Skip to main content

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1862 Accesses

Abstract

In the late twentieth century, the generation of oxide gases such as CO2, NOx, and SO2 through human activities became recognized as an extremely serious environmental problem. In 1997, at COP3, carbon dioxide (CO2) was also identified as a major greenhouse effect gas and the goal of reducing CO2 emissions was declared an international priority. The development of smart gas-sensing tools is an important step in effectively suppressing CO2 emissions into the atmosphere. Up to now, however, although many different CO2 sensors have been extensively studied, most have not been commercialized, with the exception of devices incorporating IR detection. Even these are expensive and bulky and require pretreatment of the sample gas, and so are difficult to install at the various sites where CO2 gas may be emitted. As a result, it is necessary to develop a compact CO2 gas sensor which can readily be positioned for on-site monitoring.

In this chapter, we describe the compact gas sensors which can detect the carbon oxides. Since such compact gas sensors can realize comfortable lives with high safety, they will contribute greatly to our daily lives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gauthier M, Chamberland A (1977) Solid-state detectors for the potentiometric determination of gaseous oxides: I. measurement in air. J Electrochem Soc 124:1579–1583

    Article  CAS  Google Scholar 

  2. Côtè R, Bale CW, Gauthier M (1984) K2CO3 solid electrolyte as a CO2 probe: decomposition measurements of CaCO3. J Electrochem Soc 131:63–67

    Article  Google Scholar 

  3. Saito Y, Maruyama T, Matsumoto Y, Kobayashi K, Yano Y (1984) Applicability of sodium sulfate as a solid electrolyte for a sulfur oxides sensor. Solid State Ion 14:273–281

    Article  CAS  Google Scholar 

  4. Miura N, Yao S, Shimizu Y, Yamazoe N (1992) Carbon dioxide sensor using sodium ion conductor and binary carbonate auxiliary electrode. J Electrochem Soc 139:1384–1388

    Article  CAS  Google Scholar 

  5. Miura N, Yao S, Shimizu Y, Yamazoe N (1992) High-performance solid-electrolyte carbon dioxide sensor with a binary carbonate electrode. Sensor Actuat B 9:165–170

    Article  CAS  Google Scholar 

  6. Köhler J, Imanaka N, Adachi G (1998) Multivalent cationic conduction in solids. Chem Mater 10:3790–3812

    Article  Google Scholar 

  7. Imanaka N, Kamikawa M, Tamura S, Adachi G (1999) Carbon dioxide gas sensor based on trivalent Sc3+ ion conducting Sc2(WO4)3 solid electrolyte. Electrochem Solid-State Lett 2:602–604

    Article  CAS  Google Scholar 

  8. Imanaka N, Kamikawa M, Tamura S, Adachi G (2001) Carbon dioxide gas sensor with multivalent cation conducting solid electrolytes. Sensor Actuat B 77:301–306

    Article  CAS  Google Scholar 

  9. Imanaka N, Kobayashi Y, Fujiwara K, Asano T, Okazaki Y, Adachi G (1998) Trivalent rare earth ion conduction in the rare earth tungstates with the Sc2(WO4)3-type structure. Chem Mater 10:2006–2012

    Article  CAS  Google Scholar 

  10. Imanaka N, Kamikawa M, Adachi G (2001) A carbon dioxide gas sensing with the combination of divalent magnesium cation and divalent oxide anion conducting solid electrolytes with neodymium oxycarbonate based auxiliary electrode. Electroanalysis 13:1291–1294

    Article  CAS  Google Scholar 

  11. Imanaka N, Ogura A, Kamikawa M, Adachi G (2001) High performance CO2 gas sensing with the combination of multivalent ion conducting solid electrolytes with water-insoluble auxiliary electrode. Chem Lett 30:718–719

    Article  Google Scholar 

  12. Imanaka N, Kamikawa M, Adachi G (2002) A carbon dioxide gas sensing with the combination of multivalent cation and anion conductors with water insoluble oxycarbonate based auxiliary electrode. Anal Chem 74:4800–4804

    Article  CAS  Google Scholar 

  13. Imanaka N, Ogura A, Adachi G (2003) Practical smart CO2 gas sensor applicable for in-situ real time monitoring at every emitting site. Electrochemistry 71:14–18

    CAS  Google Scholar 

  14. Tamura S, Imanaka N, Kamikawa M, Adachi G (2000) A CO2 sensor based on a trivalent ion conducting Sc1/3Zr2(PO4)3 solid electrolyte. Adv Mater 12:898–901

    Article  CAS  Google Scholar 

  15. Imanaka N, Ogura A, Kamikawa M, Adachi G (2001) CO2 gas sensor with the combination of tetravalent zirconium cation and divalent oxide anion conducting solids with water-insoluble oxycarbonate electrode. Electrochem Commun 3:451–454

    Article  CAS  Google Scholar 

  16. Lee JS, Lee JH, Hong SH (2003) Solid-state amperometric CO2 sensor using a lithium-ion conductor. Sensor Actuat B 89:311–314

    Article  CAS  Google Scholar 

  17. Lee JS, Lee JH, Hong SH (2003) NASICON-based amperometric CO2 sensor using Na2CO3–BaCO3 auxiliary phase. Sensor Actuat B 96:663–668

    Article  CAS  Google Scholar 

  18. Lee JS, Lee JH, Hong SH (2003) Solid-state amperometric CO2 sensor using a sodium ion conductor. J Eur Ceram Soc 24:1431–1434

    Article  Google Scholar 

  19. Tamaki J, Akiyama M, Xu C, Miura N, Yamazoe N (1990) Conductivity change of SnO2 with CO2 adsorption. Chem Lett 19:1243–1246

    Article  Google Scholar 

  20. Yoshioka T, Mizuno N, Iwamoto M (1991) La2O3-loaded SnO2 element as a CO2 gas sensor. Chem Lett 20:1249–1252

    Article  Google Scholar 

  21. Mizuno N, Yoshioka T, Kato K, Iwamoto M (1993) CO2-sensing characteristics of SnO2 element modified by La2O3. Sensor Actuat B 13:473–475

    Article  CAS  Google Scholar 

  22. Sakama H, Saeki S, Ono A, Ichikawa N, Tanokura A, Uetsuka H, Onishi H (2004) CO2 sensing properties of La-loaded SnO2 thin films prepared by sputtering. Chem Lett 33:1080–1081

    Article  CAS  Google Scholar 

  23. Hanada M, Onaga K, Nishiguchi M, Onouchi T (1999) Development of CO2 gas sensor using La3+ and Y3+ doped SnO2 semiconductor. Chem Sensors 15(Suppl B):130–132

    CAS  Google Scholar 

  24. Mizuno N, Kato K, Yoshioka T, Iwamote M (1992) A remarkable sensitivity of CaO-loaded In2O3 element to CO2 gas in the presence of water vapor. Chem Lett 21:1683–1684

    Article  Google Scholar 

  25. Ishihara T, Kometani K, Hashida M, Takita Y (1990) Mixed oxide capacitor of BaTiO3–PbO as a new type CO2 gas sensor. Chem Lett 19:1163–1166

    Article  Google Scholar 

  26. Ishihara T, Kometani K, Mizuhara Y, Takita Y (1992) Mixed oxide capacitor of CuO-BaTiO3 as a new type CO2 gas sensor. J Am Ceram Soc 75:613–618

    Article  CAS  Google Scholar 

  27. Liao B, Wei Q, Wang K, Liu Y (2001) Study on CuO–BaTiO3 semiconductor CO2 sensor. Sensor Actuat B 80:208–214

    Article  CAS  Google Scholar 

  28. Wei Q, Luo WD, Liao B, Liu Y, Wang G (2000) Giant capacitance effect and physical model of nano crystalline CuO-BaTiO3 semiconductor as a CO2 gas sensor. J Appl Phys 88:4818–4824

    Article  CAS  Google Scholar 

  29. Leal O, Bolívar C, Ovalles C, García JJ, Sepidel Y (1995) Reversible adsorption of carbon dioxide on amine surface-bonded silica gel. Inorg Chim Acta 240:183–189

    Article  CAS  Google Scholar 

  30. Rocchia M, Garrone E, Geobaldo F, Boarino L, Sailor MJ (2003) Sensing CO2 in a chemically modified porous silicon film. Phys Stat Sol (a) 197:365–369

    Article  CAS  Google Scholar 

  31. Mills A, Monaf L (1996) Thin plastic film colorimetric sensors for carbon dioxide: effect of plasticizer on response. Analyst 121:535–540

    Article  CAS  Google Scholar 

  32. Mills A, Chang Q, Mcmurray HM (1992) Equilibrium studies on colorimetric plastic film sensors for carbon dioxide. Anal Chem 64:1383–1389

    Article  CAS  Google Scholar 

  33. Mills A, Lepre A, Wild L (1997) Breath-by-breath measurement of carbon dioxide using a plastic film optical sensor. Sensor Actuat B 39:419–425

    Article  CAS  Google Scholar 

  34. Kawabata Y, Kamichika T, Imasaka T, Ishibashi N (1989) Fiber-optic sensor for carbon dioxide with a pH indicator dispersed in a poly(ethylene glycol) membrane. Anal Chim Acta 219:223–229

    Article  CAS  Google Scholar 

  35. Cooney CG, Towe BC, Eyster CR (2000) Optical pH, oxygen and carbon dioxide monitoring using a microdialysis approach. Sensor Actuat B 69:183–188

    Article  CAS  Google Scholar 

  36. Marazuela MD, Moleno-Bondi MC, Orellana G (1995) Enhanced performance of a fibre-optic luminescence CO2 sensor using carbonic anhydrase. Sensor Actuat B 29:126–131

    Article  CAS  Google Scholar 

  37. Zhujun Z, Seitz WR (1984) A carbon dioxide sensor based on fluorescence. Anal Chim Acta 160:305–309

    Article  Google Scholar 

  38. Wolfbeis OS, Weis LJ, Leiner MJP, Ziegler WE (1988) Fiber-optic fluorosensor for oxygen and carbon dioxide. Anal Chem 60:2028–2030

    Article  CAS  Google Scholar 

  39. Mills A, Chang Q (1993) Fluorescence plastic thin-film sensor for carbon dioxide. Analyst 118:839–843

    Article  CAS  Google Scholar 

  40. Nakamura N, Amao Y (2003) An optical sensor for CO2 using thymol blue and europium(III) complex composite film. Sensor Actuat B 92:98–101

    Article  CAS  Google Scholar 

  41. Nakamura N, Amao Y (2003) Optical CO2 sensor with the combination of colorimetric change of pH indicator and internal reference luminescent dye. Bull Chem Soc Jpn 76:1459–1462

    Article  CAS  Google Scholar 

  42. Amao Y, Nakamura N (2004) Optical CO2 sensor with the combination of colorimetric change of α-naphtholphthalein and internal reference fluorescent porphyrin dye. Sensor Actuat B 100:347–351

    Article  CAS  Google Scholar 

  43. Hosoya A, Tamura S, Imanaka N (2013) Low-temperature-operative carbon monoxide gas sensor with novel CO oxidizing catalyst. Chem Lett 42:441–443

    Article  CAS  Google Scholar 

  44. Zhang Y, Cui S, Chang J, Ocola LE, Chen J (2013) Highly sensitive room temperature carbon monoxide detection using SnO2 nanoparticle-decorated semiconducting single-walled carbon nanotubes. Nanotechnology 24:025503

    Article  Google Scholar 

  45. Cho NG, Woo HS, Lee JH, Kim ID (2011) Thin-walled NiO tubes functionalized with catalytic Pt for highly selective C2H5OH sensors using electrospun fibers as a sacrificial template. Chem Commun 47:11300–11302

    Article  CAS  Google Scholar 

  46. Zhang Y, Xu J, Xu P, Zhu Y, Yu W (2010) Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance. Nanotechnology 21:285501

    Article  Google Scholar 

  47. Zhang J, Liu X, Xu M, Guo X, Wu S, Zhang S, Wang S (2010) Pt clusters supported on WO3 for ethanol detection. Sensor Actuat B 147:185–190

    Article  CAS  Google Scholar 

  48. Lee YC, Huang H, Tan OK, Tse MS (2008) Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films. Sensor Actuat B 132:239–242

    Article  CAS  Google Scholar 

  49. Shimizu F, Yamazoe N, Seiyama T (1978) Detection of combustible gases with stabilized zirconia sensor. Chem Lett 7:299–300

    Article  Google Scholar 

  50. Okamoto H, Obayashi H, Kudo T (1980) Carbon monoxide gas sensor made of stabilized zirconia. Solid State Ion 1:319–326

    Google Scholar 

  51. Katsumoto M, Okamoto H, Kobayashi M (1985) Denki Kagaku 53:577–581

    CAS  Google Scholar 

  52. Li N, Tan TC, Zeng HC (1993) High-temperature carbon monoxide potentiometric sensor. J Electrochem Soc 140:1068–1073

    Article  CAS  Google Scholar 

  53. Zhang ZY, Narita H, Mizusaki J, Tagawa H (1995) Detection of carbon monoxide by using zirconia oxygen sensor. Solid State Ion 79:344–348

    Article  Google Scholar 

  54. Sorita R, Kawano T (1997) A highly selective CO sensor using LaMnO3 electrode-attached zirconia galvanic cell. Sensor Actuat B 40:29–32

    Article  CAS  Google Scholar 

  55. Miura N, Lu G, Yamazoe N (1997) Zirconia-based potentiometric sensor using a pair of oxide electrodes for selective detection of carbon monoxide. J Electrochem Soc 144:L198–L200

    Article  CAS  Google Scholar 

  56. Voge A, Baier G, Schüle V (1993) Non-Nernstian potentiometric zirconia sensors: screening of potential working electrode materials. Sensor Actuat B 15:147–150

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhito Imanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Imanaka, N., Tamura, S. (2015). Carbon Oxides. In: Moretto, L., Kalcher, K. (eds) Environmental Analysis by Electrochemical Sensors and Biosensors. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1301-5_17

Download citation

Publish with us

Policies and ethics