Skip to main content

Introduction to Pharmacometrics and Quantitative Pharmacology with an Emphasis on Physiologically Based Pharmacokinetics

  • Chapter
  • First Online:
Applied Pharmacometrics

Abstract

Pharmacometrics, enabled by advanced pharmacostatistical modeling and simulation technique, has gained significant importance as a tool for model-based drug development and for pharmacotherapy. This introductory chapter provides an overview of the models and mathematical framework that are commonly used in the field. Both pharmacokinetic and pharmacodynamic models are discussed; the physiologically based pharmacokinetic (PBPK) approach is emphasized through illustrations and examples. We have shown how systemic and tissue clearances are related through mathematical proofs using the PBPK approach. As for the pharmacodynamic section, models for continuous and noncontinuous responses were explained, as well as a disease progression model. We also provided select examples of systems pharmacology models that investigate physiological and biochemical processes. This chapter also discusses the software tools and their specific application. As pharmacometrics and quantitative pharmacology has evolved as a discipline, more and more different types of statistical and mathematical models have been utilized. The advancement of computing software and systems facilitate these complex computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerso H, Vicini P (2003) Pharmacodynamics of NN2211, a novel long acting GLP-1 derivative. Eur J Pharm Sci 19(2–3):141–150

    CAS  PubMed  Google Scholar 

  • Agoram B, Heatherington AC, Gastonguay MR (2006) Development and evaluation of a population pharmacokinetic-pharmacodynamic model of darbepoetin alfa in patients with nonmyeloid malignancies undergoing multicycle chemotherapy. AAPS J 8(3):E552–E563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Agresti A (1999) Modelling ordered categorical data: recent advances and future challenges. Stat Med 18(17–18):2191–2207

    CAS  PubMed  Google Scholar 

  • Andersen ME, Gargas ML, Ramsey JC (1984) Inhalation pharmacokinetics: evaluating systemic extraction, total in vivo metabolism, and the time course of enzyme induction for inhaled styrene in rats based on arterial blood:inhaled air concentration ratios. Toxicol Appl Pharmacol 73(1):176–187

    CAS  PubMed  Google Scholar 

  • Andersen ME, Clewell HJ 3rd, Gargas ML, Smith FA, Reitz RH (1987) Physiologically based pharmacokinetics and the risk assessment process for methylene chloride. Toxicol Appl Pharmacol 87(2):185–205

    CAS  PubMed  Google Scholar 

  • Bakris GL, Copley JB, Vicknair N, Sadler R, Leurgans S (1996) Calcium channel blockers versus other antihypertensive therapies on progression of NIDDM associated nephropathy. Kidney Int 50(5):1641–1650

    CAS  PubMed  Google Scholar 

  • Bass RF (2011) Stochastic processes, edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Baxter LT, Zhu H, Mackensen DG, Jain RK (1994) Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res 54(6):1517–1528

    CAS  PubMed  Google Scholar 

  • Bellman RE, Jacquez JA, Kalaba RE, Kotkin B (1963) A mathematical model of drug distribution in the body: implications for cancer chemotherapy. Rand Corporation, Santa Monica, California.

    Google Scholar 

  • Benet LZ (2010) Clearance (nee Rowland) concepts: a downdate and an update. J Pharmacokinet Pharmacodyn 37(6):529–539

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benet LZ, Galeazzi RL (1979) Noncompartmental determination of the steady-state volume of distribution. J Pharm Sci 68(8):1071–1074

    CAS  PubMed  Google Scholar 

  • Benincosa L, Jusko W (1999) Novel method of treatment. World Intellectual Property Organization, Geneva, Publ. no. W0/2000/027341

    Google Scholar 

  • Bergman RN, Ider YZ, Bowden CR, Cobelli C (1979) Quantitative estimation of insulin sensitivity. Am J Physiol 236(6):E667–E677

    CAS  PubMed  Google Scholar 

  • Bernards JK (1986) A pharmacokinetic model for lung uptake of volatile chemicals. MChE, University of Delaware, Newark, DE (Master’s thesis, advisor: K. Bischoff)

    Google Scholar 

  • Bhattaram VA, Booth BP, Ramchandani RP, Beasley BN, Wang Y, Tandon V et al (2005) Impact of pharmacometrics on drug approval and labeling decisions: a survey of 42 new drug applications. AAPS J 7(3):E503–512

    PubMed Central  PubMed  Google Scholar 

  • Bischoff KB (1966) Drug distribution in mammals. Chem Eng Med Biol 62(66): 33–45

    Google Scholar 

  • Bischoff KB (1975) Some fundamental considerations of the applications of pharmacokinetics to cancer chemotherapy. Cancer Chemother Rep Part 1 59(4):777–793

    CAS  Google Scholar 

  • Bischoff KB (1987) Physiologically based pharmacokinetic modeling, edn, Drinking Water and Health, Volume 8: Pharmacokinetics in Risk Assessment. National Academy Press, Washington, DC.

    Google Scholar 

  • Bischoff KB (1992) PBPK models: what are we really assuming? Presentation at the Chemical Industry Institute of Toxicology Founders Award

    Google Scholar 

  • Bischoff KB, Dedrick RL (1968) Thiopental pharmacokinetics. J Pharm Sci 57(8):1346–1351

    CAS  PubMed  Google Scholar 

  • Bischoff KB, Dedrick RL, Zaharko DS (1970) Preliminary model for methotrexate pharmacokinetics. J Pharm Sci 59(2):149–154

    CAS  PubMed  Google Scholar 

  • Bizzotto R, Zamuner S, De Nicolao G, Karlsson MO, Gomeni R (2010) Multinomial logistic estimation of Markov-chain models for modeling sleep architecture in primary insomnia patients. J Pharmacokinet Pharmacodyn 37(2):137–155

    PubMed  Google Scholar 

  • Bizzotto R, Zamuner S, Mezzalana E, De Nicolao G, Gomeni R, Hooker AC et al (2011) Multinomial logistic functions in markov chain models of sleep architecture: internal and external validation and covariate analysis. AAPS J 13(3):445–463

    PubMed Central  PubMed  Google Scholar 

  • Bjorck S, Mulec H, Johnsen SA, Norden G, Aurell M (1992) Renal protective effect of enalapril in diabetic nephropathy. BMJ 304(6823):339–343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boxenbaum H (1982) Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokinet Biopharm 10(2):201–227

