Skip to main content

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

The pH is an important parameter when we deal with environmental pollution, analyzing the quality of water, and even in clinical diagnosis. This vital parameter contributed a lot and still is contributing in advancing different fields such as pharmacy, chemistry, biology, medicine, industry, agriculture, biochemistry, and environment. The glass electrode is a most successful electrochemical sensor which is used to determine the activity of hydrogen ions in solution. This chapter focuses on the pH sensors developed since the glass electrode from one century ago up to the modern metallic, modified, nanostructured electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nørby JG (2000) The origin and the meaning of the little p in pH. Trends Biochem Sci 25(1):36–37, http://dx.doi.org/10.1016/S0968-0004(99)01517-0

    Article  Google Scholar 

  2. Shao Q, R-h Q, M-w S, Zhou Q, Ma DDD, Lee S-T (2011) Shape controlled flower-like silicon oxide nanowires and their pH response. Appl Surf Sci 257(13):5559–5562, http://dx.doi.org/10.1016/j.apsusc.2011.01.038

    Article  CAS  Google Scholar 

  3. Fang X, Zhai T, Gautam UK, Li L, Wu L, Bando Y, Golberg D (2011) ZnS nanostructures: from synthesis to applications. Prog Mater Sci 56(2):175–287, http://dx.doi.org/10.1016/j.pmatsci.2010.10.001

    Article  CAS  Google Scholar 

  4. Cremer M (1906) Uber die Ursache der elektromotorischen Eigenschaften der Gewebe, zugleich ein Beitrag zur Lehre von den polyphasischen Elektrolytketten. Z Biol 47:562–608

    CAS  Google Scholar 

  5. Haber F, Klemensiewicz Z (1909) Ueber elektrische Phasengrenzkrafte. Z Phys Chem 67:385–431

    CAS  Google Scholar 

  6. Eftekhari A (2003) pH sensor based on deposited film of lead oxide on aluminum substrate electrode. Sensors Actuators B Chem 88(3):234–238, http://dx.doi.org/10.1016/S0925-4005(02)00321-0

    Article  CAS  Google Scholar 

  7. Bergveld P (1970) Development of an Ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng BME-17(1):70–71. doi:10.1109/tbme.1970.4502688

    Article  Google Scholar 

  8. Kurzweil P (2009) Metal oxides and Ion-exchanging surfaces as pH sensors in liquids: state-of-the-art and outlook. Sensors 9(6):4955–4985

    Article  CAS  Google Scholar 

  9. Fog A, Buck RP (1984) Electronic semiconducting oxide as pH sensors. Sensors Actuators 5(2):137–146

    Article  CAS  Google Scholar 

  10. Jevtić MM, Jelenković EV, Tong KY, Pang GKH (2006) Noise and structural properties of reactively sputtered RuO2 thin films. Thin Solid Films 496(2):214–220, http://dx.doi.org/10.1016/j.tsf.2005.08.265

    Article  Google Scholar 

  11. Hiratani M, Matsui Y, Imagawa K, Kimura S (2000) Growth of RuO2 thin films by pulsed-laser deposition. Thin Solid Films 366(1–2):102–106, http://dx.doi.org/10.1016/S0040-6090(99)01111-6

    Article  CAS  Google Scholar 

  12. Armelao L, Barreca D, Moraru B (2003) A molecular approach to RuO2-based thin films: sol–gel synthesis and characterisation. J Non-Cryst Solids 316(2–3):364–371, http://dx.doi.org/10.1016/S0022-3093(02)01636-8

    Article  CAS  Google Scholar 

  13. Lee D-J, Kang S-W, Rhee S-W (2002) Chemical vapor deposition of ruthenium oxide thin films from Ru(tmhd)3 using direct liquid injection. Thin Solid Films 413(1–2):237–242, http://dx.doi.org/10.1016/S0040-6090(02)00439-X

    Article  CAS  Google Scholar 

  14. McMurray HN, Douglas P, Abbot D (1995) Novel thick-film pH sensors based on ruthenium dioxide-glass composites. Sensors Actuators B Chem 28(1):9–15, http://dx.doi.org/10.1016/0925-4005(94)01536-Q

    Article  CAS  Google Scholar 

  15. Trasatti S (1991) Physical electrochemistry of ceramic oxides. Electrochim Acta 36(2):225–241

    Article  CAS  Google Scholar 

  16. Zhuiykov S, Kats E, Kalantar-zadeh K, Breedon M, Miura N (2012) Influence of thickness of sub-micron Cu2O-doped RuO2 electrode on sensing performance of planar electrochemical pH sensors. Mater Lett 75:165–168, http://dx.doi.org/10.1016/j.matlet.2012.01.107

    Article  CAS  Google Scholar 

  17. Zhuiykov S, Kats E, Marney D, Kalantar-Zadeh K (2011) Improved antifouling resistance of electrochemical water quality sensors based on Cu2O-doped RuO2 sensing electrode. Progress Organic Coatings 70(1):67–73, http://dx.doi.org/10.1016/j.porgcoat.2010.10.003

    Article  CAS  Google Scholar 

  18. Desai BD, Fernandes JB, Dalal VNK (1985) Manganese dioxide—a review of a battery chemical Part II. Solid state and electrochemical properties of manganese dioxides. J Power Sources 16(1):1–43, http://dx.doi.org/10.1016/0378-7753(85)80001-X

    Article  CAS  Google Scholar 

  19. Kozawa A, Yeager JF (1965) The cathodic reduction mechanism of electrolytic manganese dioxide in alkaline electrolyte. J Electrochem Soc 112(10):959–963. doi:10.1149/1.2423350

    Article  CAS  Google Scholar 

  20. Johnson RS, Vosburgh WC (1952) The reproducibility of the manganese dioxide electrode and the change of electrode potential with p H. J Electrochem Soc 99(8):317–322. doi:10.1149/1.2779743

    Article  CAS  Google Scholar 

  21. Cachet-Vivier C, Tribollet B, Vivier V (2010) Cavity microelectrode for studying manganese dioxide powder as pH sensor. Talanta 82(2):555–559, http://dx.doi.org/10.1016/j.talanta.2010.05.006

    Article  CAS  Google Scholar 

  22. Roffat M, Noël O, Soppera O, Bohnke O (2009) Investigation of the perovskite ceramic Li0.30La0.56TiO3 by Pulsed Force Mode AFM for pH sensor application. Sensors Actuators B Chem 138(1):193–200, http://dx.doi.org/10.1016/j.snb.2008.12.031

    Article  CAS  Google Scholar 

  23. Pham QN, Bohnke O, Bohnke C (2006) Potentiometric measurements and impedance characteristics of Li0.30La0.57TiO3 membrane in lithium anhydrous solutions. Electrochim Acta 51(27):6186–6193, http://dx.doi.org/10.1016/j.electacta.2005.12.050

    Article  CAS  Google Scholar 

  24. Catti M, Sommariva M, Ibberson RM (2007) Tetragonal superstructure and thermal history of Li0.3La0.567TiO3 (LLTO) solid electrolyte by neutron diffraction. J Mater Chem 17(13):1300–1307

    Article  CAS  Google Scholar 

  25. Bohnke O, Bohnke C, Fourquet JL (1996) Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate. Solid State Ionics 91(1–2):21–31, http://dx.doi.org/10.1016/S0167-2738(96)00434-1

    Article  CAS  Google Scholar 

  26. Stramare S, Thangadurai V, Weppner W (2003) Lithium lanthanum titanates: a review. Chem Mater 15(21):3974–3990. doi:10.1021/cm0300516

    Article  CAS  Google Scholar 

  27. Henderson MA (2002) The interaction of water with solid surfaces: fundamental aspects revisited. Surf Sci Rep 46(1–8):1–308, http://dx.doi.org/10.1016/S0167-5729(01)00020-6

    Article  CAS  Google Scholar 

  28. Boehm HP (1971) Acidic and basic properties of hydroxylated metal oxide surfaces. Discus Faraday Soc 52:264–275

    Article  Google Scholar 

  29. Boehm H-P (1978) The Chemical Physics of Surfaces. Von S. R. Morrison. Plenum Press, New York—London 1977. XVII, 415 S., div. Abb. und Tab., geb. $ 47.40. Angew Chem 90(6):500–501. doi:10.1002/ange.19780900640

    Article  Google Scholar 

  30. Kao CH, Wang JC, Lai CS, Huang CY, Ou JC, Wang HY (2012) Ti-doped Gd2O3 sensing membrane for electrolyte–insulator–semiconductor pH sensor. Thin Solid Films 520(10):3760–3763, http://dx.doi.org/10.1016/j.tsf.2011.11.063

    Article  CAS  Google Scholar 

  31. Zhao R, Xu M, Wang J, Chen G (2010) A pH sensor based on the TiO2 nanotube array modified Ti electrode. Electrochim Acta 55(20):5647–5651, http://dx.doi.org/10.1016/j.electacta.2010.04.102

    Article  CAS  Google Scholar 

  32. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388(6641):431–432

    Article  CAS  Google Scholar 

  33. Sakai N, Wang R, Fujishima A, Watanabe T, Hashimoto K (1998) Effect of ultrasonic treatment on highly hydrophilic TiO2 surfaces. Langmuir 14(20):5918–5920. doi:10.1021/la980623e

    Article  CAS  Google Scholar 

  34. Fulati A, Usman Ali S, Riaz M, Amin G, Nur O, Willander M (2009) Miniaturized pH sensors based on zinc oxide nanotubes/nanorods. Sensors 9(11):8911–8923

    Article  CAS  Google Scholar 

  35. Batista PD, Mulato M (2005) ZnO extended-gate field-effect transistors as pH sensors. Appl Phys Lett 87(14):143508–143503

    Article  Google Scholar 

  36. Qiu Y, Yang S (2008) Kirkendall approach to the fabrication of ultra-thin ZnO nanotubes with high resistive sensitivity to humidity. Nanotechnology 19(26):265606. doi:10.1088/0957-4484/19/26/265606

    Article  Google Scholar 

  37. Zaman S, Asif MH, Zainelabdin A, Amin G, Nur O, Willander M (2011) CuO nanoflowers as an electrochemical pH sensor and the effect of pH on the growth. J Electroanal Chem 662(2):421–425, http://dx.doi.org/10.1016/j.jelechem.2011.09.015

    Article  CAS  Google Scholar 

  38. Chang S-P, Yang T-H (2012) Sensing performance of EGFET pH sensors with CuO nanowires fabricated glass substrate. Int J Electrochem Sci 7(6):5020–5027

    CAS  Google Scholar 

  39. Huang W-D, Cao H, Deb S, Chiao M, Chiao JC (2011) A flexible pH sensor based on the iridium oxide sensing film. Sensors Actuators A Phys 169(1):1–11, http://dx.doi.org/10.1016/j.sna.2011.05.016

    Article  CAS  Google Scholar 

  40. Prats-Alfonso E, Abad L, Casañ-Pastor N, Gonzalo-Ruiz J, Baldrich E (2013) Iridium oxide pH sensor for biomedical applications. Case urea–urease in real urine samples. Biosens Bioelectron 39(1):163–169, http://dx.doi.org/10.1016/j.bios.2012.07.022

    Article  CAS  Google Scholar 

  41. Choi S, Park I, Hao Z, Holman H-Y, Pisano A (2012) Quantitative studies of long-term stable, top-down fabricated silicon nanowire pH sensors. Appl Phys A 107(2):421–428. doi:10.1007/s00339-011-6754-9

    Article  CAS  Google Scholar 

  42. Colinge J-P, Lee C-W, Afzalian A, Akhavan ND, Yan R, Ferain I, Razavi P, O’Neill B, Blake A, White M, Kelleher A-M, McCarthy B, Murphy R (2010) Nanowire transistors without junctions. Nat Nano 5(3):225–229, http://www.nature.com/nnano/journal/v5/n3/suppinfo/nnano.2010.15_S1.html

    Article  CAS  Google Scholar 

  43. Lee D, Cui T (2012) A role of silica nanoparticles in layer-by-layer self-assembled carbon nanotube and In2O3 nanoparticle thin-film pH sensors: Tunable sensitivity and linearity. Sensors Actuators A Phys 188:203–211, http://dx.doi.org/10.1016/j.sna.2012.01.004

    Article  CAS  Google Scholar 

  44. Hung-Hsien L, Wei-Syuan D, Jung-Chuan C, Huang-Chung C (2012) An extended-gate field-effect transistor with Low-temperature hydrothermally synthesized < formula formulatype = “inline” > <img src = “/images/tex/17263.gif” alt = “\hbox {SnO}_{2}” > </formula > nanorods as pH sensor. Electron Device Lett IEEE 33(10):1495–1497. doi:10.1109/led.2012.2210274

    Article  Google Scholar 

  45. Lei KF, Lee K-F, Yang S-I (2012) Fabrication of carbon nanotube-based pH sensor for paper-based microfluidics. Microelectron Eng 100:1–5, http://dx.doi.org/10.1016/j.mee.2012.07.113

    Article  CAS  Google Scholar 

  46. Yun-Shan C, Wan-Lin T, Lee IC, Jung-Chuan C, Huang-Chung C (2012) A novel pH sensor of extended-gate field-effect transistors with laser-irradiated carbon-nanotube network. Electron Device Lett IEEE 33(11):1622–1624. doi:10.1109/led.2012.2213794

    Article  Google Scholar 

  47. Bobacka J (1999) Potential stability of All-solid-state Ion-selective electrodes using conducting polymers as Ion-to-electron transducers. Anal Chem 71(21):4932–4937. doi:10.1021/ac990497z

    Article  CAS  Google Scholar 

  48. Li Q, Li H, Zhang J, Xu Z (2011) A novel pH potentiometric sensor based on electrochemically synthesized polybisphenol A films at an ITO electrode. Sensors Actuators B Chem 155(2):730–736, http://dx.doi.org/10.1016/j.snb.2011.01.038

    Article  CAS  Google Scholar 

  49. Aquino-Binag CN, Kumar N, Lamb RN, Pigram PJ (1996) Fabrication and characterization of a hydroquinone-functionalized polypyrrole thin-film pH sensor. Chem Mater 8(11):2579–2585. doi:10.1021/cm9506114

    Article  CAS  Google Scholar 

  50. Scholz F, Steinhardt T, Kahlert H, Pörksen JR, Behnert J (2005) Teaching pH measurements with a student-assembled combination quinhydrone electrode. J Chem Educ 82(5):782. doi:10.1021/ed082p782

    Article  CAS  Google Scholar 

  51. Xiong L, Batchelor-McAuley C, Compton RG (2011) Calibrationless pH sensors based on nitrosophenyl and ferrocenyl co-modified screen printed electrodes. Sensors Actuators B Chem 159(1):251–255, http://dx.doi.org/10.1016/j.snb.2011.06.082

    Article  CAS  Google Scholar 

  52. Gill E, Arshak A, Arshak K, Korostynska O (2010) Response mechanism of novel polyaniline composite conductimetric pH sensors and the effects of polymer binder, surfactant and film thickness on sensor sensitivity. Eur Polym J 46(10):2042–2050, http://dx.doi.org/10.1016/j.eurpolymj.2010.07.012

    Article  CAS  Google Scholar 

  53. Gill E, Arshak K, Arshak A, Korostynska O (2008) Mixed metal oxide films as pH sensing materials. Microsyst Technol 14(4–5):499–507. doi:10.1007/s00542-007-0435-9

    Article  CAS  Google Scholar 

  54. Gill EI, Arshak A, Arshak K, Korostynska O (2009) Investigation of thick-film polyaniline-based conductimetric pH sensors for medical applications. Sensors J IEEE 9(5):555–562. doi:10.1109/jsen.2009.2016608

    Article  CAS  Google Scholar 

  55. Fernandes EGR, Vieira NCS, de Queiroz AAA, Guimarães FEG, Zucolotto V (2010) Immobilization of poly(propylene imine) dendrimer/nickel Phthalocyanine as nanostructured multilayer films to be used as gate membranes for SEGFET pH sensors. J Phys Chem C 114(14):6478–6483. doi:10.1021/jp9106052

    Article  CAS  Google Scholar 

  56. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200

    Article  CAS  Google Scholar 

  57. Gu G, Nie S, Feenstra RM, Devaty RP, Choyke WJ, Chan WK, Kane MG (2007) Field effect in epitaxial graphene on a silicon carbide substrate. Appl Phys Lett 90(25):253507–253503

    Article  Google Scholar 

  58. Ang PK, Chen W, Wee ATS, Loh KP (2008) Solution-gated epitaxial graphene as pH sensor. J Am Chem Soc 130(44):14392–14393. doi:10.1021/ja805090z

    Article  CAS  Google Scholar 

  59. Lei N, Li P, Xue W, Xu J (2011) Simple graphene chemiresistors as pH sensors: fabrication and characterization. Meas Sci Technol 22(10):1–6. doi:10.1088/0957-0233/22/10/107002

    Google Scholar 

  60. Stock JT, Purdy WC, Garcia LM (1958) The antimony-antimony oxide electrode. Chem Rev 58(4):611–626. doi:10.1021/cr50022a001

    Article  CAS  Google Scholar 

  61. Caflisch CR, Pucacco LR, Carter NW (1978) Manufacture and utilization of antimony pH electrodes. Kidney Int 14(2):126–141

    Article  CAS  Google Scholar 

  62. Zhang Y, Li G, Wu Y, Zhang B, Song W, Zhang L (2002) Antimony nanowire arrays fabricated by pulsed electrodeposition in anodic alumina membranes. Adv Mater 14(17):1227–1230. doi:10.1002/1521-4095(20020903)14:17<1227::aid-adma1227>3.0.co;2-2

    Article  CAS  Google Scholar 

  63. Wang YW, Hong BH, Lee JY, Kim J-S, Kim GH, Kim KS (2004) Antimony nanowires self-assembled from Sb nanoparticles. J Phys Chem B 108(43):16723–16726. doi:10.1021/jp047375h

    Article  CAS  Google Scholar 

  64. Zhou B, Hong J-M, Zhu J-J (2005) Microwave-assisted rapid synthesis of antimony dendrites. Mater Lett 59(24–25):3081–3084, http://dx.doi.org/10.1016/j.matlet.2005.05.026

    Article  CAS  Google Scholar 

  65. Schoendorfer C, Lugstein A, Hyun Y-J, Bertagnolli E, Bischoff L, Nellen PM, Callegari V, Pongratz P (2007) Focused ion beam induced synthesis of a porous antimony nanowire network. J Appl Phys 102(4):044308–044305

    Article  Google Scholar 

  66. Avdic A, Lugstein A, Schondorfer C, Bertagnolli E (2009) Focused ion beam generated antimony nanowires for microscale pH sensors. Appl Phys Lett 95(22):223106–223103

    Article  Google Scholar 

  67. Li X, Horita K (2000) Electrochemical characterization of carbon black subjected to RF oxygen plasma. Carbon 38(1):133–138, http://dx.doi.org/10.1016/S0008-6223(99)00108-6

    Article  CAS  Google Scholar 

  68. Runnels PL, Joseph JD, Logman MJ, Wightman RM (1999) Effect of pH and surface functionalities on the cyclic voltammetric responses of carbon-fiber microelectrodes. Anal Chem 71(14):2782–2789. doi:10.1021/ac981279t

    Article  CAS  Google Scholar 

  69. Adenier A, Chehimi MM, Gallardo I, Pinson J, Vilà N (2004) Electrochemical oxidation of aliphatic amines and their attachment to carbon and metal surfaces. Langmuir 20(19):8243–8253. doi:10.1021/la049194c

    Article  CAS  Google Scholar 

  70. Pinson J, Podvorica F (2005) Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem Soc Rev 34(5):429–439

    Article  CAS  Google Scholar 

  71. Piyankarage SC, Augustin H, Grosjean Y, Featherstone DE, Shippy SA (2008) Hemolymph amino acid analysis of individual drosophila larvae. Anal Chem 80(4):1201–1207. doi:10.1021/ac701785z

    Article  CAS  Google Scholar 

  72. Adams RN (1990) In vivo electrochemical measurements in the CNS. Prog Neurobiol 35(4):297–311, http://dx.doi.org/10.1016/0301-0082(90)90014-8

    Article  CAS  Google Scholar 

  73. Makos MA, Omiatek DM, Ewing AG, Heien ML (2010) Development and characterization of a voltammetric carbon-fiber microelectrode pH sensor. Langmuir 26(12):10386–10391. doi:10.1021/la100134r

    Article  CAS  Google Scholar 

  74. Durst RA (2012) Ion-selective electrodes—the early years. Electroanalysis 24(1):15–22. doi:10.1002/elan.201100429

    Article  CAS  Google Scholar 

  75. Bandodkar AJ, Hung VWS, Jia W, Valdes-Ramirez G, Windmiller JR, Martinez AG, Ramirez J, Chan G, Kerman K, Wang J (2013) Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst 138(1):123–128

    Article  CAS  Google Scholar 

  76. Zhang X, Ogorevc B, Wang J (2002) Solid-state pH nanoelectrode based on polyaniline thin film electrodeposited onto ion-beam etched carbon fiber. Anal Chim Acta 452(1):1–10, http://dx.doi.org/10.1016/S0003-2670(01)01435-0

    Article  CAS  Google Scholar 

  77. Schneider L, Korber A, Grabbe S, Dissemond J (2007) Influence of pH on wound-healing: a new perspective for wound-therapy? Arch Dermatol Res 298(9):413–420. doi:10.1007/s00403-006-0713-x

    Article  Google Scholar 

  78. Nocke A, Schroter A, Cherif C, Gerlach G (2012) Miniaturized textile-based multi-layer ph-sensor for wound monitoring applications. Autex Res J 12(1):20–22. doi:10.2478/v10304-012-0004-x

    Article  Google Scholar 

  79. McColl D, Cartlidge B, Connolly P (2007) Real-time monitoring of moisture levels in wound dressings in vitro: an experimental study. Int J Surg 5(5):316–322, http://dx.doi.org/10.1016/j.ijsu.2007.02.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz L. Dickert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Latif, U., Dickert, F.L. (2015). pH Measurements. In: Moretto, L., Kalcher, K. (eds) Environmental Analysis by Electrochemical Sensors and Biosensors. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1301-5_4

Download citation

Publish with us

Policies and ethics