Skip to main content

Applied Antifungal Pharmacometrics: Fluconazole and Echinocandins in the Treatment of Candidemia and Invasive Candidiasis

  • Chapter
  • First Online:
  • 2632 Accesses

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 14))

Abstract

In this chapter, we review the application of pharmacometric data to the treatment of invasive candidiasis in adults. Echinocandin antifungals are increasingly recognized as first-choice agents against candidemia and many other types of invasive candidiasis. Fluconazole is the agent of choice against mucosal candidiasis and remains an effective alternative agent against invasive candidiasis. In particular, fluconazole may be preferred for the treatment of patients with prior echinocandin exposure or infections such as urosepsis or endophthalmitis, in which echinocandins are limited by pharmacokinetic considerations. Fluconazole is also a useful step-down agent after a clinical response to treatment with an echinocandin. Data from the mouse model of hematogenously disseminated candidiasis identify fluconazole area under the curve (AUC)/minimum inhibitory concentration (MIC) and echinocandin C max/MIC as pharmacokinetic–pharmacodynamic (PK–PD) parameters that are most closely associated with successful treatment. Fluconazole AUC/MIC ≥ 25 and ≥ 75 are acceptable and optimal targets, respectively, for achieving successful outcomes in mouse models and humans. Simulation models predict that acceptable and optimal AUC/MIC will be reliably achieved in patients if daily fluconazole dose/MIC ratio is ≥ 50 and ≥ 100, respectively. Echinocandins are more active than fluconazole against Candida albicans and C. glabrata strains in the mouse model. Echinocandin MICs are higher against C. parapsilosis than other species, but PK–PD targets are lower and echinocandins have been used successfully against C. parapsilosis candidemia in clinical trials. PK–PD data suggest that echinocandins will be most effective if administered infrequently at high doses; such regimens must be validated in clinical trials, and the impact on resistance and toxicity must be defined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander BD, Johnson MD, Pfeiffer CD, Jimenez-Ortigosa C, Catania J, Booker R et al (2013) Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis 56:1724–1732

    Article  PubMed Central  PubMed  Google Scholar 

  • Ambrose PG, Bhavnani SM, Rubino CM, Louie A, Gumbo T, Forrest A et al (2007) Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis 44:79–86

    Article  CAS  PubMed  Google Scholar 

  • Andes D, Craig WA (1998) In vivo activities of amoxicillin and amoxicillin-clavulanate against Streptococcus pneumoniae: application to breakpoint determinations. Antimicrob Agents Chemother 42:2375–2379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andes D, van Ogtrop M (1999) Characterization and quantitation of the pharmacodynamics of fluconazole in a neutropenic murine disseminated candidiasis infection model. Antimicrob Agents Chemother 43:2116–2120

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andes D, Marchillo K, Lowther J, Bryskier A, Stamstad T, Conklin R (2003a) In vivo pharmacodynamics of HMR 3270, a glucan synthase inhibitor, in a murine candidiasis model. Antimicrob Agents Chemother 47:1187–1192

    Google Scholar 

  • Andes D, Marchillo K, Stamstad T, Conklin R (2003b) In vivo pharmacodynamics of a new triazole, ravuconazole, in a murine candidiasis model. Antimicrob Agents Chemother 47:1193–1199

    Google Scholar 

  • Andes D, Marchillo K, Stamstad T, Conklin R (2003c) In vivo pharmacokinetics and pharmacodynamics of a new triazole, voriconazole, in a murine candidiasis model. Antimicrob Agents Chemother 47:3165–3169

    Google Scholar 

  • Andes D, Marchillo K, Conklin R, Krishna G, Ezzet F, Cacciapuoti A et al (2004) Pharmacodynamics of a new triazole, posaconazole, in a murine model of disseminated candidiasis. Antimicrob Agents Chemother 48:137–142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andes D, Forrest A, Lepak A, Nett J, Marchillo K, Lincoln L (2006a) Impact of antimicrobial dosing regimen on evolution of drug resistance in vivo: fluconazole and Candida albicans. Antimicrob Agents Chemother 50:2374–2383

