubMed  CAS  Google Scholar 

  20. Lameris JS, et al. Percutaneous placement of Hickman catheters: comparison of sonographically guided and blind techniques. AJR Am J Roentgenol. 1990;155(5):1097–9.

    PubMed  CAS  Google Scholar 

  21. Randolph AG, et al. Ultrasound guidance for placement of central venous catheters: a meta-analysis of the literature. Crit Care Med. 1996;24(12):2053–8.

    PubMed  CAS  Google Scholar 

  22. Hind D, et al. Ultrasonic locating devices for central venous cannulation: meta-analysis. BMJ. 2003;327(7411):361.

    PubMed  PubMed Central  Google Scholar 

  23. Tripathi M, Tripathi M. Subclavian vein cannulation: an approach with definite landmarks. Ann Thorac Surg. 1996;61(1):238–40.

    PubMed  CAS  Google Scholar 

  24. Moran SG, Peoples JB. The deltopectoral triangle as a landmark for percutaneous infraclavicular cannulation of the subclavian vein. Angiology. 1993;44(9):683–6.

    PubMed  CAS  Google Scholar 

  25. Lorente L, et al. Central venous catheter-related infection in a prospective and observational study of 2,595 catheters. Crit Care. 2005;9(6):R631–5.

    PubMed  PubMed Central  Google Scholar 

  26. Kramer FL, Goodman J, Allen S. Thrombolytic therapy in catheter-related subclavian venous thrombosis. Can Assoc Radiol J. 1987;38(2):106–8.

    PubMed  CAS  Google Scholar 

  27. Rooden CJ, et al. Deep vein thrombosis associated with central venous catheters – a review. J Thromb Haemost. 2005;3(11):2409–19.

    PubMed  CAS  Google Scholar 

  28. Macdonald S, et al. Comparison of technical success and outcome of tunneled catheters inserted via the jugular and subclavian approaches. J Vasc Interv Radiol. 2000;11(2 Pt 1):225–31.

    PubMed  CAS  Google Scholar 

  29. Lockwood AH. Percutaneous subclavian vein catheterization. Too much of a good thing? Arch Intern Med. 1984;144(7):1407–8.

    PubMed  CAS  Google Scholar 

  30. Merrer J, et al. Complications of femoral and subclavian venous catheterization in critically ill patients: a randomized controlled trial. JAMA. 2001;286(6):700–7.

    PubMed  CAS  Google Scholar 

  31. Zaleski GX, et al. Experience with tunneled femoral hemodialysis catheters. AJR Am J Roentgenol. 1999;172(2):493–6.

    PubMed  CAS  Google Scholar 

  32. Kenney PR, Dorfman GS, Denny Jr DF. Percutaneous inferior vena cava cannulation for long-term parenteral nutrition. Surgery. 1985;97(5):602–5.

    PubMed  CAS  Google Scholar 

  33. Kaufman JA, Greenfield AJ, Fitzpatrick GF. Transhepatic cannulation of the inferior vena cava. J Vasc Interv Radiol. 1991;2(3):331–4.

    PubMed  CAS  Google Scholar 

  34. Forauer AR, et al. Placement of hemodialysis catheters through dilated external jugular and collateral veins in patients with internal jugular vein occlusions. AJR Am J Roentgenol. 2000;174(2):361–2.

    PubMed  CAS  Google Scholar 

  35. Meranze SG, et al. Catheter placement in the azygos system: an unusual approach to venous access. AJR Am J Roentgenol. 1985;144(5):1075–6.

    PubMed  CAS  Google Scholar 

  36. Ferral H, et al. Recanalization of occluded veins to provide access for central catheter placement. J Vasc Interv Radiol. 1996;7(5):681–5.

    PubMed  CAS  Google Scholar 

  37. Funaki B. Central venous access: a primer for the diagnostic radiologist. AJR Am J Roentgenol. 2002;179(2):309–18.

    PubMed  Google Scholar 

  38. Parry G. Trendelenburg position, head elevation and a midline position optimize right internal jugular vein diameter. Can J Anaesth. 2004;51(4):379–81.