    CAS  PubMed  Google Scholar 

  • Boxenbaum H, Ronfeld R (1983) Interspecies pharmacokinetic scaling and the Dedrick plots. Am J Physiol 245(6):R768–R775

    CAS  PubMed  Google Scholar 

  • Brandfonbrener M, Landowne M, Shock NW (1955) Changes in cardiac output with age. Circulation 12(4):557–566

    CAS  PubMed  Google Scholar 

  • Brindley PG, Dunn WF (2009) Simulation for clinical research trials: a theoretical outline. J Crit Care 24(2):164–167

    PubMed  Google Scholar 

  • Brown R, Delp M, Lindstedt S, Rhomberg L, Beliles R (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13407:484

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach, Second edn. Springer

    Google Scholar 

  • Chen HS, Gross JF (1979) Physiologically based pharmacokinetic models for anticancer drugs. Cancer Chemother Pharmacol 2(2):85–94

    CAS  PubMed  Google Scholar 

  • Collett D (1994) Modelling survival data in medical research, 1st edn. Chapman & Hall, New York

    Google Scholar 

  • Collins JM, Dedrick RL (1983) Distributed model for drug delivery to CSF and brain tissue. Am J Physiol 245(3):R303–R310

    CAS  PubMed  Google Scholar 

  • Coxson PG, Bischoff KB (1987a) Lumping strategy. 1. Introductory techniques and applications of cluster analysis. Ind Eng Chem Res 26(6):1239–1248

    Google Scholar 

  • Coxson PG, Bischoff KB (1987b) Lumping strategy. 2. System theoretic approach. Ind Eng Chem Res 26(10):2151–2157

    CAS  Google Scholar 

  • Crepaldi G, Carta Q, Deferrari G, Mangili R, Navalesi R, Santeusanio F et al (1998) Effects of lisinopril and nifedipine on the progression to overt albuminuria in IDDM patients with incipient nephropathy and normal blood pressure. The Italian Microalbuminuria Study Group in IDDM. Diabetes Care 21(1):104–110

    Google Scholar 

  • Cullberg M, Eriksson UG, Wahlander K, Eriksson H, Schulman S, Karlsson MO (2005) Pharmacokinetics of ximelagatran and relationship to clinical response in acute deep vein thrombosis. Clin Pharmacol Ther 77(4):279–290

    CAS  PubMed  Google Scholar 

  • Dayneka NL, Garg V, Jusko WJ (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharma 21(4):457–478

    CAS  Google Scholar 

  • De Gaetano A, Arino O (2000) Mathematical modelling of the intravenous glucose tolerance test. J Math Biol 40(2):136–168

    CAS  PubMed  Google Scholar 

  • de Winter W, DeJongh, Moules I et al (2006) A mechanism-based disease progression model for comparison of long-term effects of pioglitazone, metformin and gliclazide on disease processes underlying Type 2 Diabetes Mellitus. J Pharmacokinet Pharmacodyn 33(3):313–343

    CAS  PubMed  Google Scholar 

  • Dedrick RL (1973) Animal scale-up. J Pharmacokinet Biopharma 1(5):435–461

    CAS  Google Scholar 

  • Dedrick RL, Bischoff KB (1980) Species similarities in pharmacokinetics. Fed Proc 39(1):54–59

    CAS  PubMed  Google Scholar 

  • Derendorf H, Hochhaus G (1995) Handbook of pharmacokinetics/pharmacodynamics correlation, CRC Press, Boca Raton, FL

    Google Scholar 

  • Derendorf H, Lesko LJ, Chaikin P, Colburn WA, Lee P, Miller R et al (2000) Pharmacokinetic/pharmacodynamic modeling in drug research and development. J Clin Pharmacol 40(12 Pt 2):1399–1418

    CAS  PubMed  Google Scholar 

  • DiSanto AR, Wagner JG (1972) Pharmacokinetics of highly ionized drugs. 3. Methylene blue–blood levels in the dog and tissue levels in the rat following intravenous administration. J Pharm Sci 61(7):1090–1094

    CAS  PubMed  Google Scholar 

  • Dunne A (1993) Statistical moments in pharmacokinetics: models and assumptions. J Pharm Pharmacol 45(10):871–875

    CAS  PubMed  Google Scholar 

  • European agency for the evaluation of medicinal products (2007) Guideline on reporting the results of population pharmacokinetic analyses. CHMP/EWP/185990/06 (available at http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003067.pdf)

  • Ette EI, Sun H, Ludden TM (1998) Balanced designs in longitudinal population pharmacokinetic studies. J Clin Pharmacol 38(5):417–423

    CAS  PubMed  Google Scholar 

  • Frank GT (1982) A physiological pharmacokinetic model of the lung. MChE, University of Delaware, Newark (Master’s thesis, advisor: K. Bischoff)

    Google Scholar 

  • Freedson P, Katch VL, Sady S, Weltman A (1979) Cardiac output differences in males and females during mild cycle ergometer exercise. Med Sci Sports 11(1):16–19

    CAS  PubMed  Google Scholar 

  • Frey N, Laveille C, Paraire M, Francillard M, Holford NH, Jochemsen R (2003) Population PKPD modelling of the long-term hypoglycaemic effect of gliclazide given as a once-a-day modified release (MR) formulation. Br J Clin Pharmacol 55(2):147–157

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuller LM, Banker FL, Butler JJ, Gamble JF, Sullivan MP (1975) The natural history of non-Hodgkin’s lymphomata stages I and II. Br J Cancer Suppl 2:270–285

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gabrielsson J, Weiner D (2007) Pharmacokinetic and pharmacodynamic data analysis: concepts and applications, Fourth edn. Swedish Pharmaceutical Press

    Google Scholar 

  • Gall MA, Nielsen FS, Smidt UM, Parving HH (1993) The course of kidney function in type 2 (non-insulin-dependent) diabetic patients with diabetic nephropathy. Diabetologia 36(10):1071–1078

    CAS  PubMed  Google Scholar 

  • Gerlowski LE, Jain RK (1983) Physiologically based pharmacokinetic modeling: principles and applications. J Pharm Sci 72(10):1103–1127

    CAS  PubMed  Google Scholar 

  • Gibaldi M, Perrier D (1999) Pharmacokinetics: revised and expanded. Drugs Pharma Sci 92:15–15

    Google Scholar 

  • Gomeni R, Teneggi V, Iavarone L, Squassante L, Bye A (2001) Population pharmacokinetic-pharmacodynamic model of craving in an enforced smoking cessation population: indirect response and probabilistic modeling. Pharma Res 18(4):537–543