    Google Scholar 

  • Andes D, Lepak A, Nett J, Lincoln L, Marchillo K (2006b) In vivo fluconazole pharmacodynamics and resistance development in a previously susceptible Candida albicans population examined by microbiologic and transcriptional profiling. Antimicrob Agents Chemother 50:2384–2394

    Google Scholar 

  • Andes D, Diekema DJ, Pfaller MA, Prince RA, Marchillo K, Ashbeck J et al (2008a) In vivo pharmacodynamic characterization of anidulafungin in a neutropenic murine candidiasis model. Antimicrob Agents Chemother 52:539–550

    Google Scholar 

  • Andes DR, Diekema DJ, Pfaller MA, Marchillo K, Bohrmueller J (2008b) In vivo pharmacodynamic target investigation for micafungin against Candida albicans and C. glabrata in a neutropenic murine candidiasis model. Antimicrob Agents Chemother 52:3497–3503

    Google Scholar 

  • Andes D, Diekema DJ, Pfaller MA, Bohrmuller J, Marchillo K, Lepak A (2010) In vivo comparison of the pharmacodynamic targets for echinocandin drugs against Candida species. Antimicrob Agents Chemother 54:2497–2506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andes D, Ambrose PG, Hammel JP, Van Wart SA, Iyer V, Reynolds DK et al (2011) Use of pharmacokinetic-pharmacodynamic analyses to optimize therapy with the systemic antifungal micafungin for invasive candidiasis or candidemia. Antimicrob Agents Chemother 55:2113–2121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andes DR, Safdar N, Baddley JW, Playford G, Reboli AC, Rex JH et al (2012) Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin Infect Dis 54:1110–1122

    Article  CAS  PubMed  Google Scholar 

  • Andes DR, Reynolds DK, Van Wart SA, Lepak AJ, Kovanda LL, Bhavnani SM (2013) Clinical pharmacodynamic index identification for micafungin in esophageal candidiasis: dosing strategy optimization. Antimicrob Agents Chemother 57:5714–5716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arbeit RD, Maki D, Tally FP, Campanaro E, Eisenstein BI (2004) The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis 38:1673–1681

    Article  CAS  PubMed  Google Scholar 

  • Arendrup MC, Pfaller MA (2012) Caspofungin Etest susceptibility testing of Candida species: risk of misclassification of susceptible isolates of C. glabrata and C. krusei when adopting the revised CLSI caspofungin breakpoints. Antimicrob Agents Chemother 56:3965–3968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arendrup MC, Horn T, Frimodt-Moller N (2002) In vivo pathogenicity of eight medically relevant Candida species in an animal model. Infection 30:286–291

    Article  CAS  PubMed  Google Scholar 

  • Arendrup MC, Rodriguez-Tudela JL, Lass-Florl C, Cuenca-Estrella M, Donnelly JP, Hope W (2011) EUCAST technical note on anidulafungin. Clin Microbiol Infect 17:E18–E20

    Article  CAS  PubMed  Google Scholar 

  • Arendrup MC, Cuenca-Estrella M, Lass-Florl C, Hope WW (2014) Breakpoints for antifungal agents: An update from EUCAST focussing on echinocandins against Candida spp. and triazoles against Aspergillus spp. Drug Resist Updat 16:81–95

    Google Scholar 

  • Baddley JW, Patel M, Bhavnani SM, Moser SA, Andes DR (2008) Association of fluconazole pharmacodynamics with mortality in patients with candidemia. Antimicrob Agents Chemother 52:3022–3028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barchiesi F, Spreghini E, Tomassetti S, Della Vittoria A, Arzeni D, Manso E et al (2006) Effects of caspofungin against Candida guilliermondii and Candida parapsilosis. Antimicrob Agents Chemother 50:2719–2727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bellmann R (2007) Clinical pharmacokinetics of systemically administered antimycotics. Curr Clin Pharmacol 2:37–58

    Article  CAS  PubMed  Google Scholar 

  • Betts RF, Nucci M, Talwar D, Gareca M, Queiroz-Telles F, Bedimo RJ et al (2009) A Multicenter, double-blind trial of a high-dose caspofungin treatment regimen versus a standard caspofungin treatment regimen for adult patients with invasive candidiasis. Clin Infect Dis 48:1676–1684

