Skip to main content

The Macrophage Transcriptome

  • Chapter
  • First Online:

Abstract

Macrophages are specialized but versatile cells that participate in a range of physiological and immune related processes. The macrophage repertoire of coding and regulatory RNA provides tools to understand cell identity, cell function, role in disease, and ultimately define cell specific therapeutic targets. Modern tools make it possible to quantify and compare global RNA levels. With this vast information a neologism of the decade, the suffix “ome” has been combined with “transcript” to form “transcriptome,” a new word to define the totality of transcripts that characterize a cell. In this chapter we discuss the macrophage transcriptome and how its definition is contributing to a deeper understanding of this cell identity and function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alwine JC, Kemp DJ, Stark GR (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A 74:5350–5354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arranz A, Doxaki C, Vergadi E, Martinez De La Torre Y, Vaporidi K, Lagoudaki ED, Ieronymaki E, Androulidaki A, Venihaki M, Margioris AN, Stathopoulos EN, Tsichlis PN, Tsatsanis C (2012) Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc Natl Acad Sci U S A 109:9517–9522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Austyn JM, Gordon S (1981) F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol 11:805–815

    Article  CAS  PubMed  Google Scholar 

  • Barve RA, Zack MD, Weiss D, Song RH, Beidler D, Head RD (2013) Transcriptional profiling and pathway analysis of CSF-1 and IL-34 effects on human monocyte differentiation. Cytokine 63:10–17

    Article  CAS  PubMed  Google Scholar 

  • Beyer M, Mallmann MR, Xue J, Staratschek-Jox A, Vorholt D, Krebs W, Sommer D, Sander J, Mertens C, Nino-Castro A, Schmidt SV, Schultze JL (2012) High-resolution transcriptome of human macrophages. PLoS One 7:e45466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Consortium E. P (2004) The ENCODE (ENCyclopedia of DNA elements) project. Science 306:636–640

    Article  Google Scholar 

  • Curtale G, Mirolo M, Renzi TA, Rossato M, Bazzoni F, Locati M (2013) Negative regulation of Toll-like receptor 4 signaling by IL-10-dependent microRNA-146b. Proc Natl Acad Sci U S A 110(28):11499–11504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Oliveira MV, Fraga CA, Gomez RS, Paula AM (2009) Immunohistochemical expression of interleukin-4, -6, -8, and -12 in inflammatory cells in surrounding invasive front of oral squamous cell carcinoma. Head Neck 31:1439–1446

    Article  PubMed  Google Scholar 

  • De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, Muller H, Ragoussis J, Wei CL, Natoli G (2010) A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol 8:e1000384

    Article  PubMed Central  PubMed  Google Scholar 

  • Demczuk S, Baumberger C, Mach B, Dayer JM (1987) Expression of human IL 1 alpha and beta messenger RNAs and IL 1 activity in human peripheral blood mononuclear cells. J Mol Cell Immunol 3:255–265

    CAS  PubMed  Google Scholar 

  • Ehrchen J, Steinmuller L, Barczyk K, Tenbrock K, Nacken W, Eisenacher M, Nordhues U, Sorg C, Sunderkotter C, Roth J (2007) Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes. Blood 109:1265–1274

    Article  CAS  PubMed  Google Scholar 

  • Etzrodt M, Cortez-Retamozo V, Newton A, Zhao J, NG A, Wildgruber M, Romero P, Wurdinger T, Xavier R, Geissmann F, Meylan E, Nahrendorf M, Swirski FK, Baltimore D, Weissleder R, Pittet MJ (2012) Regulation of monocyte functional heterogeneity by miR-146a and Relb. Cell Rep 1:317–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fan X, Krahling S, Smith D, Williamson P, Schlegel RA (2004) Macrophage surface expression of annexins I and II in the phagocytosis of apoptotic lymphocytes. Mol Biol Cell 15:2863–2872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feig JE, Vengrenyuk Y, Reiser V, Wu C, Statnikov A, Aliferis CF, Garabedian MJ, Fisher EA, Puig O (2012) Regression of atherosclerosis is characterized by broad changes in the plaque macrophage transcriptome. PLoS One 7:e39790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fiorentino DF, Bond MW, Mosmann TR (1989) Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 170:2081–2095