    CAS  Google Scholar 

  • Grantham JJ, Cook LT, Torres VE, Bost JE, Chapman AB, Harris PC et al (2008) Determinants of renal volume in autosomal-dominant polycystic kidney disease. Kidney Int 73(1):108–116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grehant N (1904a) Mesure de l’activite physio-logique des reins par le dosage de l’ure’e dans le sang et dans l’urine. J Physiol et Path Gen 7:1

    Google Scholar 

  • Grehant N (1904b) Physiologique des reins par le dosage de l’uree dans le sang et daus l’urine. J physiol (Paris) 6:1–8

    Google Scholar 

  • Gupta SK, Sathyan G, Lindemulder EA, Ho PL, Sheiner LB, Aarons L (1999) Quantitative characterization of therapeutic index: application of mixed-effects modeling to evaluate oxybutynin dose-efficacy and dose-side effect relationships. Clin Pharmacol Ther 65(6):672–684

    CAS  PubMed  Google Scholar 

  • Guyton AC, Hall JE (1996) Textbook of medical physiology, 9th edn. Saunders, Philadelphia

    Google Scholar 

  • Hall JE, Guyton AC (2011) Guyton and hall textbook of medical physiology, 12th edn. Saunders, Philadelphia

    Google Scholar 

  • Hamren B, Bjork E, Sunzel M, Karlsson M (2008) Models for plasma glucose, HbA1c, and hemoglobin interrelationships in patients with type 2 diabetes following tesaglitazar treatment. Clin Pharmacol Ther 84(2):228–235

    CAS  PubMed  Google Scholar 

  • Harrell FE (2001) Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis, edn. Springer

    Google Scholar 

  • Heiberger RM, Holland B (2004) Statistical analysis and data display: an intermediate course with examples in S-plus, R, and SAS, edn. Springer

    Google Scholar 

  • Herman WH (2003) Diabetes modeling. Diabetes Care 26(11):3182–3183

    PubMed  Google Scholar 

  • Holford N (2013) A time to event tutorial for pharmacometricians. CPT Pharmacometrics Syst Pharmacol 2:e43

    PubMed Central  PubMed  Google Scholar 

  • Holford NH, Peace KE (1992a) Methodologic aspects of a population pharmacodynamic model for cognitive effects in Alzheimer patients treated with tacrine. Proc Natl Acad Sci U S A 89(23):11466–11470

    Google Scholar 

  • Holford NH, Peace KE (1992b) Results and validation of a population pharmacodynamic model for cognitive effects in Alzheimer patients treated with tacrine. Proc Natl Acad Sci U S A 89(23):11471–11475

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holford N, Ma SC, Ploeger BA (2010) Clinical trial simulation: a review. Clin Pharmacol Ther 88(2):166–182

    CAS  PubMed  Google Scholar 

  • Hougaard P (1995) Frailty models for survival data. Lifetime Data Anal 1(3):255–273

    CAS  PubMed  Google Scholar 

  • Hu TM, Hayton WL (2001) Allometric scaling of xenobiotic clearance: uncertainty versus universality. AAPS PharmSci 3(4):E29

    CAS  PubMed  Google Scholar 

  • Huang SM (2012) PBPK as a tool in regulatory review. Biopharm Drug Dispos 33(2):51–52

    CAS  PubMed  Google Scholar 

  • Huang SM, Rowland M (2012) The role of physiologically based pharmacokinetic modeling in regulatory review. Clin Pharmacol Ther 91(3):542–549

    CAS  PubMed  Google Scholar 

  • Hutter JC, Luu HM, Mehlhaff PM, Killam AL, Dittrich HC (1999) Physiologically based pharmacokinetic model for fluorocarbon elimination after the administration of an octafluoropropane-albumin microsphere sonographic contrast agent. J Ultrasound Med 18(1):1–11

    CAS  PubMed  Google Scholar 

  • Johnston SR, Hickish T, Ellis P, Houston S, Kelland L, Dowsett M et al (2003) Phase II study of the efficacy and tolerability of two dosing regimens of the farnesyl transferase inhibitor, R115777, in advanced breast cancer. J Clin Oncol 21(13):2492–2499

    CAS  PubMed  Google Scholar 

  • Jusko WJ, Ko HC (1994) Physiologic indirect response models characterize diverse types of pharmacodynamic effects. Clin Pharmacol Ther 56(4):406–419

    CAS  PubMed  Google Scholar 

  • Karlsson MO, Schoemaker RC, Kemp B, Cohen AF, van Gerven JM, Tuk B et al (2000) A pharmacodynamic Markov mixed-effects model for the effect of temazepam on sleep. Clin Pharmacol Ther 68(2):175–188

    CAS  PubMed  Google Scholar 

  • Kemp B, Kamphuisen HA (1986) Simulation of human hypnograms using a Markov chain model. Sleep 9(3):405–414

    CAS  PubMed  Google Scholar 

  • Kimko HC, Peck CC (2011) Clinical trial simulations: applications and trends, edn. Springer, New York

    Google Scholar 

  • Kimko HC, Reele SS, Holford NH, Peck CC (2000) Prediction of the outcome of a phase 3 clinical trial of an antischizophrenic agent (quetiapine fumarate) by simulation with a population pharmacokinetic and pharmacodynamic model. Clin Pharmacol Ther 68(5):568–577

    CAS  PubMed  Google Scholar 

  • Kjellsson MC, Zingmark PH, Jonsson EN, Karlsson MO (2008) Comparison of proportional and differential odds models for mixed-effects analysis of categorical data. J Pharmacokinet Pharmacodyn 35(5):483–501

    PubMed  Google Scholar 

  • Knibbe CA, Zuideveld KP, DeJongh J, Kuks PF, Aarts LP, Danhof M (2002) Population pharmacokinetic and pharmacodynamic modeling of propofol for long-term sedation in critically ill patients: a comparison between propofol 6 % and propofol 1 %. Clin Pharmacol Ther 72(6):670–684

    CAS  PubMed  Google Scholar 

  • Kowalski KG, Hutmacher MM (2001) Design evaluation for a population pharmacokinetic study using clinical trial simulations: a case study. Stat Med 20(1):75–91

    CAS  PubMed  Google Scholar 

  • Kowalski KG, McFadyen L, Hutmacher MM, Frame B, Miller R (2003) A two-part mixture model for longitudinal adverse event severity data. J Pharmacokinet Pharmacodyn 30(5):315–336