    Article  CAS  PubMed  Google Scholar 

  • Clancy CJ, Nguyen MH (2011) At what cost echinocandin resistance? J Infect Dis 204:499–501

    Article  PubMed  Google Scholar 

  • Clancy CJ, Nguyen MH (2012) The end of an era in defining the optimal treatment of invasive candidiasis. Clin Infect Dis 54:1123–1125

    Article  PubMed  Google Scholar 

  • Clancy CJ, Nguyen MH (2013) Finding the missing 50 % of invasive candidiasis: how nonculture diagnostics will improve understanding of disease spectrum and transform patient care. Clin Infect Dis 56:1284–1292

    Article  PubMed  Google Scholar 

  • Clancy CJ, Yu VL, Morris AJ, Snydman DR, Nguyen MH (2005) Fluconazole MIC and the fluconazole dose/MIC ratio correlate with therapeutic response among patients with candidemia. Antimicrob Agents Chemother 49:3171–3177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clancy CJ, Huang H, Cheng S, Derendorf H, Nguyen MH (2006) Characterizing the effects of caspofungin on Candida albicans, Candida parapsilosis, and Candida glabrata isolates by simultaneous time-kill and postantifungal-effect experiments. Antimicrob Agents Chemother 50:2569–2572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cornely OA, Bassetti M, Calandra T, Garbino J, Kullberg BJ, Lortholary O et al (2012) ESCMID* guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients. Clin Microbiol Infect 18(Suppl 7):19–37

    Article  CAS  PubMed  Google Scholar 

  • Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26:1–10; quiz 1–2.

    Article  CAS  PubMed  Google Scholar 

  • Cuesta I, Bielza C, Larranaga P, Cuenca-Estrella M, Laguna F, Rodriguez-Pardo D et al (2009) Data mining validation of fluconazole breakpoints established by the European Committee on Antimicrobial Susceptibility Testing. Antimicrob Agents Chemother 53:2949–2954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cuesta I, Bielza C, Cuenca-Estrella M, Larranaga P, Rodriguez-Tudela JL (2010) Evaluation by data mining techniques of fluconazole breakpoints established by the Clinical and Laboratory Standards Institute (CLSI) and comparison with those of the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Antimicrob Agents Chemother 54:1541–1546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davies GR, Hope W, Khoo S (2013) Opinion: the pharmacometrics of infectious disease. CPT Pharmacometrics Syst Pharmacol 2:e70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Debruyne D (1997) Clinical pharmacokinetics of fluconazole in superficial and systemic mycoses. Clin Pharmacokinet 33:52–77

    Article  CAS  PubMed  Google Scholar 

  • de Wet N, Llanos-Cuentas A, Suleiman J, Baraldi E, Krantz EF, Della Negra M et al (2004) A randomized, double-blind, parallel-group, dose–response study of micafungin compared with fluconazole for the treatment of esophageal candidiasis in HIV-positive patients. Clin Infect Dis 39:842–849

    Article  CAS  PubMed  Google Scholar 

  • Dowell JA, Knebel W, Ludden T, Stogniew M, Krause D, Henkel T (2004) Population pharmacokinetic analysis of anidulafungin, an echinocandin antifungal. J Clin Pharmacol 44:590–598

    Article  CAS  PubMed  Google Scholar 

  • Egusa H, Soysa NS, Ellepola AN, Yatani H, Samaranayake LP (2008) Oral candidosis in HIV-infected patients. Curr HIV Res 6:485–499

