Skip to main content

Derivation of the Langevin Equation

  • Chapter
  • First Online:
Book cover Stochastic Processes and Applications

Part of the book series: Texts in Applied Mathematics ((TAM,volume 60))

  • 11k Accesses

Abstract

In this chapter, we derive the Langevin equation from a simple mechanical model for a small system (which we will refer to as a Brownian particle) that is in contact with a thermal reservoir that is at thermodynamic equilibrium at time t = 0. The full dynamics, Brownian particle plus thermal reservoir, are assumed to be Hamiltonian. The derivation proceeds in three steps. First, we derive a closed stochastic integrodifferential equation for the dynamics of the Brownian particle, the generalized Langevin equation (GLE). In the second step, we approximate the GLE by a finite-dimensional Markovian equation in an extended phase space. Finally, we use singular perturbation theory for Markov processes to derive the Langevin equation, under the assumption of rapidly decorrelating noise. This derivation provides a partial justification for the use of stochastic differential equations, in particular the Langevin equation, in the modeling of physical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A few basic facts about Gaussian measures in Hilbert spaces can be found in Sect. B.5 in the appendix.

  2. 2.

    For a functional of the form \(\mathcal{H}(\phi ) =\int _{\mathbb{R}}H(\phi,\partial _{x}\phi )\,dx,\) the functional derivative is given \(\textrm{by }\frac{\delta \mathcal{H}} {\delta \phi } = \frac{\partial H} {\partial \phi } - \frac{\partial } {\partial x} \frac{\partial H} {\partial (\partial _{x}\rho )}.\) We apply this definition to the functional (8.14) to obtain \(\frac{\delta \mathcal{H}} {\delta \pi } =\pi,\quad \frac{\delta \mathcal{H}} {\delta \varphi } = -\partial _{x}^{2}\varphi - q\partial _{x}\rho\).

  3. 3.

    Assuming, of course, that the heat bath is described by a wave equation, i.e., assuming that \(\mathcal{A}\) is the wave operator.

  4. 4.

    In fact, the autocorrelation function depends also on the operator \(\mathcal{A}\) in (8.17).

  5. 5.

    In fact, the last term in (8.38) should read \(\beta ^{-1}A_{s}: D_{z}, where A_{s} = \frac{1}{2}\left(A + A^{T}\right)\) denotes the symmetric part of A. However, since D_{z} is symmetric, we can write it in the form \(\beta^{-1} A : D_{z}\).

References

  1. G. Ariel and E. Vanden-Eijnden. Testing transition state theory on Kac-Zwanzig model. J. Stat. Phys., 126(1):43–73, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  2. G. Ariel and E. Vanden-Eijnden. A strong limit theorem in the Kac-Zwanzig model. Nonlinearity, 22(1):145–162, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Cortes, B. J. West, and K. Lindenberg. On the generalized Langevin equation—classical and quantum-mechanical. Journal of Chemical Physics, 82(6):2708–2717, 1985.

    Article  MathSciNet  Google Scholar 

  4. D. Dürr, S. Goldstein, and J. L. Lebowitz. A mechanical model of Brownian motion. Comm. Math. Phys., 78(4):507–530, 1980/81.

    Google Scholar 

  5. J.-P. Eckmann and M. Hairer. Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators. Comm. Math. Phys., 212(1): 105–164, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  6. J-P. Eckmann, C-A. Pillet, and L. Rey-Bellet. Entropy production in nonlinear, thermally driven Hamiltonian systems. J. Statist. Phys., 95(1–2): 305–331, 1999.

    Google Scholar 

  7. J.-P. Eckmann, C.-A. Pillet, and L. Rey-Bellet. Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Comm. Math. Phys., 201(3):657–697, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  8. G. W. Ford and M. Kac. On the quantum Langevin equation. J. Statist. Phys., 46(5–6):803–810, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. W. Ford, M. Kac, and P. Mazur. Statistical mechanics of assemblies of coupled oscillators. J. Mathematical Phys., 6:504–515, 1965.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. Givon, R. Kupferman, and A. M. Stuart. Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity, 17(6):R55–R127, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Hanggi, P. Talkner, and M. Borkovec. Reaction-rate theory: fifty years after Kramers. Rev. Modern Phys., 62(2):251–341, 1990.