    PubMed  Google Scholar 

  39. Bellazzini MA, et al. Ultrasound validation of maneuvers to increase internal jugular vein cross-sectional area and decrease compressibility. Am J Emerg Med. 2009;27(4):454–9.

    PubMed  Google Scholar 

  40. Samy Modeliar S, et al. Ultrasound evaluation of central veins in the intensive care unit: effects of dynamic manoeuvres. Intensive Care Med. 2008;34(2):333–8.

    PubMed  Google Scholar 

  41. Beddy P, et al. Valsalva and gravitational variability of the internal jugular vein and common femoral vein: ultrasound assessment. Eur J Radiol. 2006;58(2):307–9.

    PubMed  CAS  Google Scholar 

  42. Spafford PS, et al. Prevention of central venous catheter-related coagulase-negative staphylococcal sepsis in neonates. J Pediatr. 1994;125(2):259–63.

    PubMed  CAS  Google Scholar 

  43. Vassilomanolakis M, et al. Central venous catheter-related infections after bone marrow transplantation in patients with malignancies: a prospective study with short-course vancomycin prophylaxis. Bone Marrow Transplant. 1995;15(1):77–80.

    PubMed  CAS  Google Scholar 

  44. Berenholtz SM, et al. Eliminating catheter-related bloodstream infections in the intensive care unit. Crit Care Med. 2004;32(10):2014–20.

    PubMed  Google Scholar 

  45. Pronovost P, et al. An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med. 2006;355(26):2725–32.

    PubMed  CAS  Google Scholar 

  46. Warren DK, et al. Preventing catheter-associated bloodstream infections: a survey of policies for insertion and care of central venous catheters from hospitals in the prevention epicenter program. Infect Control Hosp Epidemiol. 2006;27(1):8–13.

    PubMed  Google Scholar 

  47. Maki DG, Ringer M, Alvarado CJ. Prospective randomised trial of povidone-iodine, alcohol, and chlorhexidine for prevention of infection associated with central venous and arterial catheters. Lancet. 1991;338(8763):339–43.

    PubMed  CAS  Google Scholar 

  48. Noorani A, et al. Systematic review and meta-analysis of preoperative antisepsis with chlorhexidine versus povidone-iodine in clean-contaminated surgery. Br J Surg. 2010;97(11):1614–20.

    PubMed  CAS  Google Scholar 

  49. Darouiche RO, et al. Chlorhexidine-alcohol versus povidone-iodine for surgical-site antisepsis. N Engl J Med. 2010;362(1):18–26.

    PubMed  CAS  Google Scholar 

  50. Troianos CA, et al. Special articles: guidelines for performing ultrasound guided vascular cannulation: recommendations of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. Anesth Analg. 2012;114(1):46–72.

    PubMed  Google Scholar 

  51. Rabindranath KS, et al. Use of real-time ultrasound guidance for the placement of hemodialysis catheters: a systematic review and meta-analysis of randomized controlled trials. Am J Kidney Dis. 2011;58(6):964–70.

    PubMed  Google Scholar 

  52. Rabindranath KS, et al. Ultrasound use for the placement of haemodialysis catheters. Cochrane Database Syst Rev. 2011;11, CD005279.

    PubMed  Google Scholar 

  53. Geddes CC, et al. Insertion of internal jugular temporary hemodialysis cannulae by direct ultrasound guidance–a prospective comparison of experienced and inexperienced operators. Clin Nephrol. 1998;50(5):320–5.

    PubMed  CAS  Google Scholar 

  54. Denys BG, et al. An ultrasound method for safe and rapid central venous access. N Engl J Med. 1991;324(8):566.

    PubMed  CAS  Google Scholar 

  55. Abboud PA, Kendall JL. Ultrasound guidance for vascular access. Emerg Med Clin North Am. 2004;22(3):749–73.

    PubMed  Google Scholar 

  56. Fragou M, et al. Real-time ultrasound-guided subclavian vein cannulation versus the landmark method in critical care patients: a prospective randomized study. Crit Care Med. 2011;39(7):1607–12.

