Skip to main content

Macrophages Govern the Progression and Termination of Inflammation in Atherosclerosis and Metabolic Diseases

  • Chapter
  • First Online:
Macrophages: Biology and Role in the Pathology of Diseases
  • 2508 Accesses

Abstract

Atherosclerosis is a chronic inflammatory, nonresolving disease of the vasculature driven by persistent accumulation of lipoproteins (LPs) in the matrix beneath the endothelial cell layer of blood vessels. LP deposition leads to the recruitment of monocytes that give rise to macrophages. Macrophages derived from these recruited monocytes can either participate in a pro-resolving tissue restorative program (i.e., early atherogenesis) or a maladaptive, nonresolving inflammatory response that expands the subendothelial layer due to the accumulation of cells, lipid, and matrix (i.e., advanced atherosclerosis). Some advanced lesions form a necrotic core, triggering acute thrombotic vascular disease, including myocardial infarction, stroke, and sudden cardiac death. This book chapter will discuss the complex roles of macrophages in atherosclerosis and metabolic disease and provide insight into novel treatment strategies that can harness macrophages to promote tissue resolution and repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A-Gonzalez N et al (2009) Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31(2):245–258

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ait-Oufella H et al (2007) Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice. Circulation 115(16):2168–2177

    CAS  PubMed  Google Scholar 

  • Ait-Oufella H et al (2008) Defective mer receptor tyrosine kinase signaling in bone marrow cells promotes apoptotic cell accumulation and accelerates atherosclerosis. Arterioscler Thromb Vasc Biol 28(8):1429–1431

    CAS  PubMed  Google Scholar 

  • Bergmark C et al (2008) A novel function of lipoprotein [a] as a preferential carrier of oxidized phospholipids in human plasma. J Lipid Res 49(10):2230–2239

    CAS  PubMed  Google Scholar 

  • Boisvert WA et al (2006) Leukocyte transglutaminase 2 expression limits atherosclerotic lesion size. Arterioscler Thromb Vasc Biol 26(3):563–569

    CAS  PubMed  Google Scholar 

  • Bradley MN et al (2007) Ligand activation of LXR beta reverses atherosclerosis and cellular cholesterol overload in mice lacking LXR alpha and apoE. J Clin Invest 117(8):2337–2346

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castrillo A et al (2003) Liver X receptor-dependent repression of matrix metalloproteinase-9 expression in macrophages. J Biol Chem 278(12):10443–10449

    CAS  PubMed  Google Scholar 

  • Charo IF, Taubman MB (2004) Chemokines in the pathogenesis of vascular disease. Circ Res 95(9):858–866

    CAS  PubMed  Google Scholar 

  • Chawla A et al (2001) PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 7(1):48–52

    CAS  PubMed  Google Scholar 

  • Claria J et al (2012) Resolvin d1 and resolvin d2 govern local inflammatory tone in obese fat. J Immunol 189(5):2597–2605

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coller BS (2005) Leukocytosis and ischemic vascular disease morbidity and mortality: is it time to intervene? Arterioscler Thromb Vasc Biol 25(4):658–670

    CAS  PubMed  Google Scholar 

  • Dalli J, Serhan CN (2012) Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood 120(15):e60–e72

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duewell P et al (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464(7293):1357–1361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feig JE et al (2010) LXR promotes the maximal egress of monocyte-derived cells from mouse aortic plaques during atherosclerosis regression. J Clin Invest 120(12):4415–4424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feig JE et al (2012) Regression of atherosclerosis is characterized by broad changes in the plaque macrophage transcriptome. PLoS One 7(6):e39790

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feng B et al (2003) The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 5(9):781–792

    CAS  PubMed  Google Scholar 

  • Frutkin AD et al (2009) TGF-[beta]1 limits plaque growth, stabilizes plaque structure, and prevents aortic dilation in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 29(9):1251–1257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glass CK, Witztum JL (2001) Atherosclerosis. The road ahead. Cell 104(4):503–516

    CAS  PubMed  Google Scholar 

  • Goldstein JL et al (1979) Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A 76(1):333–337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez-Periz A et al (2009) Obesity-induced insulin resistance and hepatic steatosis are alleviated by {omega}-3 fatty acids: a role for resolvins and protectins. FASEB J 23(6):1946–1957

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goossens P et al (2010) Myeloid type I interferon signaling promotes atherosclerosis by stimulating macrophage recruitment to lesions. Cell Metab 12(2):142–153