    Article  MathSciNet  Google Scholar 

  12. V. Jakšić and C.-A. Pillet. Ergodic properties of the non-Markovian Langevin equation. Lett. Math. Phys., 41(1):49–57, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  13. V. Jakšić and C.-A. Pillet. Ergodic properties of classical dissipative systems. I. Acta Math., 181(2):245–282, 1998.

    Google Scholar 

  14. P. Krée. Realization of Gaussian random fields. J. Math. Phys., 24(11):2573–2580, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  15. P. Krée and C. Soize. Markovianization of nonlinear oscillators with colored input. Rend. Sem. Mat. Univ. Politec. Torino, pages 135–150, 1982.

    Google Scholar 

  16. R. Kubo, M. Toda, and N. Hashitsume. Statistical physics. II, volume 31 of Springer Series in Solid-State Sciences. Springer-Verlag, Berlin, second edition, 1991. Nonequilibrium statistical mechanics.

    Google Scholar 

  17. R. Kupferman. Fractional kinetics in Kac-Zwanzig heat bath models. J. Statist. Phys., 114(1–2):291–326, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Kupferman and A. M. Stuart. Fitting SDE models to nonlinear Kac-Zwanzig heat bath models. Phys. D, 199(3–4):279–316, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. T. Lewis and L. C. Thomas. How to make a heat bath. In Functional integration and its applications (Proc. Internat. Conf., London, 1974), pages 97–123. Clarendon Press, Oxford, 1975.

    Google Scholar 

  20. K. Lindenberg and B. J. West. The nonequilibrium statistical mechanics of open and closed systems. VCH Publishers Inc., New York, 1990.

    MATH  Google Scholar 

  21. R.M. Mazo. Brownian motion, volume 112 of International Series of Monographs on Physics. Oxford University Press, New York, 2002.

    Google Scholar 

  22. H. Mori. A continued-fraction representation of the time-correlation functions. Progress of Theoretical Physics, 34(3):399–416, 1965.

    Article  MathSciNet  Google Scholar 

  23. M. Ottobre and G. A. Pavliotis. Asymptotic analysis for the generalized Langevin equation. Nonlinearity, 24(5):1629–1653, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  24. E Pollak. Theory of Activated Rate-processes—a new derivation of Kramers expression. Journal of Chemical Physics, 85(2):865–867, 1986.

    Article  MathSciNet  Google Scholar 

  25. E. Pollak, H. Grabert, and P. Hanggi. Theory of activated rate processes for arbitrary frequency dependent friction: Solution of the turnover problem. The Journal of Chemical Physics, 91(7):4073–4087, 1989.

    Article  Google Scholar 

  26. M. Reed and B. Simon. Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press, New York, 1975.

    Google Scholar 

  27. L. Rey-Bellet. Ergodic properties of markov processes. In S. Attal, A. Joye, and C.-A. Pillet, editors, Open Quantum Systems II, volume 1881 of Lecture Notes in Mathematics, pages 1–39. Springer, 2006.

    Google Scholar 

  28. L. Rey-Bellet. Open classical systems. In Open quantum systems. II, volume 1881 of Lecture Notes in Math., pages 41–78. Springer, Berlin, 2006.

    Google Scholar 

  29. L. Rey-Bellet and L. E. Thomas. Exponential convergence to non-equilibrium stationary states in classical statistical mechanics. Comm. Math. Phys., 225(2):305–329, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  30. C. Soize. The Fokker-Planck equation for stochastic dynamical systems and its explicit steady state solutions, volume 17 of Series on Advances in Mathematics for Applied Sciences. World Scientific Publishing Co. Inc., River Edge, NJ, 1994.

    Google Scholar 

  31. H. Spohn. Large Scale Dynamics of Interacting Particle Systems. Springer, Heidelberg, 1991.

    Book  Google Scholar 

  32. R. Zwanzig. Nonlinear generalized Langevin equations. J. Stat. Phys., 9(3):215–220, 1973.

    Article  Google Scholar 

  33. R. Zwanzig. Nonequilibrium statistical mechanics. Oxford University Press, New York, 2001.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pavliotis, G.A. (2014). Derivation of the Langevin Equation. In: Stochastic Processes and Applications. Texts in Applied Mathematics, vol 60. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1323-7_8

Download citation

Publish with us

Policies and ethics