    CAS  PubMed  Google Scholar 

  • Lacroix BD, Lovern MR, Stockis A, Sargentini-Maier ML, Karlsson MO, Friberg LE (2009) A pharmacodynamic Markov mixed-effects model for determining the effect of exposure to certolizumab pegol on the ACR20 score in patients with rheumatoid arthritis. Clin Pharmacol Ther 86(4):387–395

    CAS  PubMed  Google Scholar 

  • Landersdorfer CB, Jusko WJ (2008) Pharmacokinetic/pharmacodynamic modelling in diabetes mellitus. Clin Pharmacokinet 47(7):417–448

    CAS  PubMed  Google Scholar 

  • Lee PI (2001) Design and power of a population pharmacokinetic study. Pharma Res 18(1):75–82

    CAS  Google Scholar 

  • Leong R, Vieira ML, Zhao P, Mulugeta Y, Lee CS, Huang SM et al (2012) Regulatory experience with physiologically based pharmacokinetic modeling for pediatric drug trials. Clin Pharmacol Ther 91(5):926–931

    CAS  PubMed  Google Scholar 

  • Lewis AE (1948) The concept of hepatic clearance. Am J Clin Pathol 18(10):789–795

    CAS  PubMed  Google Scholar 

  • Lewis EJ, Hunsicker LG, Bain RP, Rohde RD (1993) The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 329(20):1456–1462

    CAS  PubMed  Google Scholar 

  • Liu X, Smith BJ, Chen C, Callegari E, Becker SL, Chen X et al (2005) Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood-brain barrier permeability, plasma protein binding, and brain tissue binding. J Pharmacol Exp Ther 313(3):1254–1262

    CAS  PubMed  Google Scholar 

  • Lunn DJ, Wakefield J, Racine-Poon A (2001) Cumulative logit models for ordinal data: a case study involving allergic rhinitis severity scores. Stat Med 20(15):2261–2285

    CAS  PubMed  Google Scholar 

  • Mager DE, Abernethy DR, Egan JM, Elahi D (2004) Exendin-4 pharmacodynamics: insights from the hyperglycemic clamp technique. J Pharmacol Exp Ther 311(2):830–835

    CAS  PubMed  Google Scholar 

  • Maiwald T, Timmer J (2008) Dynamical modeling and multi-experiment fitting with PottersWheel. Bioinformatics 24(18):2037–2043

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mandema JW, Stanski DR (1996) Population pharmacodynamic model for ketorolac analgesia. Clin Pharmacol Ther 60(6):619–635

    CAS  PubMed  Google Scholar 

  • McCullagh P (1980) Regression models for ordinal data. J R Stat Soc B 42(2): 109–142

    Google Scholar 

  • McDonagh CF, Huhalov A, Harms BD, Adams S, Paragas V, Oyama S et al (2012) Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3. Mol Cancer Ther 11(3):582–593

    CAS  PubMed  Google Scholar 

  • Meibohm B, Laer S, Panetta JC, Barrett JS (2005) Population pharmacokinetic studies in pediatrics: issues in design and analysis. AAPS J 7(2):E475–E487

    PubMed Central  PubMed  Google Scholar 

  • Metcalfe C, Thompson SG (2007) Wei, Lin and Weissfeld’s marginal analysis of multivariate failure time data: should it be applied to a recurrent events outcome? Stat Methods Med Res 16(2):103–122

    PubMed  Google Scholar 

  • Mordenti J, Chappell W (1989) The use of interspecies scaling in toxicokinetics. In: Yacobi A, Skelly JP, Batra V (eds) Toxicokinetics and new drug development, edn. Pergamon, New York, pp 42–96

    Google Scholar 

  • Mould D, Chapelsky M, Aluri J, Swagzdis J, Samuels R, Granett J (2001) A population pharmacokinetic-pharmacodynamic and logistic regression analysis of lotrafiban in patients. Clin Pharmacol Ther 69(4):210–222

    CAS  PubMed  Google Scholar 

  • Mould DR (2007) Developing models of disease progression. In: Ette EI, Williams PJ (eds) Pharmacometrics: the science of quantitative pharmacology, edn. Wiley, Hoboken, pp 547–581

    Google Scholar 

  • Mould DR, Holford NH, Schellens JH, Beijnen JH, Hutson PR, Rosing H et al (2002) Population pharmacokinetic and adverse event analysis of topotecan in patients with solid tumors. Clin Pharmacol Ther 71(5):334–348

    CAS  PubMed  Google Scholar 

  • Mould DR, Denman NG, Duffull S (2007) Using disease progression models as a tool to detect drug effect. Clin Pharmacol Ther 82(1):81–86

    CAS  PubMed  Google Scholar 

  • Nestorov IA, Aarons LJ, Arundel PA, Rowland M (1998) Lumping of whole-body physiologically based pharmacokinetic models. J Pharmacokinet Biopharma 26(1):21–46

    CAS  Google Scholar 

  • Nielsen EI, Friberg LE (2013) Pharmacokinetic-pharmacodynamic modeling of antibacterial drugs. Pharmacol Rev 65(3):1053–1090

    PubMed  Google Scholar 

  • Ogungbenro K, Aarons L (2008) How many subjects are necessary for population pharmacokinetic experiments? Confidence interval approach. Eur J Clin Pharmacol 64(7):705–713

    PubMed  Google Scholar 

  • Oliver RE, Jones AF, Rowland M (2001) A whole-body physiologically based pharmacokinetic model incorporating dispersion concepts: short and long time characteristics. J Pharmacokinet Pharmacodyn 28(1):27–55

    CAS  PubMed  Google Scholar 

  • Olofsen E, Romberg R, Bijl H, Mooren R, Engbers F, Kest B et al (2005) Alfentanil and placebo analgesia: no sex differences detected in models of experimental pain. Anesthesiology 103(1):130–139

    CAS  PubMed  Google Scholar 

  • Ouellet D, Sutherland S, Wang T, Griffini P, Murthy V (2011) First-time-in-human study with GSK1018921, a selective GlyT1 inhibitor: relationship between exposure and dizziness. Clin Pharmacol Ther 90(4):597–604

    CAS  PubMed  Google Scholar 

  • Pacini G, Bergman RN (1986) MINMOD: a computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intravenous glucose tolerance test. Compute Methods Programs Biomed 23(2):113–122