    Article  CAS  PubMed  Google Scholar 

  • Eschenauer GA, Carver PL, Lin SW, Klinker KP, Chen YC, Potoski BA et al (2013) Fluconazole versus an echinocandin for Candida glabrata fungaemia: a retrospective cohort study. J Antimicrob Chemother 68:922–926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eschenauer GA, Nguyen MH, Shoham S, Vazquez JA, Morris AJ, Pasculle WA et al (2014) Real-world experience with Echinocandin MICs against Candida species in a multicenter study of hospitals that routinely perform susceptibility testing of bloodstream isolates. Antimicrob Agents Chemother 58:1897–1906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Espinel-Ingroff A, Pfaller M, Messer SA, Knapp CC, Killian S, Norris HA et al (1999) Multicenter comparison of the sensititre YeastOne Colorimetric Antifungal Panel with the National Committee for Clinical Laboratory standards M27-A reference method for testing clinical isolates of common and emerging Candida spp., Cryptococcus spp., and other yeasts and yeast-like organisms. J Clin Microbiol 37:591–595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Espinel-Ingroff A, Arendrup MC, Pfaller MA, Bonfietti LX, Bustamante B, Canton E et al (2013) Interlaboratory variability of Caspofungin MICs for Candida spp. Using CLSI and EUCAST methods: should the clinical laboratory be testing this agent? Antimicrob Agents Chemother 57:5836–5842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • EUCAST (2008a) Definitive document EDef 7.1: method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts. Clin Microbiol Infect 14:398–405

    Google Scholar 

  • EUCAST (2008b) Technical note on fluconazole. Clin Microbiol Infect 14:193–195

    Google Scholar 

  • Grant SM, Clissold SP (1990) Fluconazole. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in superficial and systemic mycoses. Drugs 39:877–916

    Article  CAS  PubMed  Google Scholar 

  • Gumbo T, Drusano GL, Liu W, Ma L, Deziel MR, Drusano MF et al (2006) Anidulafungin pharmacokinetics and microbial response in neutropenic mice with disseminated candidiasis. Antimicrob Agents Chemother 50:3695–3700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gumbo T, Drusano GL, Liu W, Kulawy RW, Fregeau C, Hsu V et al (2007) Once-weekly micafungin therapy is as effective as daily therapy for disseminated candidiasis in mice with persistent neutropenia. Antimicrob Agents Chemother 51:968–974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gumbo T, Hiemenz J, Ma L, Keirns JJ, Buell DN, Drusano GL (2008) Population pharmacokinetics of micafungin in adult patients. Diagn Microbiol Infect Dis 60:329–331

    Article  CAS  PubMed  Google Scholar 

  • Hall RG, Swancutt MA, Gumbo T (2011) Fractal geometry and the pharmacometrics of micafungin in overweight, obese, and extremely obese people. Antimicrob Agents Chemother 55:5107–5112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han S, Kim J, Yim H, Hur J, Song W, Lee J et al (2013) Population pharmacokinetic analysis of fluconazole to predict therapeutic outcome in burn patients with Candida infection. Antimicrob Agents Chemother 57:1006–1011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hiemenz J, Cagnoni P, Simpson D, Devine S, Chao N, Keirns J et al (2005) Pharmacokinetic and maximum tolerated dose study of micafungin in combination with fluconazole versus fluconazole alone for prophylaxis of fungal infections in adult patients undergoing a bone marrow or peripheral stem cell transplant. Antimicrob Agents Chemother 49:1331–1336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hope WW, Drusano GL (2009) Antifungal pharmacokinetics and pharmacodynamics: bridging from the bench to bedside. Clin Microbiol Infect 15:602–612

    Article  CAS  PubMed  Google Scholar 

  • Hope WW, Drusano GL, Moore CB, Sharp A, Louie A, Walsh TJ et al (2007) Effect of neutropenia and treatment delay on the response to antifungal agents in experimental disseminated candidiasis. Antimicrob Agents Chemother 51:285–295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hope WW, Mickiene D, Petraitis V, Petraitiene R, Kelaher AM, Hughes JE et al (2008) The pharmacokinetics and pharmacodynamics of micafungin in experimental hematogenous Candida meningoencephalitis: implications for echinocandin therapy in neonates. J Infect Dis 197:163–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hope WW, Smith PB, Arrieta A, Buell DN, Roy M, Kaibara A et al (2010) Population pharmacokinetics of micafungin in neonates and young infants. Antimicrob Agents Chemother 54:2633–2637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Howard SJ, Livermore J, Sharp A, Goodwin J, Gregson L, Alastruey-Izquierdo A et al (2011) Pharmacodynamics of echinocandins against Candida glabrata: requirement for dosage escalation to achieve maximal antifungal activity in neutropenic hosts. Antimicrob Agents Chemother 55:4880–4887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kabbara N, Lacroix C, Peffault de Latour R, Socie G, Ghannoum M, Ribaud P (2008) Breakthrough C. parapsilosis and C. guilliermondii blood stream infections in allogeneic hematopoietic stem cell transplant recipients receiving long-term caspofungin therapy. Haematologica 93:639–640