    PubMed  Google Scholar 

  57. O’Leary R, et al. Ultrasound-guided infraclavicular axillary vein cannulation: a useful alternative to the internal jugular vein. Br J Anaesth. 2012;109(5):762–8.

    PubMed  Google Scholar 

  58. Costanza MJ, et al. Angioaccess for hemodialysis. Curr Probl Surg. 2011;48(7):443–517.

    PubMed  Google Scholar 

  59. Fortune JB, Feustel P. Effect of patient position on size and location of the subclavian vein for percutaneous puncture. Arch Surg. 2003;138(9):996–1000; discussion 1001.

    PubMed  Google Scholar 

  60. Tan BK, et al. Anatomic basis of safe percutaneous subclavian venous catheterization. J Trauma. 2000;48(1):82–6.

    PubMed  CAS  Google Scholar 

  61. Kitagawa N, et al. Proper shoulder position for subclavian venipuncture: a prospective randomized clinical trial and anatomical perspectives using multislice computed tomography. Anesthesiology. 2004;101(6):1306–12.

    PubMed  Google Scholar 

  62. Unal AE, et al. Malpositioning of Hickman catheters, left versus right sided attempts. Transfus Apher Sci. 2003;28(1):9–12.

    PubMed  Google Scholar 

  63. Jung CW, et al. Head position for facilitating the superior vena caval placement of catheters during right subclavian approach in children. Crit Care Med. 2002;30(2):297–9.

    PubMed  Google Scholar 

  64. Sanchez R, et al. Misplacement of subclavian venous catheters: importance of head position and choice of puncture site. Br J Anaesth. 1990;64(5):632–3.

    PubMed  CAS  Google Scholar 

  65. Bannon MP, Heller SF, Rivera M. Anatomic considerations for central venous cannulation. Risk Manag Healthc Policy. 2011;4:27–39.

    PubMed  PubMed Central  Google Scholar 

  66. Kilbourne MJ, et al. Avoiding common technical errors in subclavian central venous catheter placement. J Am Coll Surg. 2009;208(1):104–9.

    PubMed  Google Scholar 

  67. Nevarre DR, Domingo OH. Supraclavicular approach to subclavian catheterization: review of the literature and results of 178 attempts by the same operator. J Trauma. 1997;42(2):305–9.

    PubMed  CAS  Google Scholar 

  68. Cunningham SC, Gallmeier E. Supraclavicular approach for central venous catheterization: “safer, simpler, speedier”. J Am Coll Surg. 2007;205(3):514–6; author reply 516–7.

    PubMed  Google Scholar 

  69. Jesseph JM, Conces Jr DJ, Augustyn GT. Patient positioning for subclavian vein catheterization. Arch Surg. 1987;122(10):1207–9.

    PubMed  CAS  Google Scholar 

  70. Breznick DA, Ness WC. Acute arterial insufficiency of the upper extremity after central venous cannulation. Anesthesiology. 1993;78(3):594–6.

    PubMed  CAS  Google Scholar 

  71. Casserly IP, et al. Paradoxical embolization of a fractured guidewire: successful retrieval from left atrium using a snare device. Catheter Cardiovasc Interv. 2002;57(1):34–8.

    PubMed  Google Scholar 

  72. Tewari P, Agarwal A. Spring guidewire sticks in the indwelling catheter during internal jugular vein catheterisation. Anaesthesia. 2000;55(8):832.

    PubMed  CAS  Google Scholar 

  73. Furui S, et al. Intravascular foreign bodies: loop-snare retrieval system with a three-lumen catheter. Radiology. 1992;182(1):283–4.

    PubMed  CAS  Google Scholar 

  74. Streib EW, Wagner JW. Complications of vascular access procedures in patients with vena cava filters. J Trauma. 2000;49(3):553–7; discussion 557–8.

    PubMed  CAS  Google Scholar 

  75. Oliver Jr WC, et al. The incidence of artery puncture with central venous cannulation using a modified technique for detection and prevention of arterial cannulation. J Cardiothorac Vasc Anesth. 1997;11(7):851–5.