    CAS  Google Scholar 

  • Pang KS, Durk MR (2010) Physiologically-based pharmacokinetic modeling for absorption, transport, metabolism and excretion. J Pharmacokinet Pharmacodyn 37(6):591–615

    CAS  PubMed  Google Scholar 

  • Parving HH, Rossing P, Hommel E, Smidt UM (1995) Angiotensin-converting enzyme inhibition in diabetic nephropathy: ten years’ experience. Am J Kidney Dis 26(1):99–107

    CAS  PubMed  Google Scholar 

  • Peters RH (1986) The ecological implications of body size, edn, Cambridge University Press

    Google Scholar 

  • Peters SA (2008) Evaluation of a generic physiologically based pharmacokinetic model for lineshape analysis. Clin Pharmacokinet 47(4):261–275

    CAS  PubMed  Google Scholar 

  • Peters SA (2012) Physiologically-based pharmacokinetic (PBPK) modeling and simulations: principles, methods, and applications in the pharmaceutical industry, First edn. Wiley

    Google Scholar 

  • Peters SA, Hultin L (2008) Early identification of drug-induced impairment of gastric emptying through physiologically based pharmacokinetic (PBPK) simulation of plasma concentration-time profiles in rat. J Pharmacokinet Pharmacodyn 35(1):1–30

    CAS  PubMed  Google Scholar 

  • Peterson B, Harrell Jr FE (1990) Partial proportional odds models for ordinal response variables. Appl Stat 39(2): 205–217

    Google Scholar 

  • Pillai G, Gieschke R, Goggin T, Jacqmin P, Schimmer RC, Steimer JL (2004) A semimechanistic and mechanistic population PK-PD model for biomarker response to ibandronate, a new bisphosphonate for the treatment of osteoporosis. Br J Clin Pharmacol 58(6):618–631

    PubMed Central  PubMed  Google Scholar 

  • Pors Nielsen S, Barenholdt O, Hermansen F, Munk-Jensen N (1994) Magnitude and pattern of skeletal response to long term continuous and cyclic sequential oestrogen/progestin treatment. Br J Obstet Gynaecol 101(4):319–324

    CAS  PubMed  Google Scholar 

  • Poulin P, Theil FP (2000) A priori prediction of tissue:plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J Pharm Sci 89(1):16–35

    CAS  PubMed  Google Scholar 

  • Poulin P, Theil FP (2002a) Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. J Pharm Sci 91(1):129–156

    Google Scholar 

  • Poulin P, Theil FP (2002b) Prediction of pharmacokinetics prior to in vivo studies. II. Generic physiologically based pharmacokinetic models of drug disposition. J Pharm Sci 91(5):1358–1370

    CAS  PubMed  Google Scholar 

  • Poulin P, Schoenlein K, Theil FP (2001) Prediction of adipose tissue: plasma partition coefficients for structurally unrelated drugs. J Pharm Sci 90(4):436–447

    CAS  PubMed  Google Scholar 

  • Ramsey JC, Andersen ME (1984) A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans. Toxicol Appl Pharmacol 73(1):159–175

    CAS  PubMed  Google Scholar 

  • Ravva P, Gastonguay MR, Tensfeldt TG, Faessel HM (2009) Population pharmacokinetic analysis of varenicline in adult smokers. Br J Clin Pharmacol 68(5):669–681

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy M, Yang R, Andersen ME, Clewell III HJ (2005) Physiologically based pharmacokinetic modeling: science and applications, First edn. Wiley-Interscience

    Google Scholar 

  • Rosch J, Antonovic R, Trenouth RS, Rahimtoola SH, Sim DN, Dotter CT (1976) The natural history of coronary artery stenosis. A longitudinal angiographic assessment. Radiology 119(3):513–520

    CAS  PubMed  Google Scholar 

  • Ross SM (2006) Introduction to probability models, edn. Access Online via Elsevier

    Google Scholar 

  • Rowland M (1972) Application of clearance concepts to some literature data on drug metabolism in the isolated perfused liver preparation and in vivo. Eur J Pharmacol 17(3):352–356

    CAS  PubMed  Google Scholar 

  • Rowland M, Tozer TN (1989) Clinical pharmacokinetics: concepts and applications, edn, vol. 162. Lea & Febiger, Philadelphia

    Google Scholar 

  • Rowland M, Benet LZ, Graham GG (1973) Clearance concepts in pharmacokinetics. J Pharmacokinet Biopharma 1(2):123–136

    CAS  Google Scholar 

  • Rowland M, Peck C, Tucker G (2011) Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol and Toxicol 51:45–73

    CAS  Google Scholar 

  • Sadray S, Jonsson EN, Karlsson MO (1999) Likelihood-based diagnostics for influential individuals in non-linear mixed effects model selection. Pharm Res 16(8):1260–1265

    CAS  PubMed  Google Scholar 

  • Savage VM, Gillooly J, Woodruff W, West G, Allen A, Enquist B et al (2004) The predominance of quarter-power scaling in biology. Funct Ecol 18(2):257–282

    Google Scholar 

  • Savic RM, Karlsson MO (2009) Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions. AAPS J 11(3):558–569

    PubMed Central  PubMed  Google Scholar 

  • Schmidt S, Post TM, Boroujerdi MA, van Kesteren C, Ploeger BA, Della Pasqua OE et al (2011) Disease progression analysis: towards mechanism-based models. In: Kimko HC, Peck CC (eds) Clinical trial simulations, edn. Springer, New York, pp 433–455

    Google Scholar 

  • Schoeberl B, Pace EA, Fitzgerald JB, Harms BD, Xu L, Nie L et al (2009) Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci Signal 2(77):ra31

    Google Scholar 

  • Sheiner LB, Ludden TM (1992) Population pharmacokinetics/dynamics. Annu Rev Pharmacol Toxicol 32:185–209

    CAS  PubMed  Google Scholar 

  • Sheiner LB, Rosenberg B, Marathe VV (1977) Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharma 5(5):445–479

    CAS  Google Scholar 

  • Sheiner LB, Stanski DR, Vozeh S, Miller RD, Ham J (1979) Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther 25(3):358–371

    CAS  PubMed  Google Scholar 

  • Sy SK, Heuberger J, Shilbayeh S, Conrado DJ, Derendorf H (2013a) A Markov Chain model to evaluate the effect of CYP3A5 and ABCB1 polymorphisms on adverse events associated with tacrolimus in pediatric renal transplantation. AAPS J 15(4):1189–99