    Article  CAS  PubMed  Google Scholar 

  • Fransen L, Muller R, Marmenout A, Tavernier J, Van der Heyden J, Kawashima E, Chollet A, Tizard R, Van Heuverswyn H, Van Vliet A et al (1985) Molecular cloning of mouse tumour necrosis factor cDNA and its eukaryotic expression. Nucleic Acids Res 13:4417–4429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garmire LX, Garmire DG, Huang W, Yao J, GLASS CK, Subramaniam S (2011) A global clustering algorithm to identify long intergenic non-coding RNA–with applications in mouse macrophages. PLoS One 6:e24051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, Helft J, Chow A, Elpek KG, Gordonov S, Mazloom AR, Ma’ayan A, Chua WJ, Hansen TH, Turley SJ, Merad M, Randolph GJ, Immunological Genome Consortium (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13:1118–1128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gazzinelli RT, Wysocka M, Hieny S, Scharton-Kersten T, Cheever A, Kuhn R, Muller W, Trinchieri G, Sher A (1996) In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-gamma and TNF-alpha. J Immunol 157:798–805

    CAS  PubMed  Google Scholar 

  • Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604

    Article  CAS  PubMed  Google Scholar 

  • Graff JW, Dickson AM, Clay G, Mccaffrey AP, Wilson ME (2012) Identifying functional microRNAs in macrophages with polarized phenotypes. J Biol Chem 287:21816–21825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gratchev A, Kzhyshkowska J, Kannookadan S, Ochsenreiter M, Popova A, Yu X, Mamidi S, Stonehouse-Usselmann E, Muller-Molinet I, Gooi L, Goerdt S (2008) Activation of a TGF-beta-specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-beta receptor II. J Immunol 180:6553–6565

    Article  CAS  PubMed  Google Scholar 

  • Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen G, Hercus TR, Mcclure BJ, Stomski FC, Dottore M, Powell J, Ramshaw H, Woodcock JM, Xu Y, Guthridge M, Mckinstry WJ, Lopez AF, Parker MW (2008) The structure of the GM-CSF receptor complex reveals a distinct mode of cytokine receptor activation. Cell 134:496–507

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto S, Suzuki T, Dong HY, Yamazaki N, Matsushima K (1999) Serial analysis of gene expression in human monocytes and macrophages. Blood 94:837–844

    CAS  PubMed  Google Scholar 

  • Henderson NC, Sethi T (2009) The regulation of inflammation by galectin-3. Immunol Rev 230:160–171

    Article  CAS  PubMed  Google Scholar 

  • Hume DA, Robinson AP, Macpherson GG, Gordon S (1983) The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. Relationship between macrophages, Langerhans cells, reticular cells, and dendritic cells in lymphoid and hematopoietic organs. J Exp Med 158:1522–1536

    Article  CAS  PubMed  Google Scholar 

  • Hume DA, Mabbott N, Raza S, Freeman TC (2013) Can DCs be distinguished from macrophages by molecular signatures? Nat Immunol 14:187–189

    Article  CAS  PubMed  Google Scholar 

  • Kaikkonen MU, Lam MT, Glass CK (2011) Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 90:430–440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krausgruber T, Blazek K, Smallie T, Alzabin S, Lockstone H, Sahgal N, Hussell T, Feldmann M, Udalova IA (2011) IRF5 promotes inflammatory macrophage polarization and TH1–TH17 responses. Nat Immunol 12:231–238

    Article  CAS  PubMed  Google Scholar 

  • Lacey DC, Achuthan A, Fleetwood AJ, Dinh H, Roiniotis J, Scholz GM, Chang MW, Beckman SK, Cook AD, Hamilton JA (2012) Defining GM-CSF- and macrophage-CSF-dependent macrophage responses by in vitro models. J Immunol 188:5752–5765

    Article  CAS  PubMed  Google Scholar 

  • Lagrange B, Martin RZ, Droin N, Aucagne R, Paggetti J, Largeot A, Itzykson R, Solary E, Delva L, Bastie JN (2013) A role for miR-142-3p in colony-stimulating factor 1-induced monocyte differentiation into macrophages. Biochim Biophys Acta 1833:1936–1946

    Article  CAS  PubMed  Google Scholar 

  • Lam MT, Cho H, Lesch HP, Gosselin D, Heinz S, Tanaka-Oishi Y, Benner C, Kaikkonen MU, Kim AS, Kosaka M, Lee CY, Watt A, Grossman TR, Rosenfeld MG, Evans RM, Glass CK (2013) Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498:511–515

    Article  CAS  PubMed  Google Scholar 

  • Lee SM, Gardy JL, Cheung CY, Cheung TK, Hui KP, IP NY, Guan Y, Hancock RE, Peiris JS (2009) Systems-level comparison of host-responses elicited by avian H5N1 and seasonal H1N1 influenza viruses in primary human macrophages. PLoS One 4:e8072