    CAS  PubMed  Google Scholar 

  • Han S et al (2006) Macrophage insulin receptor deficiency increases ER stress-induced apoptosis and necrotic core formation in advanced atherosclerotic lesions. Cell Metab 3(4):257–266

    CAS  PubMed  Google Scholar 

  • Hansson GK, Robertson AK, Soderberg-Naucler C (2006) Inflammation and atherosclerosis. Annu Rev Pathol 1:297–329

    CAS  PubMed  Google Scholar 

  • Heller EA et al (2005) Inhibition of atherogenesis in BLT1-deficient mice reveals a role for LTB4 and BLT1 in smooth muscle cell recruitment. Circulation 112(4):578–586

    PubMed  Google Scholar 

  • Hellmann J et al (2011) Resolvin D1 decreases adipose tissue macrophage accumulation and improves insulin sensitivity in obese-diabetic mice. FASEB J 25(7):2399–2407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hellmann J et al (2013) Increased saturated fatty acids in obesity alter resolution of inflammation in part by stimulating prostaglandin production. J Immunol 191(3):1383–1392

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henson PM, Bratton DL, Fadok VA (2001) Apoptotic cell removal. Curr Biol 11(19):R795–R805

    CAS  PubMed  Google Scholar 

  • Hong C, Tontonoz P (2008) Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors. Curr Opin Genet Dev 18(5):461–467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hurtado B et al (2011) Expression of the vitamin K-dependent proteins GAS6 and protein S and the TAM receptor tyrosine kinases in human atherosclerotic carotid plaques. Thromb Haemost 105(5):873–882

    CAS  PubMed  Google Scholar 

  • Huynh ML, Fadok VA, Henson PM (2002) Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 109(1):41–50

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joseph SB et al (2002) Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A 99(11):7604–7609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joseph SB et al (2003) Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 9(2):213–219

    CAS  PubMed  Google Scholar 

  • Kamei M, Carman CV (2010) New observations on the trafficking and diapedesis of monocytes. Curr Opin Hematol 17(1):43–52

    PubMed  Google Scholar 

  • Kanters E et al (2003) Inhibition of NF-kappaB activation in macrophages increases atherosclerosis in LDL receptor-deficient mice. J Clin Invest 112(8):1176–1185

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koenen RR et al (2009) Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat Med 15(1):97–103

    CAS  PubMed  Google Scholar 

  • Korns D et al (2011) Modulation of macrophage efferocytosis in inflammation. Front Immunol 2:57

    PubMed Central  PubMed  Google Scholar 

  • Krieger M, Herz J (1994) Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu Rev Biochem 63:601–637

    CAS  PubMed  Google Scholar 

  • Laurat E et al (2001) In vivo downregulation of T helper cell 1 immune responses reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 104(2):197–202

    CAS  PubMed  Google Scholar 

  • Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11(11):750–761

    CAS  PubMed  Google Scholar 

  • Lee HN et al (2013) Resolvin D1 stimulates efferocytosis through p50/p50-mediated suppression of tumor necrosis factor-alpha expression. J Cell Sci 126(Pt 17):4037–4047

    CAS  PubMed  Google Scholar 

  • Li AC et al (2004) Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma. J Clin Invest 114(11):1564–1576

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y et al (2008) Extracellular Nampt promotes macrophage survival via a nonenzymatic interleukin-6/STAT3 signaling mechanism. J Biol Chem 283(50):34833–34843

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li G et al (2009a) Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J Cell Biol 186(6):783–792

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li S et al (2009b) Defective phagocytosis of apoptotic cells by macrophages in atherosclerotic lesions of ob/ob mice and reversal by a fish oil diet. Circ Res 105(11):1072–1082

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liao X et al (2012) Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab 15(4):545–553

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lingnau M et al (2007) Interleukin-10 enhances the CD14-dependent phagocytosis of bacteria and apoptotic cells by human monocytes. Hum Immunol 68(9):730–738

    CAS  PubMed  Google Scholar 

  • Lutgens E et al (2002) Transforming growth factor-beta mediates balance between inflammation and fibrosis during plaque progression. Arterioscler Thromb Vasc Biol 22(6):975–982

    CAS  PubMed  Google Scholar 

  • Majno G, Joris I (2004) Cells, tissues, and disease: principles of general pathology, 2nd edn. Oxford University Press, New York. xxviii, 1005 p

    Google Scholar 

  • Mallat Z et al (2001) Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ Res 89(10):930–934