    Article  CAS  PubMed  Google Scholar 

  • Kartsonis N, Killar J, Mixson L, Hoe CM, Sable C, Bartizal K et al (2005) Caspofungin susceptibility testing of isolates from patients with esophageal candidiasis or invasive candidiasis: relationship of MIC to treatment outcome. Antimicrob Agents Chemother 49:3616–3623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kauffman CA, Carver PL (2008) Update on echinocandin antifungals. Semin Respir Crit Care Med 29:211–219

    Article  PubMed  Google Scholar 

  • Kofla G, Ruhnke M (2011) Pharmacology and metabolism of anidulafungin, caspofungin and micafungin in the treatment of invasive candidosis: review of the literature. Eur J Med Res 16:159–166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krause DS, Simjee AE, van Rensburg C, Viljoen J, Walsh TJ, Goldstein BP et al (2004) A randomized, double-blind trial of anidulafungin versus fluconazole for the treatment of esophageal candidiasis. Clin Infect Dis 39:770–775

    Article  CAS  PubMed  Google Scholar 

  • Kuse ER, Chetchotisakd P, da Cunha CA, Ruhnke M, Barrios C, Raghunadharao D et al (2007) Micafungin versus liposomal amphotericin B for candidaemia and invasive candidosis: a phase III randomised double-blind trial. Lancet 369:1519–1527

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Fung CP, Huang JS, Tsai CJ, Chen KS, Chen HY et al (2000) Clinical correlates of antifungal macrodilution susceptibility test results for non-AIDS patients with severe Candida infections treated with fluconazole. Antimicrob Agents Chemother 44:2715–2718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leitner JM, Meyer B, Fuhrmann V, Saria K, Zuba C, Jager W et al (2011) Multiple-dose pharmacokinetics of anidulafungin during continuous venovenous haemofiltration. J Antimicrob Chemother 66:880–884

    Article  CAS  PubMed  Google Scholar 

  • Lepak AJ, Marchillo K, Pichereau S, Craig WA, Andes DR (2012) Comparative pharmacodynamics of the new oxazolidinone tedizolid phosphate and linezolid in a neutropenic murine Staphylococcus aureus pneumonia model. Antimicrob Agents Chemother 56:5916–5922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leroy O, Gangneux JP, Montravers P, Mira JP, Gouin F, Sollet JP et al (2009) Epidemiology, management, and risk factors for death of invasive Candida infections in critical care: a multicenter, prospective, observational study in France (2005–2006). Crit Care Med 37:1612–1618

    Article  PubMed  Google Scholar 

  • Liu P (2013) Population pharmacokinetic-pharmacodynamic analysis of anidulafungin in adult patients with fungal infections. Antimicrob Agents Chemother 57:466–474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu P, Ruhnke M, Meersseman W, Paiva JA, Kantecki M, Damle B (2013) Pharmacokinetics of anidulafungin in critically ill patients with candidemia/invasive candidiasis. Antimicrob Agents Chemother 57:1672–1676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Louie A, Drusano GL, Banerjee P, Liu QF, Liu W, Kaw P et al (1998) Pharmacodynamics of fluconazole in a murine model of systemic candidiasis. Antimicrob Agents Chemother 42:1105–1109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Louie A, Deziel M, Liu W, Drusano MF, Gumbo T, Drusano GL (2005) Pharmacodynamics of caspofungin in a murine model of systemic candidiasis: importance of persistence of caspofungin in tissues to understanding drug activity. Antimicrob Agents Chemother 49:5058–5068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maksymiuk AW, Thongprasert S, Hopfer R, Luna M, Fainstein V, Bodey GP (1984) Systemic candidiasis in cancer patients. Am J Med 77:20–27