    Article  PubMed Central  PubMed  Google Scholar 

  • Lehtonen A, Ahlfors H, Veckman V, Miettinen M, Lahesmaa R, Julkunen I (2007) Gene expression profiling during differentiation of human monocytes to macrophages or dendritic cells. J Leukoc Biol 82:710–720

    Article  CAS  PubMed  Google Scholar 

  • Lieberman J, Slack F, PANDOLFI PP, Chinnaiyan A, Agami R, Mendell JT (2013) Noncoding RNAs and cancer. Cell 153:9–10

    Article  PubMed  Google Scholar 

  • Lin H, Lee E, Hestir K, Leo C, Behrens D, Hollenbaugh D, Linnemann T, Qin M, Wong J, Chu K, Doberstein SK, Williams LT (2008) Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320:807–811

    Article  CAS  PubMed  Google Scholar 

  • Liu FT, Hsu DK, Zuberi RI, Kuwabara I, Chi EY, Henderson WR Jr (1995) Expression and function of galectin-3, a beta-galactoside-binding lectin, in human monocytes and macrophages. Am J Pathol 147:1016–1028

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mackaness GB (1962) Cellular resistance to infection. J Exp Med 116:381–406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mackinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM, Leffler H, Nilsson UJ, Haslett C, Forbes SJ, Sethi T (2008) Regulation of alternative macrophage activation by galectin-3. J Immunol 180:2650–2658

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  CAS  PubMed  Google Scholar 

  • Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303–7311

    Article  CAS  PubMed  Google Scholar 

  • Martinez FO, Helming L, Milde R, Varin A, Melgert BN, Draijer C, Thomas B, Fabbri M, Crawshaw A, Ho LP, Ten Hacken NH, Cobos Jimenez V, Kootstra NA, Hamann J, Greaves DR, Locati M, Mantovani A, Gordon S (2013) Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood 121:e57–e69

    Article  CAS  PubMed  Google Scholar 

  • Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159

    Article  CAS  PubMed  Google Scholar 

  • Micklem K, Rigney E, Cordell J, Simmons D, Stross P, Turley H, Seed B, Mason D (1989) A human macrophage-associated antigen (CD68) detected by six different monoclonal antibodies. Br J Haematol 73:6–11

    Article  CAS  PubMed  Google Scholar 

  • Mildner A, Chapnik E, Manor O, Yona S, Kim KW, Aychek T, Varol D, Beck G, Itzhaki ZB, Feldmesser E, Amit I, Hornstein E, Jung S (2013) Mononuclear phagocyte miRNome analysis identifies miR-142 as critical regulator of murine dendritic cell homeostasis. Blood 121:1016–1027

    Article  CAS  PubMed  Google Scholar 

  • Miller JC, Brown BD, Shay T, Gautier EL, Jojic V, Cohain A, Pandey G, Leboeuf M, Elpek KG, Helft J, Hashimoto D, Chow A, Price J, Greter M, Bogunovic M, Bellemare-Pelletier A, Frenette PS, Randolph GJ, Turley SJ, Merad M, Immunological Genome Consortium (2012) Deciphering the transcriptional network of the dendritic cell lineage. Nat Immunol 13:888–899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Nathan CF, Murray HW, Wiebe ME, Rubin BY (1983) Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med 158:670–689

    Article  CAS  PubMed  Google Scholar 

  • Nau GJ, Richmond JF, Schlesinger A, Jennings EG, Lander ES, Young RA (2002) Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad Sci U S A 99:1503–1508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7:353–364

    Article  PubMed  Google Scholar 

  • Park-min KH, Antoniv TT, Ivashkiv LB (2005) Regulation of macrophage phenotype by long-term exposure to IL-10. Immunobiology 210:77–86

    Article  CAS  PubMed  Google Scholar 

  • Perretti M, D’Acquisto F (2009) Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol 9:62–70