    Google Scholar 

  • Sy SK, Singh RP, Shilbayeh S, Zmeili R, Conrado D, Derendorf H (2013b) Influence of CYP3A5 6986A > G and ABCB1 3435C > T Polymorphisms on Adverse Events Associated With Tacrolimus in Jordanian Pediatric Renal Transplant Patients. Clin Pharmacol Drug Dev 2(1):67–78

    Google Scholar 

  • Teorell T (1937a) Kinetics of distribution of substances administered to the body, I: the extravascular modes of administration. Arch Int pharmacodyn Ther 57:205–225

    CAS  Google Scholar 

  • Teorell T (1937b) Kinetics of distribution of substances administered to the body, II: the intravascular modes of administration. Arch Int Pharmacodyn Ther 57:226–240

    CAS  Google Scholar 

  • Theil FP, Guentert TW, Haddad S, Poulin P (2003) Utility of physiologically based pharmacokinetic models to drug development and rational drug discovery candidate selection. Toxicol Lett 138(1–2):29–49

    CAS  PubMed  Google Scholar 

  • Thomaseth K, Salvan A (1998) Estimation of occupational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin using a minimal physiologic toxicokinetic model. Environ Health Perspect 106(Suppl 2):743–753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Troconiz IF, Plan EL, Miller R, Karlsson MO (2009) Modelling overdispersion and Markovian features in count data. J Pharmacokinet Pharmacodyn 36(5):461–477

    PubMed  Google Scholar 

  • U.S. Department of Health and Human Services, Food and Drug Administration. DA (1999) Guidance for industry: population pharmacokinetics, (available at http://www.fda.gov/downloads/ScienceResearch/SpecialTopics/WomensHealthResearch/UCM133184.pdf)

    PubMed  Google Scholar 

  • van der Molen GW, Kooijman SA, Slob W (1996) A generic toxicokinetic model for persistent lipophilic compounds in humans: an application to TCDD. Fundam Appl Toxicol 31(1):83–94

    CAS  PubMed  Google Scholar 

  • Venables WN, Ripley BD, Venables W (1994) Modern applied statistics with S-PLUS, edn, vol. 250. Springer, New York

    Google Scholar 

  • Vong C, Bergstrand M, Nyberg J, Karlsson MO (2012) Rapid sample size calculations for a defined likelihood ratio test-based power in mixed-effects models. AAPS J 14(2):176–186

    PubMed Central  PubMed  Google Scholar 

  • Wada DR, Bjorkman S, Ebling WF, Harashima H, Harapat SR, Stanski DR (1997) Computer simulation of the effects of alterations in blood flows and body composition on thiopental pharmacokinetics in humans. Anesthesiology 87(4):884–899

    CAS  PubMed  Google Scholar 

  • Wang X, Santostefano MJ, Evans MV, Richardson VM, Diliberto JJ, Birnbaum LS (1997) Determination of parameters responsible for pharmacokinetic behavior of TCDD in female Sprague-Dawley rats. Toxicol Appl Pharmacol 147(1):151–168

    CAS  PubMed  Google Scholar 

  • Wei L, Glidden DV (1997) An overview of statistical methods for multiple failure time data in clinical trials. Stat Med 16(8):833–839

    CAS  PubMed  Google Scholar 

  • Wei L-J, Lin DY, Weissfeld L (1989) Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. J Am Stat Assoc 84(408):1065–1073

    Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276(5309):122–126

    CAS  PubMed  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1999) The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284(5420):1677–1679

    CAS  PubMed  Google Scholar 

  • Wilkinson GR (1987) Clearance approaches in pharmacology. Pharmacol Rev 39(1):1–47

    CAS  PubMed  Google Scholar 

  • Wilkinson GR, Shand DG (1975) Commentary: a physiological approach to hepatic drug clearance. Clin Pharmacol Ther 18(4):377–390

    CAS  PubMed  Google Scholar 

  • Xie R, Mathijssen RH, Sparreboom A, Verweij J, Karlsson MO (2002) Clinical pharmacokinetics of irinotecan and its metabolites in relation with diarrhea. Clin Pharmacol Ther 72(3):265–275

    CAS  PubMed  Google Scholar 

  • Yamaoka K, Nakagawa T, Uno T (1978) Statistical moments in pharmacokinetics. J Pharmacokinet Biopharma 6(6):547–558

    CAS  Google Scholar 

  • Yang J, Zhao H, Garnett C, Rahman A, Gobburu JV, Pierce W et al (2012) The combination of exposure-response and case-control analyses in regulatory decision making. J Clin Pharmacol 53(2):160–6

    Google Scholar 

  • Yim DS, Zhou H, Buckwalter M, Nestorov I, Peck CC, Lee H (2005) Population pharmacokinetic analysis and simulation of the time-concentration profile of etanercept in pediatric patients with juvenile rheumatoid arthritis. J Clin Pharmacol 45(3):246–256

    CAS  PubMed  Google Scholar 

  • Zhao W, Elie V, Roussey G, Brochard K, Niaudet P, Leroy V et al (2009) Population pharmacokinetics and pharmacogenetics of tacrolimus in de novo pediatric kidney transplant recipients. Clin Pharmacol Ther 86(6):609–618

    CAS  PubMed  Google Scholar 

  • Zhao P, Zhang L, Grillo JA, Liu Q, Bullock JM, Moon YJ et al (2011) Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin Pharmacol Ther 89(2):259–267

    CAS  PubMed  Google Scholar 

  • Zhao P, Rowland M, Huang SM (2012) Best practice in the use of physiologically based pharmacokinetic modeling and simulation to address clinical pharmacology regulatory questions. Clin Pharmacol Ther 92(1):17–20

    CAS  PubMed  Google Scholar 

  • Zingmark PH, Ekblom M, Odergren T, Ashwood T, Lyden P, Karlsson MO et al (2003) Population pharmacokinetics of clomethiazole and its effect on the natural course of sedation in acute stroke patients. Br J Clin Pharmacol 56(2):173–183

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Derendorf Ph.D. .