    CAS  PubMed  Google Scholar 

  • Maseda E, Grau S, Villagran MJ, Hernandez-Gancedo C, Lopez-Tofino A, Roberts JA et al (2014) Micafungin pharmacokinetic/pharmacodynamic adequacy for the treatment of invasive candidiasis in critically ill patients on continuous venovenous haemofiltration. J Antimicrob Chemother 69:1624–1632

    Article  CAS  PubMed  Google Scholar 

  • Mora-Duarte J, Betts R, Rotstein C, Colombo AL, Thompson-Moya L, Smietana J et al (2002) Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med 347:2020–2029

    Article  CAS  PubMed  Google Scholar 

  • Moudgal V, Little T, Boikov D, Vazquez JA (2005) Multiechinocandin- and multiazole-resistant Candida parapsilosis isolates serially obtained during therapy for prosthetic valve endocarditis. Antimicrob Agents Chemother 49:767–769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen MH, Peacock JE Jr, Tanner DC, Morris AJ, Nguyen ML, Snydman DR et al (1995) Therapeutic approaches in patients with candidemia. Evaluation in a multicenter, prospective, observational study. Arch Intern Med 155:2429–2435

    Article  CAS  PubMed  Google Scholar 

  • Nguyen MH, Peacock JE Jr, Morris AJ, Tanner DC, Nguyen ML, Snydman DR et al (1996) The changing face of candidemia: emergence of non-Candida albicans species and antifungal resistance. Am J Med 100:617–623

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TH, Hoppe-Tichy T, Geiss HK, Rastall AC, Swoboda S, Schmidt J et al (2007) Factors influencing caspofungin plasma concentrations in patients of a surgical intensive care unit. J Antimicrob Chemother 60:100–106

    Article  CAS  PubMed  Google Scholar 

  • Nguyen KT, Ta P, Hoang BT, Cheng S, Hao B, Nguyen MH et al (2009) Anidulafungin is fungicidal and exerts a variety of postantifungal effects against Candida albicans, C. glabrata, C. parapsilosis, and C. krusei isolates. Antimicrob Agents Chemother 53:3347–3352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Orozco AS, Higginbotham LM, Hitchcock CA, Parkinson T, Falconer D, Ibrahim AS et al (1998) Mechanism of fluconazole resistance in Candida krusei. Antimicrob Agents Chemother 42:2645–2649

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pai MP, Turpin RS, Garey KW (2007) Association of fluconazole area under the concentration-time curve/MIC and dose/MIC ratios with mortality in nonneutropenic patients with candidemia. Antimicrob Agents Chemother 51:35–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pappas PG, Rotstein CM, Betts RF, Nucci M, Talwar D, De Waele JJ et al (2007) Micafungin versus caspofungin for treatment of candidemia and other forms of invasive candidiasis. Clin Infect Dis 45:883–893

    Article  CAS  PubMed  Google Scholar 

  • Pappas PG, Kauffman CA, Andes D, Benjamin DK Jr, Calandra TF, Edwards JE Jr et al (2009) Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 48:503–535

    Article  CAS  PubMed  Google Scholar 

  • Patel K, Roberts JA, Lipman J, Tett SE, Deldot ME, Kirkpatrick CM (2011) Population pharmacokinetics of fluconazole in critically ill patients receiving continuous venovenous hemodiafiltration: using Monte Carlo simulations to predict doses for specified pharmacodynamic targets. Antimicrob Agents Chemother 55:5868–5873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfaller MA, Diekema DJ, Messer SA, Boyken L, Hollis RJ (2003) Activities of fluconazole and voriconazole against 1,586 recent clinical isolates of Candida species determined by Broth microdilution, disk diffusion, and Etest methods: report from the ARTEMIS Global Antifungal Susceptibility Program, 2001. J Clin Microbiol 41:1440–1446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfaller MA, Diekema DJ, Sheehan DJ (2006) Interpretive breakpoints for fluconazole and Candida revisited: a blueprint for the future of antifungal susceptibility testing. Clin Microbiol Rev 19:435–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfaller MA, Andes D, Diekema DJ, Espinel-Ingroff A, Sheehan D (2010) Wild-type MIC distributions, epidemiological cutoff values and species-specific clinical breakpoints for fluconazole and Candida: time for harmonization of CLSI and EUCAST broth microdilution methods. Drug Resist Updat 13:180–195

