Skip to main content

Linear Response Theory for Diffusion Processes

  • Chapter
  • First Online:
Stochastic Processes and Applications

Part of the book series: Texts in Applied Mathematics ((TAM,volume 60))

  • 10k Accesses

Abstract

In this chapter, we study the effect of a weak external forcing on a system at equilibrium. The forcing moves the system away from equilibrium, and we are interested in understanding the response of the system to this forcing. We study this problem for ergodic diffusion processes using perturbation theory. In particular, we develop linear response theory. The analysis of weakly perturbed systems leads to fundamental results such as the fluctuation–dissipation theorem and to the Green–Kubo formula, which enables us to calculate transport coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The natural choice is t 0 = 0. Sometimes, it is convenient to take \(t_{0} = -\infty\).

  2. 2.

    Note that to be consistent with the notation that we have used previously in the book, in (9.1a) we use \(\mathcal{L}^{{\ast}}\) instead of \(\mathcal{L}\), since the operator that appears in the Liouville or the Fokker–Planck equation is the adjoint of the generator.

  3. 3.

    Note that this is the Green’s function for the damped harmonic oscillator.

  4. 4.

    In fact, all we need is \(f,g \in D(\mathcal{L})\) and \(fg \in D(\mathcal{L})\).

References

  1. R. Balescu. Equilibrium and nonequilibrium statistical mechanics. Wiley-Interscience [John Wiley & Sons], New York, 1975.

    Google Scholar 

  2. J. Binney and S. Tremaine. Galactic Dynamics. Princeton University Press, Princeton, second edition, 2008.

    Google Scholar 

  3. S. R. de Groot and P. Mazur. Non-equilibrium thermodynamics. Interscience, New York, 1962.

    Google Scholar 

  4. A. Dembo and J.-D. Deuschel. Markovian perturbation, response and fluctuation dissipation theorem. Ann. Inst. Henri Poincaré Probab. Stat., 46(3):822–852, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Hairer and A. J. Majda. A simple framework to justify linear response theory. Nonlinearity, 23(4):909–922, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  6. V. Jakšić, Y. Ogata, and C.-A. Pillet. The Green-Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics. Comm. Math. Phys., 265(3):721–738, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  7. V. Jakšić, Y. Ogata, and C.-A. Pillet. Linear response theory for thermally driven quantum open systems. J. Stat. Phys., 123(3):547–569, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  8. D.-Q. Jiang, M. Qian, and M.-P. Qian. Mathematical theory of nonequilibrium steady states, volume 1833 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2004.

    Google Scholar 

  9. D.-Q. Jiang and F.-X. Zhang. The Green-Kubo formula and power spectrum of reversible Markov processes. J. Math. Phys., 44(10):4681–4689, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  10. C. Kipnis and S. R. S. Varadhan. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys., 104(1):1–19, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Kubo. The fluctuation-dissipation theorem. Rep. Prog. Phys., 29:255–284, 1966.

    Article  Google Scholar 

  12. R. Kubo, M. Toda, and N. Hashitsume. Statistical physics. II, volume 31 of Springer Series in Solid-State Sciences. Springer-Verlag, Berlin, second edition, 1991. Nonequilibrium statistical mechanics.

    Google Scholar 

  13. C. E. Leith. Climate response and fluctuation dissipation. Journal of the Atmospheric Sciences, 32(10):2022–2026, 1975.

    Article  Google Scholar 

  14. G. F. Mazenko. Nonequilibrium statistical mechanics. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006.

    Book  Google Scholar 

  15. P. Resibois and M. De Leener. Classical Kinetic Theory of Fluids. Wiley, New York, 1977.

    Google Scholar 

  16. H. Rodenhausen. Einstein’s relation between diffusion constant and mobility for a diffusion model. J. Statist. Phys., 55(5–6):1065–1088, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  17. D. Ruelle. A review of linear response theory for general differentiable dynamical systems. Nonlinearity, 22(4):855–870, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  18. F. Yang, Y. Chen, and Y. Liu. The Green-Kubo formula for general Markov processes with a continuous time parameter. J. Phys. A, 43(24):245002, 17, 2010.

    Google Scholar 

  19. R. Zwanzig. Nonequilibrium statistical mechanics. Oxford University Press, New York, 2001.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pavliotis, G.A. (2014). Linear Response Theory for Diffusion Processes. In: Stochastic Processes and Applications. Texts in Applied Mathematics, vol 60. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1323-7_9

Download citation

Publish with us

Policies and ethics