    PubMed  Google Scholar 

  76. McGee DC, Gould MK. Preventing complications of central venous catheterization. N Engl J Med. 2003;348(12):1123–33.

    PubMed  Google Scholar 

  77. Reuber M, et al. Stroke after internal jugular venous cannulation. Acta Neurol Scand. 2002;105(3):235–9.

    PubMed  CAS  Google Scholar 

  78. Verghese ST, et al. Ultrasound-guided internal jugular venous cannulation in infants: a prospective comparison with the traditional palpation method. Anesthesiology. 1999;91(1):71–7.

    PubMed  CAS  Google Scholar 

  79. Anagnou J. Cerebrovascular accident during percutaneous cannulation of internal jugular vein. Lancet. 1982;2(8294):377–8.

    PubMed  CAS  Google Scholar 

  80. Eckhardt WF, et al. Inadvertent carotid artery cannulation during pulmonary artery catheter insertion. J Cardiothorac Vasc Anesth. 1996;10(2):283–90.

    PubMed  CAS  Google Scholar 

  81. Asteri T, et al. Beware Swan-Ganz complications. Perioperative management. J Cardiovasc Surg (Torino). 2002;43(4):467–70.

    CAS  Google Scholar 

  82. Defalque RJ, Fletcher MV. Neurological complications of central venous cannulation. JPEN J Parenter Enteral Nutr. 1988;12(4):406–9.

    PubMed  CAS  Google Scholar 

  83. Stewart RW, et al. Fatal outcome of jugular vein cannulation. South Med J. 1995;88(11):1159–60.

    PubMed  CAS  Google Scholar 

  84. Williams A, et al. Spinal cord infarction following central-line insertion. Ren Fail. 2003;25(2):327–9.

    PubMed  Google Scholar 

  85. Wicky S, et al. Life-threatening vascular complications after central venous catheter placement. Eur Radiol. 2002;12(4):901–7.

    PubMed  CAS  Google Scholar 

  86. Robinson JF, et al. Perforation of the great vessels during central venous line placement. Arch Intern Med. 1995;155(11):1225–8.

    PubMed  CAS  Google Scholar 

  87. Shah PM, et al. Arterial misplacement of large-caliber cannulas during jugular vein catheterization: case for surgical management. J Am Coll Surg. 2004;198(6):939–44.

    PubMed  Google Scholar 

  88. Kron IL, et al. Arch vessel injury during pulmonary artery catheter placement. Ann Thorac Surg. 1985;39(3):223–4.

    PubMed  CAS  Google Scholar 

  89. Jain U, et al. Subclavian artery laceration and acute hemothorax on attempted internal jugular vein cannulation. J Cardiothorac Vasc Anesth. 1991;5(6):608–10.

    PubMed  CAS  Google Scholar 

  90. Denys BG, Uretsky BF, Reddy PS. Ultrasound-assisted cannulation of the internal jugular vein. A prospective comparison to the external landmark-guided technique. Circulation. 1993;87(5):1557–62.

    PubMed  CAS  Google Scholar 

  91. Gann Jr M, Sardi A. Improved results using ultrasound guidance for central venous access. Am Surg. 2003;69(12):1104–7.

    PubMed  Google Scholar 

  92. Jobes DR, et al. Safer jugular vein cannulation: recognition of arterial puncture and preferential use of the external jugular route. Anesthesiology. 1983;59(4):353–5.

    PubMed  CAS  Google Scholar 

  93. Golden LR. Incidence and management of large-bore introducer sheath puncture of the carotid artery. J Cardiothorac Vasc Anesth. 1995;9(4):425–8.

    PubMed  CAS  Google Scholar 

  94. Baumgartner FJ, et al. Central venous injuries of the subclavian-jugular and innominate-caval confluences. Tex Heart Inst J. 1999;26(3):177–81.

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Greenall MJ, Blewitt RW, McMahon MJ. Cardiac tamponade and central venous catheters. Br Med J. 1975;2(5971):595–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Collier PE, Goodman GB. Cardiac tamponade caused by central venous catheter perforation of the heart: a preventable complication. J Am Coll Surg. 1995;181(5):459–63.