    Article  CAS  PubMed  Google Scholar 

  • Pfaller MA, Diekema DJ, Andes D, Arendrup MC, Brown SD, Lockhart SR et al (2011) Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist Updat 14 164–176

    Article  CAS  PubMed  Google Scholar 

  • Pfaller MA, Castanheira M, Lockhart SR, Ahlquist AM, Messer SA, Jones RN (2012a) Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol 50:1199–1203

    Google Scholar 

  • Pfaller MA, Chaturvedi V, Diekema DJ, Ghannoum MA, Holliday NM, Killian SB et al (2012b) Comparison of the Sensititre YeastOne colorimetric antifungal panel with CLSI microdilution for antifungal susceptibility testing of the echinocandins against Candida spp., using new clinical breakpoints and epidemiological cutoff values. Diagn Microbiol Infect Dis 73:365–368

    Google Scholar 

  • Reboli AC, Rotstein C, Pappas PG, Chapman SW, Kett DH, Kumar D et al (2007) Anidulafungin versus fluconazole for invasive candidiasis. N Engl J Med 356:2472–2482

    Article  CAS  PubMed  Google Scholar 

  • Rex JH, Pfaller MA (2002) Has antifungal susceptibility testing come of age? Clin Infect Dis 35:982–989

    Article  CAS  PubMed  Google Scholar 

  • Rex JH, Bennett JE, Sugar AM, Pappas PG, van der Horst CM, Edwards JE et al (1994) A randomized trial comparing fluconazole with amphotericin B for the treatment of candidemia in patients without neutropenia. Candidemia Study Group and the National Institute. N Engl J Med 331:1325–1330

    Article  CAS  PubMed  Google Scholar 

  • Rex JH, Pfaller MA, Galgiani JN, Bartlett MS, Espinel-Ingroff A, Ghannoum MA et al (1997) Development of interpretive breakpoints for antifungal susceptibility testing: conceptual framework and analysis of in vitro-in vivo correlation data for fluconazole, itraconazole, and candida infections. Subcommittee on Antifungal Susceptibility Testing of the National Committee for Clinical Laboratory Standards. Clin Infect Dis 24:235–247

    Article  CAS  PubMed  Google Scholar 

  • Rex JH, Pappas PG, Karchmer AW, Sobel J, Edwards JE, Hadley S et al (2003) A randomized and blinded multicenter trial of high-dose fluconazole plus placebo versus fluconazole plus amphotericin B as therapy for candidemia and its consequences in nonneutropenic subjects. Clin Infect Dis 36:1221–1228

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Tudela JL, Almirante B, Rodriguez-Pardo D, Laguna F, Donnelly JP, Mouton JW et al (2007) Correlation of the MIC and dose/MIC ratio of fluconazole to the therapeutic response of patients with mucosal candidiasis and candidemia. Antimicrob Agents Chemother 51:3599–3604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers TE, Galgiani JN (1986) Activity of fluconazole (UK 49,858) and ketoconazole against Candida albicans in vitro and in vivo. Antimicrob Agents Chemother 30:418–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shields RK, Nguyen MH, Du C, Press E, Cheng S, Clancy CJ (2011a) Paradoxical effect of caspofungin against Candida bloodstream isolates is mediated by multiple pathways but eliminated in human serum. Antimicrob Agents Chemother 55:2641–2647

    Google Scholar 

  • Shields RK, Nguyen MH, Press EG, Clancy CJ (2011b) Five-minute exposure to caspofungin results in prolonged postantifungal effects and eliminates the paradoxical growth of Candida albicans. Antimicrob Agents Chemother 55:3598–3602

