Skip to main content

Nanoparticles-Emerging Contaminants

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

The chemical nature of the different nanoparticles present in the environment, both naturally and through human activity, along with their estimated levels of release and likely toxicity is overviewed. The use of recently developed voltammetric methods for the identification of nanoparticles along with the measurement of their state of aggregation and their concentration is discussed in depth. Future directions in the field are evaluated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Duffus JH, Nordberg M, Templeton DM (2007) Glossary of terms used in toxicology, 2nd ed. Pure Appl Chem 79:1153–1344

    CAS  Google Scholar 

  2. Sanchez A, Recillas S, Font X, Casals E, Gonzalez E, Puntes V (2011) Ecotoxicity of, and remediation with, engineered inorganic nanoparticles in the environment. Trends Anal Chem 30:507–516

    Article  CAS  Google Scholar 

  3. Chen Z, Yadghar AM, Zhao L, Mi Z (2011) A review of environmental effects and management of nanomaterials. Toxicol Environ Chem 93:1227–1250

    Article  CAS  Google Scholar 

  4. Zanker H, Schierz A (2012) Engineered nanoparticles and their identification among natural nanoparticles. Annu Rev Anal Chem 5:107–132

    Article  CAS  Google Scholar 

  5. Kumar P, Kumar A, Lead JR (2012) Nanoparticles in the Indian environment: known, unknowns and awareness. Environ Sci Technol 46:7071–7072

    Article  CAS  Google Scholar 

  6. Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potentials risks. Environ Health Perspect 117:1823–1831

    Article  Google Scholar 

  7. Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, Cong L, Shipley HJ, Kan A, Tomson M, Natelson D, Colvin VL (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314:964–969

    Article  Google Scholar 

  8. Lisha KP, Pradeep T (2009) Towards a practical solution for removing inorganic mercury from drinking water using gold nanoparticles. Gold Bull 42:144–149

    Article  CAS  Google Scholar 

  9. Dickinson M, Scott TB (2010) The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. J Hazard Mater 178:171–178

    Article  CAS  Google Scholar 

  10. Xu YH, Zhao DY (2007) Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res 41:2101–2110

    Article  CAS  Google Scholar 

  11. Üzüm Ç, Shahwan T, Eroğlu AE, Lieberwirth I, Scott TB, Hallam KR (2008) Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions. Chem Eng J 144:213–218

    Article  Google Scholar 

  12. Glover RD, Miller JM, Hutchison JE (2011) Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potentials sources of nanoparticles in the environment. ACS Nano 5:8950–8957

    Article  CAS  Google Scholar 

  13. Howard AG (2010) On the challenge of quantifying man-made nanoparticles in the aquatic environment. J Environ Monit 12:135–142

    Article  CAS  Google Scholar 

  14. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ (2004) Nanotoxicology. Occup Environ Med 61:727–728

    Article  CAS  Google Scholar 

  15. Moos PJ, Chung D, Woessner M, Honeggar M, Cutler NS, Veranth JM (2010) ZnO particulate matter requires cell contact for toxicity in human colon cancer cells. Chem Res Toxicol 23:733–739

    Article  CAS  Google Scholar 

  16. Burello E, Worth AP (2010) A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology 5:228–235

    Article  Google Scholar 

  17. Mondal M, Basu R, Das S, Nandy P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanoparticle Res 13:4519–4528

    Article  CAS  Google Scholar 

  18. Giovanni M, Pumera M (2011) Molybdenum metallic nanoparticle detection via differential pulse voltammetry. Electrochem Commun 13:203–204

    Article  CAS  Google Scholar 

  19. Giovanni M, Ambrosi A, Pumera M (2012) The inherent electrochemistry of nickel/nickel-oxide nanoparticles. Chem Asian J 7:702–706

    Article  CAS  Google Scholar 

  20. Giovanni M, Pumera M (2012) Size dependant electrochemical behaviour of silver nanoparticles with sizes of 10, 20, 40, 80 and 107 nm. Electroanalysis 24:615–617

    Article  CAS  Google Scholar 

  21. Merkoçi A, Marcolino LH, Marin S, Fatibello-Filho O, Alegret S (2007) Detection of cadmium sulphide nanoparticles by using screen-printed electrodes and a handheld device. Nanotechnology 18:035502

    Article  Google Scholar 

  22. Marin S, Merkoçi A (2009) Direct electrochemical stripping detection of cystic-fibrosis-related DNA linked through cadmium sulfide quantum dots. Nanotechnology 20:055101

    Article  Google Scholar 

  23. Pumera M, Aldavert M, Mills C, Merkoçi A, Alegret S (2005) Direct voltammetric determination of gold nanoparticles using graphite-epoxy composite electrode. Electrochim Acta 50:3702–3707

    Article  CAS  Google Scholar 

  24. Ivanova OS, Zamborini FP (2010) Size-dependent electrochemical oxidation of silver nanoparticles. J Am Chem Soc 132:70–72

    Article  CAS  Google Scholar 

  25. Tang L, Li X, Cammarata RC, Friesen C, Sieradzki K (2010) Electrochemical stability of elemental metal nanoparticles. J Am Chem Soc 132:11722–11726

    Article  CAS  Google Scholar 

  26. Plieth W (1982) Electrochemical properties of small clusters of metal atoms and their role in surface enhanced raman scattering. J Phys Chem 86:3166–3170

    Article  CAS  Google Scholar 

  27. Henglein A (1993) Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97:5457–5471

    Article  CAS  Google Scholar 

  28. Henglein A (1977) The reactivity of silver atoms in aqueous solutions (a γ-radiolysis study). Ber Bunsenges Phys Chem 81:556–561

    Article  CAS  Google Scholar 

  29. Ward Jones SE, Chevallier FG, Paddon CA, Compton RG (2007) General theory of cathodic and anodic stripping voltammetry at solid electrodes: mathematical modelling and numeral simulations. Anal Chem 79:4110–4119

    Article  CAS  Google Scholar 

  30. Ward Jones SE, Campbell FW, Baron R, Xiao L, Compton RG (2008) Particle size and surface coverage effects in the stripping voltammetry of silver nanoparticles: theory and experiment. J Phys Chem C 112:17820–17827

    Article  CAS  Google Scholar 

  31. Ward Jones SE, Toghill KE, Zheng SH, Morin S, Compton RG (2009) The stripping voltammetry of hemispherical deposits under electrochemically irreversible conditions: a comparison of the stripping voltammetry of bismuth on boron-doped diamond and Au(III) electrodes. J Phys Chem C 113:2846–2854

    Article  CAS  Google Scholar 

  32. Rees NV, Zhou Y-G, Compton RG (2012) Making contact: charge transfer during particle-electrode collision. RSC Adv 2:379–384

    Article  CAS  Google Scholar 

  33. Heyrovský M, Jirkovský J (1995) Polarography and voltammetry of ultrasmall colloids: introduction to a new field. Langmuir 11:4288–4292

    Article  Google Scholar 

  34. Heyrovský M, Jirkovský J, Müller BR (1995) Polarography and voltammetry of aqueous colloidal SnO2 solutions. Langmuir 11:4293–4299

    Article  Google Scholar 

  35. Heyrovský M, Jirkovský J, Štruplová-Bartáčková M (1995) Polarography and voltammetry of aqueous colloidal TiO2 solutions. Langmuir 11:4300–4308

    Article  Google Scholar 

  36. Heyrovský M, Jirkovský J, Štruplová-Bartáčková M (1995) Polarography and voltammetry of mixed titanium(IV) oxide/iron(III) oxide colloids. Langmuir 11:4309–4312

    Article  Google Scholar 

  37. Korshunov AV, Heyrovský M (2006) Voltammetry of metallic powder suspensions on mercury electrodes. Electroanalysis 18:423–426

    Article  CAS  Google Scholar 

  38. Korshunov A, Heyrovský M (2009) Electrochemical behaviour of copper metal core/oxide shall ultra-fine particles on mercury electrodes in aqueous dispersions. J Electroanal Chem 629:23–29

    Article  CAS  Google Scholar 

  39. Korshunov A, Heyrovský M (2010) Voltammetry of aluminium nanoparticles in aqueous media with hanging mercury drop electrode. Electroanalysis 22:1989–1993

    Article  CAS  Google Scholar 

  40. Hellberg D, Scholz F, Schauer F, Weitschies W (2002) Bursting and spreading of liposomes on the surface of a static mercury drop electrode. Electrochem Commun 4:305–309

    Article  CAS  Google Scholar 

  41. Scholz F, Hellberg D, Harnisch F, Hummel A, Hasse U (2004) Detection of the adhesion events of dispersed single montmorillonite particles at a static mercury drop electrode. Electrochem Commun 6:929

    Article  CAS  Google Scholar 

  42. Hellberg D, Scholz F, Schubert F, Lovrioć M, Omanović D, Hernández VA, Thede R (2005) Kinetics of liposome adhesion on a mercury electrode. J Phys Chem B 109:14715–14726

    Article  CAS  Google Scholar 

  43. Banks CE, Rees NV, Compton RG (2002) Sonoelectrochemistry in acoustically emulsified media. J Electroanal Chem 535:41–47

    Article  CAS  Google Scholar 

  44. Banks CE, Rees NV, Compton RG (2002) Sonoelectrochemistry understood via nanosecond voltammetry: sono-emulsions and the measurement of the potential of zero charge of a solid electrode. J Phys Chem B 106:5810–5813

    Article  CAS  Google Scholar 

  45. Rees NV, Banks CE, Compton RG (2004) Ultrafast chronoamperometry of acoustically agitated solid particulate suspensions: nonFaradaic and Faradaic processes at a polycrystalline gold electrode. J Phys Chem B 108:18391–18394

    Article  CAS  Google Scholar 

  46. Clegg AD, Rees NV, Banks CE, Compton RG (2006) Ultrafast chronoamperometry of single impact events in acoustically agitated solid particulate suspensions. ChemPhysChem 7:807–811

    Article  CAS  Google Scholar 

  47. Zhou Y-G, Rees NV, Compton RG (2011) The electrochemical detection and characterization of silver nanoparticle in aqueous solutions. Angew Chem Int Ed 50:4219–4221

    Article  CAS  Google Scholar 

  48. Rees NV, Zhou Y-G, Compton RG (2011) The aggregation of silver nanoparticles in aqueous solution investigated via anodic particle coulometry. ChemPhysChem 12:1645–1647

    Article  CAS  Google Scholar 

  49. Zhou Y-G, Rees NV, Pillay J, Tshikhudo R, Vilakazi S, Compton RG (2012) Gold nanoparticles show electroactivity: counting and sorting nanoparticles upon impact with electrodes. Chem Commun 48:224–226

    Article  CAS  Google Scholar 

  50. Haddou B, Rees NV, Compton RG (2012) Nanoparticle-electrode impacts: the oxidation of copper nanoparticles has slow kinetics. Phys Chem Chem Phys 14:13612–13617

    Article  CAS  Google Scholar 

  51. Zhou Y-G, Rees NV, Compton RG (2013) Electrochemistry of nickel nanoparticles is controlled by surface oxide layers. Phys Chem Chem Phys 15:761–763

    Article  CAS  Google Scholar 

  52. Zhou Y-G, Haddou B, Rees NV, Compton RG (2012) The charge transfer kinetics of the oxidation of silver and nickel nanoparticles via particle-electrode impact electrochemistry. Phys Chem Chem Phys 14:14354–14357

    Article  CAS  Google Scholar 

  53. Stuart EJE, Zhou Y-G, Rees NV, Compton RG (2012) Determining unknown concentrations of nanoparticles: the particle-impact electrochemistry of nickel and silver. RSC Adv 2:6879–6884

    Article  CAS  Google Scholar 

  54. Dickinson EJF, Rees NV, Compton RG (2012) Nanoparticle-electrode collision studies: brownian motion and the timescale of nanoparticle oxidation. Chem Phys Lett 528:44–48

    Article  CAS  Google Scholar 

  55. Ellison J, Tschulik K, Stuart EJE, Jurkschat K, Omanović D, Uhlemann M, Crossley A, Compton RG (2013) Get more out of your data: a new approach to agglomeration and aggregation studies using nanoparticle impact experiments. ChemistryOpen 2:69–75

    Article  CAS  Google Scholar 

  56. Lees JC, Ellison J, Batchelor-McAuley C, Tschulik K, Damm C, Omanović D, Compton RG (2013) Nanoparticle impacts show high-ionic-strength citrate avoids aggregation of silver nanoparticles. ChemPhysChem 14:3895–3897

    Article  CAS  Google Scholar 

  57. Tschulik K, Haddou B, Omanović D, Rees NV, Compton RG (2013) Coulometric sizing of nanoparticles: cathodic and anodic impact experiments open two independent routes to electrochemical sizing of Fe3O4 nanoparticles. NanoResearch 6:836–841

    CAS  Google Scholar 

  58. Cheng W, Zhou X-F, Compton RG (2013) Electrochemical sizing of organic nanoparticles. Angew Chem Int Ed 52:12980–12982

    Article  CAS  Google Scholar 

  59. Stuart EJE, Rees NV, Cullen JT, Compton RG (2013) Direct electrochemical detection and sizing of silver nanoparticles in seawater media. Nanoscale 5:174–177

    Article  CAS  Google Scholar 

  60. Stuart EJE, Tschulik K, Omanović D, Cullen JT, Jurkschat K, Crossley A, Compton RG (2013) Electrochemical detection of commercial silver nanoparticles: identification, sizing and detection in environmental media. Nanotechnology 24:444002

    Article  CAS  Google Scholar 

  61. Shoup D, Szabo A (1982) Chronoamperometric currents at finite disk electrode. J Electroanal Chem 140:237–245

    Article  CAS  Google Scholar 

  62. Paddon CA, Bhatti FL, Donohoe TJ, Compton RG (2006) Cryo-electrochemistry in tetrahydrofuran: the electrochemical reduction of a phenyl thioether: [(3-{[trans-4-(Methoxymethoxy)cyclohexyl]oxy}propyl)thio]benzene. J Electroanal Chem 589:187–194

    Article  CAS  Google Scholar 

  63. Brenner H (1961) The slow motion of a sphere through a viscous fluid towards a plane surface. Chem Eng Sci 16:242–251

    Article  CAS  Google Scholar 

  64. Bevan MA, Prieve DC (2000) Hindered diffusion of colloidal particles very near to a wall: revisited. J Chem Phys 113:1228–1236

    Article  CAS  Google Scholar 

  65. Barnes EO, Compton RG (2013) The rate of adsorption of nanoparticles on microelectrode surfaces. J Electroanal Chem 693:73–78

    Article  CAS  Google Scholar 

  66. Zhou Y-G, Rees NV, Compton RG (2012) The electrochemical detection of tagged nanoparticles via particle-electrode collisions: nanoelectroanalysis beyond immobilisation. Chem Commun 48:2510–2512

    Article  CAS  Google Scholar 

  67. Rees NV, Zhou Y-G, Compton RG (2012) The non-destructive sizing of nanoparticles via particle-electrode collision: tag-redox coulometry (TRC). Chem Phys Lett 525:69–71

    Article  Google Scholar 

  68. Kahk JM, Rees NV, Pillay J, Tschikhudo R, Vilakazi S, Compton RG (2012) Electron transfer kinetics at single nanoparticles. Nano Today 7:174–179

    Article  CAS  Google Scholar 

  69. Ward KR, Lawrence NS, Hartshorne RS, Compton RG (2012) Modelling the steady state voltammetry of a single spherical nanoparticle on a surface. J Electroanal Chem 683:37–42

    Article  CAS  Google Scholar 

  70. Zhou Y-G, Rees NV, Compton RG (2011) Electrode-nanoparticle collisions: the measurement of the sticking coefficient of silver nanoparticles on a glassy carbon electrode. Chem Phys Lett 514:291–293

    Article  CAS  Google Scholar 

  71. Zhou Y-G, Stuart EJE, Pillay J, Vilakazi S, Tshikhudo R, Rees NV, Compton RG (2012) Electrode-nanoparticle collisions: the measurement of the sticking coefficients of gold and nickel nanoparticles from aqueous solution onto a carbon electrode. Chem Phys Lett 551:68–71

    Article  CAS  Google Scholar 

  72. Bard AJ, Zhou H, Kwon SJ (2010) Electrochemistry of single nanoparticles via electrocatalytic amplification. Israel J Chem 50:267–276

    Article  CAS  Google Scholar 

  73. Tschulik K, Palgrave R, Batchelor-McAuley C, Compton RG (2013) ‘Sticky electrodes’ for the detection of silver nanoparticles. Nanotechnology 24:295502

    Article  Google Scholar 

  74. Cheng W, Stuart EJE, Tschulik K, Compton RG (2013) A disposable sticky electrode for the detection of commercial silver nanoparticles in seawater. Nanotechnology 24:505501

    Article  CAS  Google Scholar 

  75. Bura-Nakić E, Krznarić D, Helz GR, Ciglenečki I (2012) Characterization of iron sulfide species in model solutions by cyclic voltammetry. Revisiting an old problem. Electroanalysis 23:1376–1382

    Article  Google Scholar 

  76. Bura-Nakić E, Viollier E, Jézéquel D, Thiam A, Ciglenečki I (2009) Reduced sulfur and iron species in anoxic water column of meromictic crater Lake Pavin (Massif Central, France). Chem Geol 266:311–317

    Article  Google Scholar 

  77. Helz GR, Ciglenečki I, Krznarić D, Bura-Nakić E (2011) Voltammetry of sulphide nanoparticles and the FeS(aq) problem. Aquat Redox Chem 1071:265–282

    Article  CAS  Google Scholar 

  78. Krznarić D, Helz GR, Bura-Nakić E, Jurašin D (2008) Accumulation mechanism for metal chalcogenide nanoparticles at Hg0 electrodes; Cu sulfide example. Anal Chem 80:742–749

    Article  Google Scholar 

  79. Bura-Nakić E, Krznarić D, Jurašin D, Helz GR, Ciglenečki I (2007) Voltammetric characterization of metal sulfide particles and nanoparticles in model solutions and natural waters. Anal Chim Acta 594:44–51

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Compton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stuart, E.J.E., Compton, R.G. (2015). Nanoparticles-Emerging Contaminants. In: Moretto, L., Kalcher, K. (eds) Environmental Analysis by Electrochemical Sensors and Biosensors. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1301-5_8

Download citation

Publish with us

Policies and ethics