    PubMed  CAS  Google Scholar 

  97. Barton BR, Hermann G, Weil 3rd R. Cardiothoracic emergencies associated with subclavian hemodialysis catheters. JAMA. 1983;250(19):2660–2.

    PubMed  CAS  Google Scholar 

  98. Fangio P, et al. Aortic injury and cardiac tamponade as a complication of subclavian venous catheterization. Anesthesiology. 2002;96(6):1520–2.

    PubMed  Google Scholar 

  99. Walser EM, et al. Percutaneous tamponade of inadvertent transthoracic catheterization of the aorta. Ann Thorac Surg. 1996;62(3):895–6.

    PubMed  CAS  Google Scholar 

  100. Pikwer A, et al. Management of inadvertent arterial catheterisation associated with central venous access procedures. Eur J Vasc Endovasc Surg. 2009;38(6):707–14.

    PubMed  CAS  Google Scholar 

  101. Patel SJ, Venn GE, Redwood SR. Percutaneous closure of an iatrogenic puncture of the aortic arch. Cardiovasc Intervent Radiol. 2003;26(4):407–9.

    PubMed  CAS  Google Scholar 

  102. Teichgraber UK, et al. Central venous access catheters: radiological management of complications. Cardiovasc Intervent Radiol. 2003;26(4):321–33.

    PubMed  CAS  Google Scholar 

  103. Brzowski BK, Mills JL, Beckett WC. Iatrogenic subclavian artery pseudoaneurysms: case reports. J Trauma. 1990;30(5):616–8.

    PubMed  CAS  Google Scholar 

  104. Sato O, et al. Arteriovenous fistula following central venous catheterization. Arch Surg. 1986;121(6):729–31.

    PubMed  CAS  Google Scholar 

  105. Chloroyiannis Y, Reul GJ. Iatrogenic left subclavian artery-to-left brachiocephalic vein fistula: successful repair without a sternotomy. Tex Heart Inst J. 2004;31(2):172–4.

    PubMed  PubMed Central  Google Scholar 

  106. Inamasu J, Guiot BH. Iatrogenic vertebral artery injury. Acta Neurol Scand. 2005;112(6):349–57.

    PubMed  CAS  Google Scholar 

  107. Yu NR, et al. Vertebral artery dissection following intravascular catheter placement: a case report and review of the literature. Vasc Med. 2004;9(3):199–203.

    PubMed  Google Scholar 

  108. Bernik TR, et al. Pseudoaneurysm of the subclavian-vertebral artery junction–case report and review of the literature. Vasc Endovascular Surg. 2002;36(6):461–4.

    PubMed  Google Scholar 

  109. Holder R, et al. Percutaneous thrombin injection of carotid artery pseudoaneurysm. J Endovasc Ther. 2002;9(1):25–8.

    PubMed  Google Scholar 

  110. Lefrant JY, et al. Risk factors of failure and immediate complication of subclavian vein catheterization in critically ill patients. Intensive Care Med. 2002;28(8):1036–41.

    PubMed  Google Scholar 

  111. McGee WT, et al. Accurate placement of central venous catheters: a prospective, randomized, multicenter trial. Crit Care Med. 1993;21(8):1118–23.

    PubMed  CAS  Google Scholar 

  112. Kidney DD, Nguyen DT, Deutsch LS. Radiologic evaluation and management of malfunctioning long-term central vein catheters. AJR Am J Roentgenol. 1998;171(5):1251–7.

    PubMed  CAS  Google Scholar 

  113. Ambesh SP, et al. Manual occlusion of the internal jugular vein during subclavian vein catheterization: a maneuver to prevent misplacement of catheter into internal jugular vein. Anesthesiology. 2002;97(2):528–9.

    PubMed  Google Scholar 

  114. Lefrant JY, et al. Pulsed Doppler ultrasonography guidance for catheterization of the subclavian vein: a randomized study. Anesthesiology. 1998;88(5):1195–201.