    Google Scholar 

  • Shields RK, Nguyen MH, Press EG, Kwa AL, Cheng S, Du C et al (2012) The presence of an FKS mutation rather than MIC is an independent risk factor for failure of echinocandin therapy among patients with invasive candidiasis due to Candida glabrata. Antimicrob Agents Chemother 56:4862–4869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shields RK, Nguyen MH, Press EG, Updike CL, Clancy CJ (2013a) Anidulafungin and micafungin MIC breakpoints are superior to that of caspofungin for identifying FKS mutant Candida glabrata strains and Echinocandin resistance. Antimicrob Agents Chemother 57:6361–6365

    Google Scholar 

  • Shields RK, Nguyen MH, Press EG, Updike CL, Clancy CJ (2013b) Caspofungin MICs correlate with treatment outcomes among patients with Candida glabrata invasive candidiasis and prior echinocandin exposure. Antimicrob Agents Chemother 57:3528–3535

    Google Scholar 

  • Sirohi B, Powles RL, Chopra R, Russell N, Byrne JL, Prentice HG et al (2006) A study to determine the safety profile and maximum tolerated dose of micafungin (FK463) in patients undergoing haematopoietic stem cell transplantation. Bone Marrow Transplant 38:47–51

    Article  CAS  PubMed  Google Scholar 

  • Sobel JD (1992) Pathogenesis and treatment of recurrent vulvovaginal candidiasis. Clin Infect Dis 14(Suppl 1):S148–S153

    Article  PubMed  Google Scholar 

  • Sobel JD, Schmitt C, Stein G, Mummaw N, Christensen S, Meriwether C (1994) Initial management of recurrent vulvovaginal candidiasis with oral ketoconazole and topical clotrimazole. J Reprod Med 39:517–520

    CAS  PubMed  Google Scholar 

  • Torres HA, Kontoyiannis DP, Rolston KV (2004) High-dose fluconazole therapy for cancer patients with solid tumors and candidemia: an observational, noncomparative retrospective study. Support Care Cancer 12:511–516

    Article  CAS  PubMed  Google Scholar 

  • Ullmann AJ, Akova M, Herbrecht R, Viscoli C, Arendrup MC, Arikan-Akdagli S et al (2012) ESCMID* guideline for the diagnosis and management of Candida diseases 2012: adults with haematological malignancies and after haematopoietic stem cell transplantation (HCT). Clin Microbiol Infect 18 Suppl 7:53–67

    Article  CAS  PubMed  Google Scholar 

  • Villanueva A, Gotuzzo E, Arathoon EG, Noriega LM, Kartsonis NA, Lupinacci RJ et al (2002) A randomized double-blind study of caspofungin versus fluconazole for the treatment of esophageal candidiasis. Am J Med 113:294–299

    Article  CAS  PubMed  Google Scholar 

  • Warn PA, Sharp A, Parmar A, Majithiya J, Denning DW, Hope WW (2009) Pharmacokinetics and pharmacodynamics of a novel triazole, isavuconazole: mathematical modeling, importance of tissue concentrations, and impact of immune status on antifungal effect. Antimicrob Agents Chemother 53:3453–3461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • White TC (1997) Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother 41:1482–1487

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wurthwein G, Young C, Lanvers-Kaminsky C, Hempel G, Trame MN, Schwerdtfeger R et al (2012) Population pharmacokinetics of liposomal amphotericin B and caspofungin in allogeneic hematopoietic stem cell recipients. Antimicrob Agents Chemother 56:536–543

    Article  PubMed Central  PubMed  Google Scholar 

  • Zonios DI, Bennett JE (2008) Update on azole antifungals. Semin Respir Crit Care Med 29:198–210

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius Joseph Clancy MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Clancy, C.J. (2014). Applied Antifungal Pharmacometrics: Fluconazole and Echinocandins in the Treatment of Candidemia and Invasive Candidiasis. In: Schmidt, S., Derendorf, H. (eds) Applied Pharmacometrics. AAPS Advances in the Pharmaceutical Sciences Series, vol 14. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1304-6_10

Download citation

Publish with us

Policies and ethics