    CAS  PubMed  Google Scholar 

  • Mantovani A et al (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555

    CAS  PubMed  Google Scholar 

  • Marathe C et al (2006) The arginase II gene is an anti-inflammatory target of liver X receptor in macrophages. J Biol Chem 281(43):32197–32206

    CAS  PubMed  Google Scholar 

  • Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    CAS  PubMed  Google Scholar 

  • Mei S et al (2012) p38 mitogen-activated protein kinase (MAPK) promotes cholesterol ester accumulation in macrophages through inhibition of macroautophagy. J Biol Chem 287(15): 11761–11768

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merched AJ et al (2008) Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. FASEB J 22(10):3595–3606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mestas J, Ley K (2008) Monocyte–endothelial cell interactions in the development of atherosclerosis. Trends Cardiovasc Med 18(6):228–232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller YI et al (2003) Oxidized low density lipoprotein and innate immune receptors. Curr Opin Lipidol 14(5):437–445

    CAS  PubMed  Google Scholar 

  • Miyahara T et al (2013) D-series resolvin attenuates vascular smooth muscle cell activation and neointimal hyperplasia following vascular injury. FASEB J 27(6):2220–2232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145(3):341–355

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mosser DM, Zhang X (2008) Interleukin-10: new perspectives on an old cytokine. Immunol Rev 226:205–218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Myoishi M et al (2007) Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation 116(11):1226–1233

    PubMed  Google Scholar 

  • Nagareddy PR et al (2013) Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab 17(5):695–708

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nofer JR et al (2007) FTY720, a synthetic sphingosine 1 phosphate analogue, inhibits development of atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 115(4): 501–508

    CAS  PubMed  Google Scholar 

  • Ouimet M et al (2011) Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab 13(6):655–667

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pinderski LJ et al (2002) Overexpression of interleukin-10 by activated T lymphocytes inhibits atherosclerosis in LDL receptor-deficient Mice by altering lymphocyte and macrophage phenotypes. Circ Res 90(10):1064–1071

    CAS  PubMed  Google Scholar 

  • Razani B et al (2012) Autophagy links inflammasomes to atherosclerotic progression. Cell Metab 15(4):534–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rebe C et al (2009) Induction of transglutaminase 2 by a liver X receptor/retinoic acid receptor alpha pathway increases the clearance of apoptotic cells by human macrophages. Circ Res 105(4):393–401

    CAS  PubMed  Google Scholar 

  • Rocha VZ, Libby P (2009) Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol 6(6): 399–409

    CAS  PubMed  Google Scholar 

  • Sather S et al (2007) A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation. Blood 109(3):1026–1033

    CAS  PubMed Central  PubMed  Google Scholar 

  • Savill J (1997) Recognition and phagocytosis of cells undergoing apoptosis. Br Med Bull 53(3):491–508

    CAS  PubMed  Google Scholar 

  • Schwab JM et al (2007) Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447(7146):869–874

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seimon TA et al (2010a) Atherogenic lipids and lipoproteins trigger CD36–TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab 12(5): 467–482

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seimon TA et al (2010b) Induction of ER stress in macrophages of tuberculosis granulomas. PLoS One 5(9):e12772

    PubMed Central  PubMed  Google Scholar 

  • Seitz HM et al (2007) Macrophages and dendritic cells use different Axl/Mertk/Tyro3 receptors in clearance of apoptotic cells. J Immunol 178(9):5635–5642

    CAS  PubMed  Google Scholar 

  • Seljeflot I et al (2004) Serum levels of interleukin-10 are inversely related to future events in patients with acute myocardial infarction. J Thromb Haemost 2(2):350–352

    CAS  PubMed  Google Scholar 

  • Serhan CN, Chiang N (2013) Resolution phase lipid mediators of inflammation: agonists of resolution. Curr Opin Pharmacol 13(4):632–640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Serhan CN et al (2002) Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med 196(8):1025–1037

    CAS  PubMed Central  PubMed  Google Scholar 

  • Serhan CN et al (2003) Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators. J Immunol 171(12):6856–6865

    CAS  PubMed  Google Scholar 

  • Serhan CN et al (2007) Resolution of inflammation: state of the art, definitions and terms. FASEB J 21(2):325–332

    CAS  PubMed Central  PubMed  Google Scholar 

  • Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8(5):349–361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spann NJ et al (2012) Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 151(1):138–152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stables MJ et al (2011) Transcriptomic analyses of murine resolution-phase macrophages. Blood 118(26):e192–e208