    PubMed  CAS  Google Scholar 

  115. Mitchell SE, Clark RA. Complications of central venous catheterization. AJR Am J Roentgenol. 1979;133(3):467–76.

    PubMed  CAS  Google Scholar 

  116. Plewa MC, Ledrick D, Sferra JJ. Delayed tension pneumothorax complicating central venous catheterization and positive pressure ventilation. Am J Emerg Med. 1995;13(5):532–5.

    PubMed  CAS  Google Scholar 

  117. Sznajder JI, et al. Central vein catheterization. Failure and complication rates by three percutaneous approaches. Arch Intern Med. 1986;146(2):259–61.

    PubMed  CAS  Google Scholar 

  118. Tyburski JG, et al. Delayed pneumothorax after central venous access: a potential hazard. Am Surg. 1993;59(9):587–9.

    PubMed  CAS  Google Scholar 

  119. Plaus WJ. Delayed pneumothorax after subclavian vein catheterization. JPEN J Parenter Enteral Nutr. 1990;14(4):414–5.

    PubMed  CAS  Google Scholar 

  120. Chang TC, Funaki B, Szymski GX. Are routine chest radiographs necessary after image-guided placement of internal jugular central venous access devices? AJR Am J Roentgenol. 1998;170(2):335–7.

    PubMed  CAS  Google Scholar 

  121. Gurley MB, Richli WR, Waugh KA. Outpatient management of pneumothorax after fine-needle aspiration: economic advantages for the hospital and patient. Radiology. 1998;209(3):717–22.

    PubMed  CAS  Google Scholar 

  122. Rozenman J, et al. Re-expansion pulmonary oedema following spontaneous pneumothorax. Respir Med. 1996;90(4):235–8.

    PubMed  CAS  Google Scholar 

  123. Beng ST, Mahadevan M. An uncommon life-threatening complication after chest tube drainage of pneumothorax in the ED. Am J Emerg Med. 2004;22(7):615–9.

    PubMed  Google Scholar 

  124. Maury E, et al. Ultrasonic examination: an alternative to chest radiography after central venous catheter insertion? Am J Respir Crit Care Med. 2001;164(3):403–5.

    PubMed  CAS  Google Scholar 

  125. Simon BC, Paolinetti L. Two cases where bedside ultrasound was able to distinguish pulmonary bleb from pneumothorax. J Emerg Med. 2005;29(2):201–5.

    PubMed  Google Scholar 

  126. Zhang M, et al. Rapid detection of pneumothorax by ultrasonography in patients with multiple trauma. Crit Care. 2006;10(4):R112.

    PubMed  PubMed Central  Google Scholar 

  127. Sistrom C. US in the detection of pneumothorax. Radiology. 2003;227(1):305–6; author reply 306.

    PubMed  Google Scholar 

  128. O’Grady NP, et al. Guidelines for the prevention of intravascular catheter-related infections. Centers for Disease Control and Prevention. MMWR Recomm Rep. 2002;51(RR-10):1–29.

    PubMed  Google Scholar 

  129. Ryan Jr JA, et al. Catheter complications in total parenteral nutrition. A prospective study of 200 consecutive patients. N Engl J Med. 1974;290(14):757–61.

    PubMed  Google Scholar 

  130. Polderman KH, Girbes AR. Central venous catheter use. Part 2: infectious complications. Intensive Care Med. 2002;28(1):18–28.

    PubMed  CAS  Google Scholar 

  131. Mermel LA, et al. Guidelines for the management of intravascular catheter-related infections. Infect Control Hosp Epidemiol. 2001;22(4):222–42.

    PubMed  CAS  Google Scholar 

  132. Elting LS, Bodey GP. Septicemia due to Xanthomonas species and non-aeruginosa Pseudomonas species: increasing incidence of catheter-related infections. Medicine (Baltimore). 1990;69(5):296–306.

    CAS  Google Scholar 

  133. Raad I, et al. Impact of central venous catheter removal on the recurrence of catheter-related coagulase-negative staphylococcal bacteremia. Infect Control Hosp Epidemiol. 1992;13(4):215–21.

    PubMed  CAS  Google Scholar 

  134. Snydman DR, et al. Predictive value of surveillance skin cultures in total-parenteral-nutrition-related infection. Lancet. 1982;2(8312):1385–8.