    Article  CAS  PubMed  Google Scholar 

  • Pettersen JS, Fuentes-Duculan J, Suarez-Farinas M, Pierson KC, Pitts-Kiefer A, Fan L, Belkin DA, Wang CQ, Bhuvanendran S, Johnson-Huang LM, Bluth MJ, Krueger JG, Lowes MA, Carucci JA (2011) Tumor-associated macrophages in the cutaneous SCC microenvironment are heterogeneously activated. J Invest Dermatol 131:1322–1330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramsey SA, Klemm SL, Zak DE, Kennedy KA, Thorsson V, Li B, Gilchrist M, Gold ES, Johnson CD, Litvak V, Navarro G, Roach JC, Rosenberger CM, Rust AG, Yudkovsky N, Aderem A, Shmulevich I (2008) Uncovering a macrophage transcriptional program by integrating evidence from motif scanning and expression dynamics. PLoS Comput Biol 4:e1000021

    Article  PubMed Central  PubMed  Google Scholar 

  • Riddell JR, Wang XY, Minderman H, Gollnick SO (2010) Peroxiredoxin 1 stimulates secretion of proinflammatory cytokines by binding to TLR4. J Immunol 184:1022–1030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rossato M, Curtale G, Tamassia N, Castellucci M, Mori L, Gasperini S, Mariotti B, De Luca M, Mirolo M, Cassatella MA, Locati M, Bazzoni F (2012) IL-10-induced microRNA-187 negatively regulates TNF-alpha, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proc Natl Acad Sci U S A 109:E3101–E3110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruckerl D, Jenkins SJ, Laqtom NN, Gallagher IJ, Sutherland TE, Duncan S, Buck AH, Allen JE (2012) Induction of IL-4Ralpha-dependent microRNAs identifies PI3K/Akt signaling as essential for IL-4-driven murine macrophage proliferation in vivo. Blood 120:2307–2316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schroder K, Irvine KM, Taylor MS, Bokil NJ, Le Cao KA, Masterman KA, Labzin LI, Semple CA, Kapetanovic R, Fairbairn L, Akalin A, Faulkner GJ, Baillie JK, Gongora M, Daub CO, Kawaji H, Mclachlan GJ, Goldman N, Grimmond SM, Carninci P, Suzuki H, Hayashizaki Y, Lenhard B, Hume DA, Sweet MJ (2012) Conservation and divergence in Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages. Proc Natl Acad Sci U S A 109:E944–E953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E, Rennick DM, Sartor RB (1998) Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 66:5224–5231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shaykhiev R, Krause A, Salit J, Strulovici-Barel Y, Harvey BG, O’Connor TP, Crystal RG (2009) Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease. J Immunol 183:2867–2883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42:717–727

    Article  CAS  PubMed  Google Scholar 

  • Stanley E, Lieschke GJ, Grail D, Metcalf D, Hodgson G, Gall JA, Maher DW, Cebon J, Sinickas V, Dunn AR (1994) Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci U S A 91:5592–5596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Swaminathan S, Hu X, Zheng X, Kriga Y, Shetty J, Zhao Y, Stephens R, Tran B, Baseler MW, Yang J, Lempicki RA, Huang D, Lane HC, Imamichi T (2013) Interleukin-27 treated human macrophages induce the expression of novel microRNAs which may mediate anti-viral properties. Biochem Biophys Res Commun 434:228–234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Swisher JF, Khatri U, Feldman GM (2007) Annexin A2 is a soluble mediator of macrophage activation. J Leukoc Biol 82:1174–1184

    Article  CAS  PubMed  Google Scholar 

  • Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455:1124–1128

    Article  CAS  PubMed  Google Scholar 

  • Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S (2005) Macrophage receptors and immune recognition. Annu Rev Immunol 23:901–944

    Article  CAS  PubMed  Google Scholar 

  • Todaro M, Lombardo Y, Francipane MG, Alea MP, Cammareri P, Iovino F, Di Stefano AB, DI Bernardo C, Agrusa A, Condorelli G, Walczak H, Stassi G (2008) Apoptosis resistance in epithelial tumors is mediated by tumor-cell-derived interleukin-4. Cell Death Differ 15:762–772

    Article  CAS  PubMed  Google Scholar 

  • Waddell SJ, Popper SJ, Rubins KH, Griffiths MJ, Brown PO, Levin M, Relman DA (2010) Dissecting interferon-induced transcriptional programs in human peripheral blood cells. PLoS One 5:e9753

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, Cella M, Barrow AD, Diamond MS, Colonna M (2012) IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol 13:753–760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weisberg LJ, Shiu DT, Conkling PR, Shuman MA (1987) Identification of normal human peripheral blood monocytes and liver as sites of synthesis of coagulation factor XIII a-chain. Blood 70:579–582