Editor information

Editors and Affiliations

Appendices

Appendix

Derivation of Eq. 1.55

Implicit in the assumption that the concentration of drug in the system that is being cleared is constant or at steady state, we assumed that the rate of change in the drug concentration is 0 and thus set all the left-hand sides in the list of equations in Eq. 1.53 to 0.

$$ 0={{V}_{1}}\frac{d{{C}_{1(vein)}}}{dt}={{Q}_{1}}\cdot {{C}_{0}}-{{Q}_{1}}\cdot {{C}_{1}}+{{K}_{I}}(t) $$
(1.112)
$$ 0={{V}_{2}}\frac{d{{C}_{2(artery)}}}{dt}={{Q}_{1}}\cdot {{C}_{3o}}-{{Q}_{1}}\cdot {{C}_{2}}$$
(1.113)
$$ 0={{V}_{3}}\frac{d{{C}_{3(lung)}}}{dt}={{Q}_{1}}\cdot {{C}_{1}}-{{Q}_{1}}\cdot {{C}_{3o}}-{{r}_{3}}({{C}_{3}}) $$
(1.114)
$$ 0={{V}_{4}}\frac{d{{C}_{4(liver)}}}{dt}={{Q}_{7}}\cdot {{C}_{7o}}+({{Q}_{4}}-{{Q}_{7}})\cdot {{C}_{2}}-{{Q}_{4}}\cdot {{C}_{4o}}-{{r}_{4}}({{C}_{4}}) $$
(1.115)
$$ 0={{V}_{5}}\frac{d{{C}_{5(kidney)}}}{dt}={{Q}_{5}}\cdot {{C}_{2}}-{{Q}_{5}}\cdot {{C}_{5o}}-{{r}_{5}}({{C}_{5}}) $$
(1.116)
$$ 0={{V}_{6}}\frac{d{{C}_{6(rest\text{ }of\text{ }body)}}}{dt}={{Q}_{6}}\cdot {{C}_{2}}-{{Q}_{6}}\cdot {{C}_{6o}}$$
(1.117)
$$ 0={{V}_{7}}\frac{d{{C}_{7(GI\text{ }tract)}}}{dt}={{Q}_{7}}\cdot {{C}_{2}}-{{Q}_{7}}\cdot {{C}_{7o}}-{{r}_{7}}({{C}_{7}}). $$
(1.118)

From Eq. 1.112, we integrate

$$ \int_{0}^{\infty }{{{Q}_{1}}\cdot {{C}_{1}}dt=}\int_{0}^{\infty }{({{Q}_{1}}\cdot {{C}_{0}}+{{K}_{I}}(t) )dt}. $$
(1.119)

By applying Eq. 1.54 and substituting \({{Q}_{1}}\cdot {{C}_{0}}\) with \({{Q}_{4}}\cdot {{C}_{4o}}+{{Q}_{5}}\cdot {{C}_{5o}}+{{Q}_{6}}\cdot {{C}_{6o}}\) to Eq. 1.119, the resulting expression is

$$ {{Q}_{1}}\int_{0}^{\infty }{{{C}_{1}}dt=}\int_{0}^{\infty }{({{Q}_{4}}\cdot {{C}_{4o}}+{{Q}_{5}}\cdot {{C}_{5o}}+{{Q}_{6}}\cdot {{C}_{6o}})dt+}\int_{0}^{\infty }{{{K}_{I}}\text{(t)}dt}. $$
(1.120)

Rearrangement of Eq. 1.120 by adding and subtracting \(({{Q}_{7}}\cdot {{C}_{7o}}+({{Q}_{4}}-{{Q}_{7}}){{C}_{2}}+{{Q}_{5}}\cdot {{C}_{5o}}+{{Q}_{6}}\cdot {{C}_{2}})\) to Eq. 1.120 such that the net result is 0 will yield the following expression:

$$ {{Q}_{1}}\int_{0}^{\infty }{{{C}_{1}}dt=}\int_{0}^{\infty }{[({{Q}_{7}}\cdot {{C}_{7o}}+({{Q}_{4}}-{{Q}_{7}}){{C}_{2}}+{{Q}_{5}}\cdot {{C}_{5o}}+{{Q}_{6}}\cdot {{C}_{2}})-({{Q}_{7}}\cdot {{C}_{7o}}+({{Q}_{4}}-{{Q}_{7}}){{C}_{2}}+{{Q}_{5}}\cdot {{C}_{5o}}+{{Q}_{6}}\cdot {{C}_{2}}) ]dt+}\int_{0}^{\infty }{({{Q}_{4}}\cdot {{C}_{4o}}+{{Q}_{5}}\cdot {{C}_{5o}}+{{Q}_{6}}\cdot {{C}_{6o}})dt+}\int_{0}^{\infty }{{{K}_{I}}(t)dt}. $$
(1.121)

From Eq. 1.117, \(\int_{0}^{\infty }{({{Q}_{6}}\cdot {{C}_{2}}-{{Q}_{6}}\cdot {{C}_{6o}})dt=0}\). Given that \({{Q}_{7}}\cdot {{C}_{7o}}+({{Q}_{4}}-{{Q}_{7}}){{C}_{2}}\) represents the total amount of drug entering the liver from the artery and the gut which is also Cp, wherein\({{Q}_{4}}\cdot {{C}_{p}}={{Q}_{7}}\cdot {{C}_{7o}}+({{Q}_{4}}-{{Q}_{7}}){{C}_{2}}\), we can then simplify Eq. 1.121 as follows:

$$ {{Q}_{1}}\int_{0}^{\infty }{{{C}_{1}}dt=}\int_{0}^{\infty }{({{Q}_{4}}+{{Q}_{5}}+{{Q}_{6}}){{C}_{2}}dt-}\left\{\int_{0}^{\infty }{{{Q}_{4}}({{C}_{p}}-{{C}_{4o}})dt+}\int_{0}^{\infty }{{{Q}_{5}}({{C}_{2}}-{{C}_{5o}})dt+}\int_{0}^{\infty }{{{Q}_{7}}({{C}_{2}}-{{C}_{7o}})dt} \right\}+\int_{0}^{\infty }{{{K}_{I}}\text{(t)}dt}. $$
(1.122)

Furthermore, \(\int_{0}^{\infty }{({{Q}_{4}}+{{Q}_{5}}+{{Q}_{6}}){{C}_{2}}dt={{Q}_{1}}}\int_{0}^{\infty }{{{C}_{2}}dt}\), since \({{Q}_{1}}={{Q}_{4}}+{{Q}_{5}}+{{Q}_{6}}\) and from Eq. 1.113, \({{Q}_{1}}\underset{0}{\overset{\infty }{\mathop \int }}\,{{C}_{3o}}dt\), then Eq. 1.122 can be rewritten as Eq. 1.55:

$$ \int_{0}^{\infty }{{{Q}_{1}}({{C}_{1}}-{{C}_{3o}})dt+}\int_{0}^{\infty }{{{Q}_{4}}({{C}_{p}}-{{C}_{4o}})dt+}\int_{0}^{\infty }{{{Q}_{5}}({{C}_{2}}-{{C}_{5o}})dt+}\int_{0}^{\infty }{{{Q}_{7}}({{C}_{2}}-{{C}_{7o}})dt=}\int_{0}^{\infty }{{{K}_{I}}(t)dt}. $$