    PubMed  CAS  Google Scholar 

  135. Timsit JF, et al. Central vein catheter-related thrombosis in intensive care patients: incidence, risks factors, and relationship with catheter-related sepsis. Chest. 1998;114(1):207–13.

    PubMed  CAS  Google Scholar 

  136. Reed CR, et al. Central venous catheter infections: concepts and controversies. Intensive Care Med. 1995;21(2):177–83.

    PubMed  CAS  Google Scholar 

  137. Bernard RW, Stahl WM. Subclavian vein catheterizations: a prospective study. I. Non-infectious complications. Ann Surg. 1971;173(2):184–90.

    PubMed  CAS  PubMed Central  Google Scholar 

  138. Randolph AG, et al. Benefit of heparin in central venous and pulmonary artery catheters: a meta-analysis of randomized controlled trials. Chest. 1998;113(1):165–71.

    PubMed  CAS  Google Scholar 

  139. Mickley V. Central vein obstruction in vascular access. Eur J Vasc Endovasc Surg. 2006;32(4):439–44.

    PubMed  CAS  Google Scholar 

  140. Laster JL, Nichols WK, Silver D. Thrombocytopenia associated with heparin-coated catheters in patients with heparin-associated antiplatelet antibodies. Arch Intern Med. 1989;149(10):2285–7.

    PubMed  CAS  Google Scholar 

  141. Kohler TR, Kirkman TR. Central venous catheter failure is induced by injury and can be prevented by stabilizing the catheter tip. J Vasc Surg. 1998;28(1):59–65; discussion 65–6.

    PubMed  CAS  Google Scholar 

  142. Sitzmann JV, et al. Septic and technical complications of central venous catheterization. A prospective study of 200 consecutive patients. Ann Surg. 1985;202(6):766–70.

    PubMed  CAS  PubMed Central  Google Scholar 

  143. Pittet D, Tarara D, Wenzel RP. Nosocomial bloodstream infection in critically ill patients. Excess length of stay, extra costs, and attributable mortality. JAMA. 1994;271(20):1598–601.

    PubMed  CAS  Google Scholar 

  144. McKinley S, et al. Incidence and predictors of central venous catheter related infection in intensive care patients. Anaesth Intensive Care. 1999;27(2):164–9.

    PubMed  CAS  Google Scholar 

  145. Howell PB, et al. Risk factors for infection of adult patients with cancer who have tunnelled central venous catheters. Cancer. 1995;75(6):1367–75.

    PubMed  CAS  Google Scholar 

  146. Shaul DB, et al. Risk factors for early infection of central venous catheters in pediatric patients. J Am Coll Surg. 1998;186(6):654–8.

    PubMed  CAS  Google Scholar 

  147. Donowitz GR, et al. Infections in the neutropenic patient–new views of an old problem. Hematology Am Soc Hematol Educ Program. 2001:113–39.

    Google Scholar 

  148. Press OW, et al. Hickman catheter infections in patients with malignancies. Medicine (Baltimore). 1984;63(4):189–200.

    CAS  Google Scholar 

  149. Mollee P, et al. Catheter-associated bloodstream infection incidence and risk factors in adults with cancer: a prospective cohort study. J Hosp Infect. 2011;78(1):26–30.

    PubMed  CAS  Google Scholar 

  150. Armstrong CW, et al. Prospective study of catheter replacement and other risk factors for infection of hyperalimentation catheters. J Infect Dis. 1986;154(5):808–16.

    PubMed  CAS  Google Scholar 

  151. Marr KA, et al. Catheter-related bacteremia and outcome of attempted catheter salvage in patients undergoing hemodialysis. Ann Intern Med. 1997;127(4):275–80.

    PubMed  CAS  Google Scholar 

  152. Kovacevich DS, et al. Association of parenteral nutrition catheter sepsis with urinary tract infections. JPEN J Parenter Enteral Nutr. 1986;10(6):639–41.