    CAS  PubMed  Google Scholar 

  • Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW Jr, Ahmed-Ansari A, Sell KW, Pollard JW, Stanley ER (1990) Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci U S A 87:4828–4832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woodruff PG, Koth LL, Yang YH, Rodriguez MW, Favoreto S, Dolganov GM, Paquet AC, Erle DJ (2005) A distinctive alveolar macrophage activation state induced by cigarette smoking. Am J Respir Crit Care Med 172:1383–1392

    Article  PubMed Central  PubMed  Google Scholar 

  • Zannis VI, Mcpherson J, Goldberger G, Karathanasis SK, Breslow JL (1984) Synthesis, intracellular processing, and signal peptide of human apolipoprotein E. J Biol Chem 259:5495–5499

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Jorg Hamman and Siamon Gordon for critically reviewing the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando O. Martinez Estrada .

Editor information

Editors and Affiliations

Appendix A. Gene Symbols in the Chapter

Appendix A. Gene Symbols in the Chapter

APOC1:

Apolipoprotein C-I

APOC2:

Apolipoprotein C-II

APOE:

Apolipoprotein E

Arg1:

Arginase 1

ATF3:

Activating transcription factor 3

BHLHE41:

Basic helix-loop-helix family, member e41

C1QA:

Complement component 1, q subcomponent, A chain

C3AR1:

Complement component 3a receptor 1

CCL18:

Chemokine (C-C motif) ligand 18 (pulmonary and activation-regulated)

CCL2:

Chemokine (C-C motif) ligand 2

CCL20:

Chemokine (C-C motif) ligand 20

CCL4:

Chemokine (C-C motif) ligand 4

CCL5:

Chemokine (C-C motif) ligand 5

CCNA2:

Cyclin A2

CCNA2:

Cyclin A2

CCNB1:

Cyclin B1

CCND1:

Cyclin D1

CCNE1:

Cyclin E1

CCR2:

Chemokine (C-C motif) receptor 2

CCR6:

Chemokine (C-C motif) receptor 6

CCR7:

Chemokine (C-C motif) receptor 7

CD14:

CD14 molecule

CD163:

CD163 molecule

CD1a:

CD1a molecule

CD200R1:

CD200 receptor 1

CD209:

CD209 molecule

CD226:

CD226 molecule

CD36:

CD36 molecule

CD38:

CD38 molecule

CD68:

CD68 molecule

CD69:

CD69 molecule

CD80:

CD80 molecule

CD93:

CD93 molecule

CD97:

CD97 molecule

CH25H:

Cholesterol 25-hydroxylase

Chi3l3:

Chitinase 3-like 3

CISH:

Cytokine inducible SH2-containing protein

Clec10a:

C-type lectin domain family 10, member A

CLEC4D:

C-type lectin domain family 4, member D

CLEC7A:

C-type lectin domain family 7, member A

CREM:

cAMP responsive element modulator

CSF1:

Colony stimulating factor 1 (macrophage)

CSF2:

Colony stimulating factor 2 (granulocyte–macrophage)

CSF2RB:

Colony stimulating factor 2 receptor, beta, low-affinity (granulocyte–macrophage)

CX3CR1:

Chemokine (C-X3-C motif) receptor 1

CXCL10:

Chemokine (C-X-C motif) ligand 10

CXCL11:

Chemokine (C-X-C motif) ligand 11

CXCL13:

Chemokine (C-X-C motif) ligand 13

CXCL4:

Chemokine (C-X-C motif) ligand 4

CXCL9:

Chemokine (C-X-C motif) ligand 9

CYP1B1:

Cytochrome P450, family 1, subfamily B, polypeptide 1

Cyr61:

Cysteine-rich, angiogenic inducer, 61

ECM1:

Extracellular matrix protein 1

EMR1:

egf-like module containing, mucin-like, hormone receptor-like 1

EPCAM:

Epithelial cell adhesion molecule

FCGR1A:

Fc fragment of IgG, high affinity Ia, receptor (CD64)

FERT2:

fer (fms/fps related) protein kinase, testis specific 2

FOS:

FBJ murine osteosarcoma viral oncogene homolog

FPR1:

Formyl peptide receptor 1

ICAM1:

Intercellular adhesion molecule 1

ICAM2:

Intercellular adhesion molecule 2

IFNA1:

Interferon, alpha 1

IFNB1:

Interferon, beta 1, fibroblast

IFNG:

Interferon, gamma

IFNW1:

Interferon, omega 1

IL10:

Interleukin 10

IL12:

Interleukin 12

IL12B:

Interleukin 12B (natural killer cell stimulatory factor 2, cytotoxic lymphocyte maturation factor 2, p40)

IL13:

Interleukin 13

IL15RA:

Interleukin 15 receptor, alpha

IL17RB:

Interleukin 17 receptor B

IL18:

Interleukin 18

IL18R1:

Interleukin 18 receptor 1

IL1B:

Interleukin 1, beta

IL1R2:

Interleukin 1 receptor, type-II

IL23A:

Interleukin 23, alpha subunit p19

IL27:

Interleukin 27

IL2RA:

Interleukin 2 receptor, alpha

IL34:

Interleukin 34

IL4:

Interleukin 4

IL6R:

Interleukin 6 receptor

IL7R:

Interleukin 7 receptor

IRF1:

Interferon regulatory factor 1

Irf3:

Interferon regulatory factor 3

IRF4:

Interferon regulatory factor 4

ITGA4:

Integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor)

ITGAL:

Integrin, alpha L (antigen CD11A (p180), lymphocyte function-associated antigen 1; alpha polypeptide)

ITGAM:

Integrin, alpha M (complement component 3 receptor 3 subunit)

ITGB7:

Integrin, beta 7

JAK2:

Janus kinase 2

JUNB:

Jun B proto-oncogene

KLF4:

Kruppel-like factor 4 (gut)

LGALS3BP:

Lectin, galactoside-binding, soluble, 3 binding protein

LTA:

Lymphotoxin alpha

LTA4H:

Leukotriene A4 hydrolase

Lyn:

v-yes-1 Yamaguchi sarcoma viral related oncogene homolog

MARCO:

Macrophage receptor with collagenous structure

MCM2:

Minichromosome maintenance complex component 2

MCM6:

Minichromosome maintenance complex component 6

Mgl2:

Macrophage galactose N-acetyl-galactosamine specific lectin 2

MMP12:

Matrix metallopeptidase 12 (macrophage elastase)

Mmp9:

Matrix metallopeptidase 9 (gelatinase B, 92 kDa gelatinase, 92 kDa type IV collagenase)

MPZL2:

Myelin protein zero-like 2

MRC1:

Mannose receptor, C type 1

Msr1:

Macrophage scavenger receptor 1

MUC1:

Mucin 1, cell-surface associated

MyD88:

Myeloid differentiation primary response 88

MYO1B:

Myosin IB

NCS1:

Neuronal calcium sensor 1

NFKB1:

Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1

NMI:

N-myc (and STAT) interactor

NR1D1:

Nuclear receptor subfamily 1, group D, member 1

NR1D2:

Nuclear receptor subfamily 1, group D, member 2

NR1H3:

Nuclear receptor subfamily 1, group H, member 3

OLR1:

Oxidized low density lipoprotein (lectin-like) receptor 1

PECAM1:

Platelet/endothelial cell adhesion molecule 1

PPARG:

Peroxisome proliferator-activated receptor gamma

PTGS1:

Prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase)

PTPRC:

Protein tyrosine phosphatase, receptor type, C

PTPRO:

Protein tyrosine phosphatase, receptor type, O

RETNLB:

Resistin like beta

SIAT1:

ST6 beta-galactosamide alpha-2,6-sialyltranferase 1

Siglec-H:

Sialic acid binding Ig-like lectin H

SOCS1:

Suppressor of cytokine signaling 1

ST14:

Suppression of tumorigenicity 14 (colon carcinoma)

STAT1:

Signal transducer and activator of transcription 1, 91 kDa

TGFB1:

Transforming growth factor, beta 1

Tgm2:

Transglutaminase 2

TLR1:

Toll-like receptor 1

TLR2:

Toll-like receptor 2

TLR4:

Toll-like receptor 4

TLR6:

Toll-like receptor 6

TLR7:

Toll-like receptor 7

TLR8:

Toll-like receptor 8

TNF:

Tumor necrosis factor

TNFRSF1B:

Tumor necrosis factor receptor superfamily, member 1B

TRIF:

Toll-like receptor adaptor molecule 1

TSC22D3:

TSC22 domain family, member 3

VCAM1:

Vascular cell adhesion molecule 1

Wnt5b:

Wingless-type MMTV integration site family, member 5B

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milde, R., Pesant, M., Locati, M., Martinez Estrada, F.O. (2014). The Macrophage Transcriptome. In: Biswas, S., Mantovani, A. (eds) Macrophages: Biology and Role in the Pathology of Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1311-4_28

Download citation

Publish with us

Policies and ethics