Derivation of Eq. 1.60

Using the expression for mean clearance, the rearrangement of Eqs. 1.55 through 1.59 will result in the following:

$$ {{\overline{CL}}_{systemic}}={{\overline{CL}}_{3}}+\left(\frac{\mathop{\int }_{0}^{\infty }{{C}_{p}}dt}{\mathop{\int }_{0}^{\infty }{{C}_{1}}dt} \right){{\overline{CL}}_{4}}+\left(\frac{\mathop{\int }_{0}^{\infty }{{C}_{2}}dt}{\mathop{\int }_{0}^{\infty }{{C}_{1}}dt} \right)({{\overline{CL}}_{5}}+{{\overline{CL}}_{7}}). $$
(1.123)

We set \({{Q}_{4}}\cdot {{C}_{p}}={{Q}_{7}}{{C}_{7o}}+({{Q}_{4}}-{{Q}_{7}}){{C}_{2}}\) to \({{Q}_{4}}({{C}_{2}}-{{C}_{p}})={{Q}_{7}}({{C}_{2}}-{{C}_{7o}})\). Then integrate the latter expression from 0 to infinity, \({{Q}_{4}}\int_{0}^{\infty }{({{C}_{2}}-{{C}_{p}})dt={{Q}_{7}}}\int_{0}^{\infty }{({{C}_{2}}-{{C}_{7o}})dt}\) and divide both sides of the equation by \(\int_{0}^{\infty }{{{C}_{2}}dt}\) to obtain \(\frac{{{Q}_{4}}\mathop{\int }_{0}^{\infty }({{C}_{2}}-{{C}_{p}})dt}{\mathop{\int }_{0}^{\infty }{{C}_{2}}dt}=\frac{{{Q}_{7}}\mathop{\int }_{0}^{\infty }({{C}_{2}}-{{C}_{7o}})dt}{\mathop{\int }_{0}^{\infty }{{C}_{2}}dt}\). The previous equation can be rewritten as \(1-\frac{\mathop{\int }_{0}^{\infty }{{C}_{p}}dt}{\mathop{\int }_{0}^{\infty }{{C}_{2}}dt}=\frac{{{Q}_{7}}\mathop{\int }_{0}^{\infty }({{C}_{2}}-{{C}_{7o}})dt}{{{Q}_{4}}\mathop{\int }_{0}^{\infty }{{C}_{2}}dt}\). The ratio consisting the integrating components on the left side of the equation is the expression for the extraction ratio for tissue compartment 7 for the GI tract, \({{\overline{E}}_{7}}=\frac{\mathop{\int }_{0}^{\infty }({{C}_{2}}-{{C}_{7o}})\text{d}t}{\mathop{\int }_{0}^{\infty }{{C}_{2}}\text{d}t}\). Therefore,

$$ \frac{\mathop{\int }_{0}^{\infty }{{C}_{p}}dt}{\mathop{\int }_{0}^{\infty }{{C}_{2}}dt}=1-\frac{{{Q}_{7}}}{{{Q}_{4}}}{{\overline{E}}_{7}}$$
(1.124)

From Eq. 1.113 above, \({{Q}_{1}}\int_{0}^{\infty }{{{C}_{2}}dt={{Q}_{1}}}\int_{0}^{\infty }{{{C}_{3}}dt}\), and from Eq. 1.57, \({{\overline{CL}}_{3}}=\frac{{{Q}_{1}}\mathop{\int }_{0}^{\infty }({{C}_{1}}-{{C}_{3o}})dt}{\mathop{\int }_{0}^{\infty }{{C}_{1}}dt}=\frac{{{Q}_{1}}\mathop{\int }_{0}^{\infty }({{C}_{1}}-{{C}_{2}})dt}{\mathop{\int }_{0}^{\infty }{{C}_{1}}dt}\). Thus,

$$ \frac{\mathop{\int }_{0}^{\infty }{{C}_{2}}dt}{\mathop{\int }_{0}^{\infty }{{C}_{1}}dt}=1-\frac{{{\overline{CL}}_{3}}}{{{Q}_{1}}}=1-{{\overline{E}}_{lung}}$$
(1.125)

In the following step, multiply Eq. 1.124 by A125:

$$ \frac{\mathop{\int }_{0}^{\infty }{{C}_{p}}dt}{\mathop{\int }_{0}^{\infty }{{C}_{1}}dt}=\left(1-\frac{{{\overline{CL}}_{3}}}{{{Q}_{1}}}\right)\left(1-\frac{{{\overline{CL}}_{7}}}{{{Q}_{4}}}\right). $$
(1.126)

Since \({{\overline{CL}}_{7}}={{Q}_{7}}\cdot {{\overline{E}}_{7}}\). In the following step, we substitute Eqs. 1.126 and 1.125 to Eq. 1.123, \({{\overline{CL}}_{systemic}}={{\overline{CL}}_{3}}+\left(1-\frac{{{\overline{CL}}_{3}}}{{{Q}_{1}}}\right)\left(1-\frac{{{\overline{CL}}_{7}}}{{{Q}_{4}}}\right){{\overline{CL}}_{4}}+\left(1-\frac{{{\overline{CL}}_{3}}}{{{Q}_{1}}}\right)({{\overline{CL}}_{5}}+{{\overline{CL}}_{7}})={{\overline{CL}}_{3}}+(1-{{\overline{E}}_{3}})[{{\overline{CL}}_{4}}+(1-{{\overline{E}}_{4}}){{\overline{CL}}_{7}}+{{\overline{CL}}_{5}}].\)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Sy, S., Wang, X., Derendorf, H. (2014). Introduction to Pharmacometrics and Quantitative Pharmacology with an Emphasis on Physiologically Based Pharmacokinetics. In: Schmidt, S., Derendorf, H. (eds) Applied Pharmacometrics. AAPS Advances in the Pharmaceutical Sciences Series, vol 14. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1304-6_1

Download citation

Publish with us

Policies and ethics