    PubMed  CAS  Google Scholar 

  153. Rello J, et al. Evaluation of outcome of intravenous catheter-related infections in critically ill patients. Am J Respir Crit Care Med. 2000;162(3 Pt 1):1027–30.

    PubMed  CAS  Google Scholar 

  154. Hilton E, et al. Central catheter infections: single- versus triple-lumen catheters. Influence of guide wires on infection rates when used for replacement of catheters. Am J Med. 1988;84(4):667–72.

    PubMed  CAS  Google Scholar 

  155. Lee RB, Buckner M, Sharp KW. Do multi-lumen catheters increase central venous catheter sepsis compared to single-lumen catheters? J Trauma. 1988;28(10):1472–5.

    PubMed  CAS  Google Scholar 

  156. Feldman HI, Kobrin S, Wasserstein A. Hemodialysis vascular access morbidity. J Am Soc Nephrol. 1996;7(4):523–35.

    PubMed  CAS  Google Scholar 

  157. Schwab SJ, et al. Prospective evaluation of a Dacron cuffed hemodialysis catheter for prolonged use. Am J Kidney Dis. 1988;11(2):166–9.

    PubMed  CAS  Google Scholar 

  158. Saad TF. Bacteremia associated with tunneled, cuffed hemodialysis catheters. Am J Kidney Dis. 1999;34(6):1114–24.

    PubMed  CAS  Google Scholar 

  159. Fan ST, Teoh-Chan CH, Lau KF. Evaluation of central venous catheter sepsis by differential quantitative blood culture. Eur J Clin Microbiol Infect Dis. 1989;8(2):142–4.

    PubMed  CAS  Google Scholar 

  160. Schwab SJ, et al. Vascular access for hemodialysis. Kidney Int. 1999;55(5):2078–90.

    PubMed  CAS  Google Scholar 

  161. Beathard GA. Management of bacteremia associated with tunneled-cuffed hemodialysis catheters. J Am Soc Nephrol. 1999;10(5):1045–9.

    PubMed  CAS  Google Scholar 

  162. Mughal MM. Complications of intravenous feeding catheters. Br J Surg. 1989;76(1):15–21.

    PubMed  CAS  Google Scholar 

  163. Trottier SJ, et al. Femoral deep vein thrombosis associated with central venous catheterization: results from a prospective, randomized trial. Crit Care Med. 1995;23(1):52–9.

    PubMed  CAS  Google Scholar 

  164. Kusminsky RE. Complications of central venous catheterization. J Am Coll Surg. 2007;204(4):681–96.

    PubMed  Google Scholar 

  165. Sprouse 2nd LR, et al. Percutaneous treatment of symptomatic central venous stenosis [corrected]. J Vasc Surg. 2004;39(3):578–82.

    PubMed  Google Scholar 

  166. Vescia S, et al. Management of venous port systems in oncology: a review of current evidence. Ann Oncol. 2008;19(1):9–15.

    PubMed  CAS  Google Scholar 

  167. Fontes ML, Barash PG. “AAA” to the rescue? Crit Care Med. 1999;27(12):2827–9.

    PubMed  CAS  Google Scholar 

  168. Bagnall HA, Gomperts E, Atkinson JB. Continuous infusion of low-dose urokinase in the treatment of central venous catheter thrombosis in infants and children. Pediatrics. 1989;83(6):963–6.

    PubMed  CAS  Google Scholar 

  169. Puel V, Caudry M, Le Metayer P, et al. Superior vena cava thrombosis related to catheter malposition in cancer chemotherapy given through implanted ports. Cancer. 1993;72:2248–52.

    PubMed  CAS  Google Scholar 

  170. Gravenstein N, Blackshear RH. In vitro evaluation of relative perforating potential of central venous catheters: comparison of materials, selected models, number of lumens and angles of incidence to simulated membrane. J Clin Monit. 1991;7:1–6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwame S. Amankwah MD, MSc, FACS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Amankwah, K.S. (2015). Central Venous Access. In: Gahtan, V., Costanza, M. (eds) Essentials of Vascular Surgery for the General Surgeon. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1326-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1326-8_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1325-1

  • Online ISBN: 978-1-4939-1326-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics