Skip to main content

Electroanalysis and Chemical Speciation

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

The greatest concern for speciation of the elements relates to their impact on biological systems depending on their physical and chemical form, occurrence, behavior, and actual circulation in the environment, toxicological profile, and bioactivity and bioavailability. In combination with electrochemical principles, speciation has a long tradition and at least since the last third of the twentieth century this special area skillfully utilizes the ability of electroanalysis to indicate the changes in chemical equilibrium and redox state of various substances, which allows—together with determinations of their total content—the identification and quantification of the individual forms and their actual distribution—a problematic deal for many other instrumental techniques. In this respect, specialized teams have elaborated to a remarkable extent mainly the electrochemistry of natural aquatic systems, covering for two decades the dominant part of chemical speciation in environmental electroanalysis. In this chapter we the most convenient electrochemical techniques for speciation analysis, there is (equilibrium) potentiometry and, mainly, stripping techniques with the effective pre-concentration step for accumulating many species at a high concentration level, are presented and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Reimann C, De Caritat P (1998) Chemical elements in the environment: factsheets for the geochemists and environmental scientists. Springer, Berlin

    Book  Google Scholar 

  2. Siegel FR (2002) Environmental geochemistry of potentially toxic metals. Springer, Berlin

    Book  Google Scholar 

  3. Helán V (ed) (1999) Inorganic environmental analysis: a book of proceedings (in Czech). Ing. Václav Helán, Český Těšín, Czech Rep, p 145

    Google Scholar 

  4. Manahan SE (2002) Toxicological chemistry and biochemistry, 3rd edn. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  5. Fraga CG (2005) Relevance, essentiality and toxicity of trace elements in human health. Mol Aspects Med 26:235–244

    Article  CAS  Google Scholar 

  6. Wood JM, Fanchiang YT, Ridley WP (1978) The biochemistry of toxic elements. Q Rev Biophys 11:467–479

    Article  CAS  Google Scholar 

  7. Chowdhury B (1987) Biological and health implications of toxic heavy metal and essential trace element interactions. Prog Food Nutr Sci 11:55–113

    CAS  Google Scholar 

  8. Templeton DM, Arise F, Cornelis R, Danielsson LG, Muntau H, van Leeuwen HP, Lobynski R (2000) Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches. Pure Appl Chem 72:1453–1470

    Article  CAS  Google Scholar 

  9. Van den Berg CMG (1983) Trace metal speciation in seawater (a review). Anal Proc 20:458–460

    Google Scholar 

  10. Bond AM, Heritage ID, Thormann W (1986) Strategy for trace metal determination in seawater by anodic stripping voltammetry using a computerized multitime-domain measurement method. Anal Chem 58:1063–1066

    Article  CAS  Google Scholar 

  11. Batley GE, Florence TM (1976) Novel scheme for classification of heavy metal species in natural waters. Anal Lett 9:379–388

    Article  CAS  Google Scholar 

  12. Florence TM, Batley GE (1980) Chemical speciation in natural waters (a review). Crit Rev Anal Chem 9:219–296

    Article  CAS  Google Scholar 

  13. Hart BT (1981) Trace metal complexing capacity of natural waters: a review. Environ Technol Lett 2:95–110

    Article  CAS  Google Scholar 

  14. Nurnberg HW (1983) Investigations on heavy metal speciation in natural waters by voltammetric procedures. Fresenius Z Anal Chem 316:557–565

    Article  Google Scholar 

  15. Van den Berg CMG (1991) The reality of speciation measurements in natural waters. Anal Proc 28:58–59

    Article  Google Scholar 

  16. Florence TM (1992) Trace element speciation by anodic stripping voltammetry. Analyst 117:551–553

    Article  CAS  Google Scholar 

  17. Veselý J, Weis D, Štulík K (1978) Analysis with ion-selective electrodes. E. Horwood, Chichester, UK

    Google Scholar 

  18. Bakker E, Pretsch E (2005) Potentiometric sensors for trace level analysis. Trends Anal Chem 24:199–207

    Article  CAS  Google Scholar 

  19. Wang J (1985) Stripping analysis: principles, instrumentation, and application. VCH Publishers, Deerfield Beach, FL

    Google Scholar 

  20. Mirčeski V, Komorsky-Lovrić Š, Lovrić M (2007) Square-wave voltammetry. Springer, Berlin

    Google Scholar 

  21. Ostapczuk P (1993) Present potentials and limitations in the determination of trace elements by potentiometric stripping analysis. Anal Chim Acta 273:35–40

    Article  CAS  Google Scholar 

  22. Estela JM, Tomás C, Cladera A, Cerdà V (1995) Potentiometric stripping analysis: a review. Crit Rev Anal Chem 25:91–141

    Article  CAS  Google Scholar 

  23. Jagner D (1982) Potentiometric stripping analysis: a review. Analyst (UK) 107:593–599

    Article  CAS  Google Scholar 

  24. Town RM (1998) Chronopotentiometric stripping analysis as a probe for copper(II) and lead(II) complexation by fulvic acid: limitations and potentialities. Anal Chim Acta 363:31–43

    Article  CAS  Google Scholar 

  25. Van Leeuwen HP, Town RM (2003) Electrochemical metal speciation analysis of chemically heterogeneous samples: the outstanding features of stripping chrono-potentiometry at scanned deposition potential. Environ Sci Technol 37:3945–3952

    Article  Google Scholar 

  26. Lowe TA, Hedberg J, Lundin M, Wold S, Wallinder IO (2013) Chemical speciation measurements of silver ions in alkaline carbonate electrolytes using differential pulse stripping voltammetry on glassy carbon compared with ion-selective electrode measurements. Int J Electrochem Sci 8:3851–3865

    CAS  Google Scholar 

  27. Švancara I, Vytřas K, Bobrowski A, Kalcher K (2002) Determination of arsenic at a gold-plated carbon paste electrode using constant current stripping analysis. Talanta 58:45–55

    Article  Google Scholar 

  28. Liu A, Wong J-L (2000) Chemical speciation of nickel in fly ash by phase separation and carbon paste electrode voltammetry. J Hazard Mater 74:25–35

    Article  CAS  Google Scholar 

  29. Bodewig FG, Valenta P, Nurnberg HW (1982) Trace determination of As(III) and As(V) in natural waters by differential pulse anodic stripping voltammetry. Fresenius Z Anal Chem 311:187–191

    Google Scholar 

  30. Rueda Holgado F, Bernalte E, Palomo Marín MR, Calvo Blázquez L, Cereceda Balic F, Pinilla Gil E (2012) Miniaturized voltammetric stripping on screen-printed gold electrodes for field determination of copper in atmospheric deposition. Talanta 101:435–439

    Article  CAS  Google Scholar 

  31. Kokkinos C, Economou A, Raptis I, Efstathiou CE, Speliotis T (2007) Novel disposable bismuth-sputtered electrodes for the determination of trace metals by stripping voltammetry. Electrochem Commun 9:2795–2800

    Article  CAS  Google Scholar 

  32. Cha SK, Abruna HD (1990) Determination of copper at electrodes modified with ligands of varying coordination strength: a preamble to speciation studies. Anal Chem 62:274–278

    Article  CAS  Google Scholar 

  33. Labuda J, Korgová H, Vaníčková M (1995) Theory and application of chemically modified carbon paste electrode to copper speciation determination. Anal Chim Acta 305:42–48

    Article  CAS  Google Scholar 

  34. Amine A, Cremisini C, Palleschi G (1995) Determination of mercury(II), methyl-mercury and ethylmercury in the ng/ml range with an electrochemical enzyme glucose probe. Microchim Acta 121:183–190

    Article  CAS  Google Scholar 

  35. Labuda J, Bučková M, Halamová L (1997) Sensor-analyte interaction kinetics as a metal speciation criterion. Electroanalysis 9:1129–1131

    Article  CAS  Google Scholar 

  36. Navrátilová Z, Kula P (1993) Modified carbon paste electrodes for the study of metal-humic substances complexation. Anal Chim Acta 273:305–311

    Article  Google Scholar 

  37. Lopez da Silva WT, Thobie-Gautier C, Rezende MOO, El Murr N (2002) Electrochemical behavior of Cu(II) on carbon paste electrode modified by humic acid, cyclic voltammetry study. Electroanalysis 14:71–77

    Article  Google Scholar 

  38. Wang C, Zhu B, Li H (1999) Theoretical analysis and determination of the heterogeneous stability constant of copper(II)-humic acids complex at chemically modified carbon paste electrode. Electroanalysis 11:183–187

    Article  CAS  Google Scholar 

  39. Florence TM (1989) Electrochemical techniques for trace element speciation in waters. In: Batley GE (ed) Trace element speciation: analytical methods and problems. CRC, Boca Raton, FL, pp 77–116

    Google Scholar 

  40. Tercier M-L, Buffle J (1993) In-situ voltammetric measurements in natural waters: future prospects and challenges. Electroanalysis 5:187–200

    Article  CAS  Google Scholar 

  41. Bott AW (1995) Voltammetric determination of trace concentrations of metals in the environment. Curr Sep 14:24–30

    CAS  Google Scholar 

  42. Muñoz E, Palmero S (2005) Analysis and speciation of arsenic by stripping potentiometry: a review. Talanta 65:613–620

    Article  Google Scholar 

  43. Florence TM, Mann KJ (1987) Anodic stripping voltammetry with medium exchange in trace element speciation. Anal Chim Acta 200:305–312

    Article  CAS  Google Scholar 

  44. Ran Y, Fu J-M, Sheng G-Y, Beckett R, Hart BT (2000) Fractionation and composition of colloidal and suspended particulate materials in rivers. Chemosphere 41:33–43

    Article  CAS  Google Scholar 

  45. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley-Interscience, Weinheim

    Google Scholar 

  46. Waite TD (1989) Mathematical modeling of trace element speciation. In: Batley GE (ed) Trace element speciation: analytical methods and problems. CRC, Boca Raton, FL, pp 117–140

    Google Scholar 

  47. Colilla M, Mendiola MA, Procopio JR, Sevilla MT (2005) Application of a carbon paste electrode modified with a Schiff base ligand to mercury speciation in water. Electroanalysis 17:933–940

    Article  CAS  Google Scholar 

  48. Hung D-Q, Nekrassova O, Compton RG (2004) Analytical methods for inorganic arsenic in water: a review. Talanta 64:269–277

    Article  CAS  Google Scholar 

  49. Ribeiro F, Neto MM, Rocha MM, Fonseca IT (2006) Voltammetric studies on the electrochemical determination of methylmercury in chloride medium at carbon micro-electrodes. Anal Chim Acta 579:227–234

    Article  CAS  Google Scholar 

  50. Colombini MP, Fuoco R, Papoff P (1984) Electrochemical speciation and determination of organometallic species in natural waters. Sci Total Environment 37:61–70

    Article  CAS  Google Scholar 

  51. Markušová K, Kladeková D, Žežula I (1980) Electrochemical behaviour of organotin compounds. Chem Zvesti/Chem Papers (Slovakia) 34:726–739

    Google Scholar 

  52. Watson A, Svehla Gy (1975) Polarographic studies on some organic compounds of arsenic. Part I: arsonic acids and Part II: phenyl arsenoxide analyst 100. pp. 489–502 and 573–583

    Google Scholar 

  53. Greschonig H (1997) Electrochemical behaviour and electroanalytical methods for the determination of arsenic compounds. Sci Pap Univ Pardubice Ser A 3:293–305

    CAS  Google Scholar 

  54. Švancara I, Foret P, Vytřas K (2004) A study on the determination of chromium as chromate at a carbon paste electrode modified with surfactants. Talanta 64:844–852

    Article  Google Scholar 

  55. Agraz R, Sevilla MT, Hernández L (1995) Voltammetric quantification and speciation of mercury compounds. J Electroanal Chem 390:47–57

    Article  Google Scholar 

  56. Huang HL, Jagner D, Renman L (1987) Flow constant-current stripping analysis for antimony(III) and antimony(V) with gold fiber working electrodes. Application to natural waters. Anal Chim Acta 202:123–129

    Article  CAS  Google Scholar 

  57. Lu M, Rees NV, Kabakaev AS, Compton RG (2012) Determination of iron: electro-chemical methods. Electroanalysis 24:1693–1702

    CAS  Google Scholar 

  58. Grigoreva MF, Ivanko MG (1997) Simultaneous determination of vanadium(III, IV, V) in chloride melts. Vestn S Peterb Univ Ser 4 (Ukraine) 1:98–102

    Google Scholar 

  59. Arnold JP, Johnson RM (1969) Polarography of arsenic. Talanta 16:1191–1207

    Article  CAS  Google Scholar 

  60. Henze G, Wagner W, Sander S (1997) Speciation of arsenic(V) and arsenic(III) by cathodic stripping voltammetry in fresh water samples. Fresenius J Anal Chem 358:741–744

    Article  CAS  Google Scholar 

  61. Salaun P, Planer-Friedrich B, van den Berg CMG (2007) Inorganic arsenic speciation in water and seawater by anodic stripping voltammetry with a gold microelectrode. Anal Chim Acta 585:312–322

    Article  Google Scholar 

  62. Huang H-L, Jagner D, Renman L (1988) Flow potentiometric and constant current stripping analysis for arsenic(V) without prior chemical reduction to arsenic(III): application to the determination of total arsenic in seawater and urine. Anal Chim Acta 207:37–46

    Article  Google Scholar 

  63. Chatzitheodorou E, Economou A, Voulgaropoulos A (2004) Trace determination of chromium by square-wave adsorptive stripping voltammetry on bismuth film electrodes. Electroanalysis 16:1745–1754

    Article  CAS  Google Scholar 

  64. Harzdorf AC (1987) Analytical chemistry of chromium species in the environment and interpretation of results. Int J Environ Anal Chem 29:249–261

    Article  CAS  Google Scholar 

  65. Bobrowski A, Bas B, Dominik J, Niewiara E, Szalinska E, Vignati D, Zarebski J (2004) Chromium speciation study in polluted waters using catalytic adsorptive stripping voltammetry and tangential flow filtration. Talanta 63:1003–1012

    Article  CAS  Google Scholar 

  66. Achterberg EP, van den Berg CMG (1994) Automated voltammetric system for shipboard determination of metal speciation in sea water. Anal Chim Acta 284:463–471

    Article  Google Scholar 

  67. Wang J, Chen Q, Cepria G (1996) Electrocatalytic modified electrode for remote monitoring of hydrazines. Talanta 43:1387–1391

    Article  CAS  Google Scholar 

  68. Anonymous (2013) Minamata disease. http://en.wikipedia.org/wiki/Minamata_disease. Accessed on 30 May 2013

  69. Sipos L, Valenta P, Nurnberg HW, Branica M (1977) Applications of polarography and voltammetry to marine and aquatic chemistry. A new voltammetric method for study of mercury traces in sea and inland waters. J Electroanal Chem 77:263–266

    Article  CAS  Google Scholar 

  70. Gustavsson I (1986) Determination of mercury in sea water by stripping voltammetry. J Electroanal Chem 214:31–36

    Article  CAS  Google Scholar 

  71. Jagner D (1979) Potentiometric stripping analysis for mercury. Anal Chim Acta 105:33–41

    Article  CAS  Google Scholar 

  72. Walcarius A, Etienne M, Delacote C (2004) Uptake of inorganic Hg(II) by organically modified silicates: influence of pH and chloride concentration on binding pathways and electrochemical monitoring of the process. Anal Chim Acta 508:87–98

    Article  CAS  Google Scholar 

  73. Navrátilová Z, Kula P (2000) Cation and anion exchange on clay modified electrodes. J Solid State Electrochem 4:342–347

    Article  Google Scholar 

  74. Zhang H, Davison W (2000) Direct in situ measurements of labile inorganic and organically bound metal species in synthetic solutions and natural waters using diffusive gradients in thin films. Anal Chem 72:4447–4457

    Article  CAS  Google Scholar 

  75. Zhang H (2004) In-situ speciation of Ni and Zn in freshwaters: comparison between DGT measurements and speciation models. Environ Sci Technol 38:1421–1427

    Article  CAS  Google Scholar 

  76. Sébastien M, Odzak N, Behra R, Sigg L (2004) Speciation of copper and zinc in natural freshwater: comparison of voltammetric measurements, diffusive gradients in thin films (DGT) and chemical equilibrium models. Anal Chim Acta 510:91–100

    Article  Google Scholar 

  77. Taillefert M, Luther GV III, Nuzzio DB (2000) The application of electrochemical tools for in-situ measurements in aquatic systems. Electroanalysis 12:401–412

    Article  CAS  Google Scholar 

  78. Emons H (2002) Artefacts and facts about metal(loid)s and their species from analytical procedures in environmental biomonitoring. Trends Anal Chem 21:401–411

    Article  CAS  Google Scholar 

  79. Wang J (2002) Real-time electrochemical monitoring: toward green analytical chemistry. Acc Chem Res 35:811–816

    Article  CAS  Google Scholar 

  80. Reeder RJ, Schoonen MAA, Lanzirotti A (2006) Metal speciation and its role in bioaccessibility and bioavailability. Rev Miner Geochem 64:59–113

    Article  CAS  Google Scholar 

  81. Miró M, Hansen EH (2012) Recent advances and future prospects of mesofluidic lab-on-a-valve platforms in analytical sciences. A review. Anal Chim Acta 750:3–15

    Article  Google Scholar 

  82. Li C-M, Hu W-H (2013) Electroanalysis in micro- and nano-scales. J Electroanal Chem 688:20–31

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuzana Navrátilová or Ivan Švancara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Navrátilová, Z., Švancara, I. (2015). Electroanalysis and Chemical Speciation. In: Moretto, L., Kalcher, K. (eds) Environmental Analysis by Electrochemical Sensors and Biosensors. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1301-5_7

Download citation

Publish with us

Policies and ethics