    CAS  PubMed  Google Scholar 

  • Subramanian M et al (2013) Treg-mediated suppression of atherosclerosis requires MYD88 signaling in DCs. J Clin Invest 123(1):179–188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun H et al (2002) Lipoprotein(a) enhances advanced atherosclerosis and vascular calcification in WHHL transgenic rabbits expressing human apolipoprotein(a). J Biol Chem 277(49): 47486–47492

    CAS  PubMed  Google Scholar 

  • Tabas I (2004) Apoptosis and plaque destabilization in atherosclerosis: the role of macrophage apoptosis induced by cholesterol. Cell Death Differ 11(Suppl 1):S12–S16

    CAS  PubMed  Google Scholar 

  • Tabas I (2010a) Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol 10(1):36–46

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tabas I (2010b) The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ Res 107(7):839–850

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tabas I, Glass CK (2013) Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science 339(6116):166–172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13(3):184–190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tabas I, Tall A, Accili D (2010) The impact of macrophage insulin resistance on advanced atherosclerotic plaque progression. Circ Res 106(1):58–67

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tang C et al (2009) The macrophage cholesterol exporter ABCA1 functions as an anti-inflammatory receptor. J Biol Chem 284(47):32336–32343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tang Y et al (2013) Proresolution therapy for the treatment of delayed healing of diabetic wounds. Diabetes 62(2):618–627

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thorp E et al (2008) Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe−/− mice. Arterioscler Thromb Vasc Biol 28(8):1421–1428

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thorp E et al (2009) Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of Apoe−/− and Ldlr−/− mice lacking CHOP. Cell Metab 9(5):474–481

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thorp E et al (2011) A reporter for tracking the UPR in vivo reveals patterns of temporal and cellular stress during atherosclerotic progression. J Lipid Res 52(5):1033–1038

    CAS  PubMed Central  PubMed  Google Scholar 

  • Timmins JM et al (2009) Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J Clin Invest 119(10):2925–2941

    CAS  PubMed Central  PubMed  Google Scholar 

  • Titos E et al (2011) Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J Immunol 187(10):5408–5418

    CAS  PubMed  Google Scholar 

  • Toth B et al (2009) Transglutaminase 2 is needed for the formation of an efficient phagocyte portal in macrophages engulfing apoptotic cells. J Immunol 182(4):2084–2092

    CAS  PubMed  Google Scholar 

  • Tsukano H et al (2010) The endoplasmic reticulum stress-C/EBP homologous protein pathway-mediated apoptosis in macrophages contributes to the instability of atherosclerotic plaques. Arterioscler Thromb Vasc Biol 30(10):1925–1932

    CAS  PubMed  Google Scholar 

  • Virmani R et al (2002) Vulnerable plaque: the pathology of unstable coronary lesions. J Interv Cardiol 15(6):439–446

    PubMed  Google Scholar 

  • Wahl SM et al (2004) TGF-beta: the perpetrator of immune suppression by regulatory T cells and suicidal T cells. J Leukoc Biol 76(1):15–24

    CAS  PubMed  Google Scholar 

  • Westerterp M et al (2013) Deficiency of ATP-binding cassette transporters A1 and G1 in macrophages increases inflammation and accelerates atherosclerosis in mice. Circ Res 112(11): 1456–1465

    CAS  PubMed  Google Scholar 

  • Williams KJ, Tabas I (1995) The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 15(5):551–561

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woollard KJ, Geissmann F (2010) Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol 7(2):77–86

    PubMed Central  PubMed  Google Scholar 

  • Yancey PG et al (2010) Macrophage LRP-1 controls plaque cellularity by regulating efferocytosis and Akt activation. Arterioscler Thromb Vasc Biol 30(4):787–795

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yvan-Charvet L et al (2007) Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest 117(12):3900–3908

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yvan-Charvet L et al (2010) ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328(5986):1689–1693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zang L et al (2012) Nitric oxide augments oridonin-induced efferocytosis by human histocytic lymphoma U937 cells via autophagy and the NF-kappaB-COX-2-IL-1beta pathway. Free Radic Res 46(10):1207–1219

    CAS  PubMed  Google Scholar 

  • Zhu X et al (2008) Increased cellular free cholesterol in macrophage-specific Abca1 knock-out mice enhances pro-inflammatory response of macrophages. J Biol Chem 283(34):22930–22941

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabrielle Fredman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fredman, G., Tabas, I. (2014). Macrophages Govern the Progression and Termination of Inflammation in Atherosclerosis and Metabolic Diseases. In: Biswas, S., Mantovani, A. (eds) Macrophages: Biology and Role in the Pathology of Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1311-4_18

Download citation

Publish with us

Policies and ethics