Skip to main content

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Explosives produced both for military and civilian use are important pollutants of soils and aquatic systems in the vicinity of places where they are produced, stored or used. Many of them are classified as toxic by the US-EPA and other environmental agencies. Because of the easy electrochemical reducibility of nitro group, voltammetric and amperometric methods are frequently used for their determination which are discussed in this chapter. The various electrode materials in use for the determination of explosives as well as the analytical approaches including microfluidic devices are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CFME:

Carbon fiber microelectrode

CRP:

Cathode ray polarography

C-SPE:

Carbon ink screen-printed electrode

CV:

Cyclic voltammetry

DCP:

Direct current polarography

DME:

Dropping mercury electrode

DMSO:

Dimethylsulfoxide

DPV:

Differential pulse voltammetry

GCE:

Glassy carbon electrode

gm-GCE:

Graphene oxide-modified glassy carbon electrode

HMDE:

Hanging mercury drop electrode

MIP-E:

Molecularly imprinted polymer-modified electrode

pTTP-GCE:

Poly[meso-tetrakis(2-thienyl)porphyrin]-modified glassy carbon electrode

SWV:

Square wave voltammetry

THFA:

Tetrahydrofurfuryl alcohol

References

  1. Agrawal JP, Hodgson RD (2007) Organic chemistry of explosives. Wiley, Chichester

    Google Scholar 

  2. Akhavan J (2004) The chemistry of explosives, 2nd edn. Royal Society of Chemistry, Cambridge

    Google Scholar 

  3. Aguei L, Vega-Montenegro D, Yanez-Sedeno P et al (2005) Rapid voltammetric determination of nitroaromatic explosives at electrochemically activated carbon-fiber electrodes. Anal Bioanal Chem 382:381–387

    Article  CAS  Google Scholar 

  4. Wang J (2007) Electrochemical sensing of explosives. Electroanalysis 19:415–423

    Article  CAS  Google Scholar 

  5. Caygill JS, Davis F, Higson SPJ (2012) Current trends in explosive detection techniques. Talanta 88:14–29

    Article  CAS  Google Scholar 

  6. Singh S (2007) Sensors—an effective approach for the detection of explosives. J Hazard Mater 144:15–28

    Article  CAS  Google Scholar 

  7. Yinon J (2002) Field detection and monitoring of explosives. Trends Anal Chem 21:292–301

    Article  CAS  Google Scholar 

  8. Senesac L, Thundat TG (2008) Nanosensors for trace explosive detection. Mater Today 11:28–36

    Article  CAS  Google Scholar 

  9. Bureau of Alcohol, Tobacco, Firearms, and Explosives (2013) Commerce in explosives; list of explosives materials. Fed Reg 78:64246–64247

    Google Scholar 

  10. Barek J, Fischer J, Wang J (2011) Voltammetric and amperometric detection of nitrated explosives (a review). In: Kalcher K, Metelka R, Svancara I et al (eds) Sensing in electroanalysis, vol 6. University Press Centre, Pardubice, pp 139–147

    Google Scholar 

  11. Vyskocil V, Barek J (2011) Electroanalysis of nitro and amino derivatives of polycyclic aromatic hydrocarbons. Curr Org Chem 15:3059–3076

    Article  CAS  Google Scholar 

  12. Cizek K, Prior C, Thammakhet C et al (2010) Integrated explosive preconcentrator and electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor. Anal Chim Acta 661:117–121

    Article  CAS  Google Scholar 

  13. Barek J, Peckova K, Vyskocil V (2008) Adsorptive stripping voltammetry of environmental carcinogens. Curr Anal Chem 4:242–249

    Article  CAS  Google Scholar 

  14. Galik M, O’Mahony AM, Wang J (2011) Cyclic and square-wave voltammetric signatures of nitro-containing explosives. Electroanalysis 23:1193–1204

    Article  CAS  Google Scholar 

  15. O'Mahony AM, Wang J (2013) Nanomaterial-based electrochemical detection of explosives: a review of recent developments. Anal Methods 5:4296–4309

    Article  Google Scholar 

  16. Chua CK, Pumera M (2011) Influence of methyl substituent position on redox properties of nitroaromatics related to 2,4,6-trinitrotoluene. Electroanalysis 23:2350–2356

    Article  CAS  Google Scholar 

  17. Chua CK, Pumera M, Rulisek L (2012) Reduction pathways of 2,4,6-trinitrotoluene: an electrochemical and theoretical study. J Phys Chem C 116:4243–4251

    Article  CAS  Google Scholar 

  18. Bratin K, Kissinger PT, Briner RC et al (1981) Determination of nitro aromatic, nitramine, and nitrate ester explosive compounds in explosive mixtures and gunshot residue by liquid-chromatography and reductive electrochemical detection. Anal Chim Acta 130:295–311

    Article  CAS  Google Scholar 

  19. Ly SY, Kim DH, Kim MH (2002) Square-wave cathodic stripping voltammetric analysis of RDX using mercury-film plated glassy carbon electrode. Talanta 58:919–926

    Article  CAS  Google Scholar 

  20. Wang J, Pumera M (2006) Microchip flow-injection analysis of trace 2,4,6-trinitrotoluene (TNT) using mercury-amalgam electrochemical detector. Talanta 69:984–987

    Article  CAS  Google Scholar 

  21. O’Mahony AM, Valdes-Ramirez G, Windmiller JR et al (2012) Orthogonal detection of nitroaromatic explosives via direct voltammetry coupled to enzyme-mediated biocatalysis. Electroanalysis 24:1811–1816

    Article  Google Scholar 

  22. Saravanan NP, Venugopalan S, Senthilkumar N et al (2006) Voltammetric determination of nitroaromatic and nitramine explosives contamination in soil. Talanta 69:656–662

    Article  CAS  Google Scholar 

  23. Wang J, Thongngamdee S (2003) On-line electrochemical monitoring of (TNT) 2,4,6-trinitrotoluene in natural waters. Anal Chim Acta 485:139–144

    Article  CAS  Google Scholar 

  24. Wang J, Thongngamdee S, Lu D (2006) Sensitive voltammetric sensing of the 2,3-dimethyl-2,3-dinitrobutane (DMNB) explosive taggant. Electroanalysis 18:971–975

    Article  CAS  Google Scholar 

  25. Fu X, Benson RF, Wang J et al (2005) Remote underwater electrochemical sensing system for detecting explosive residues in the field. Sens Actuators B 106:296–301

    Article  CAS  Google Scholar 

  26. Honeychurch KC, Hart JP, Pritchard PRJ et al (2003) Development of an electrochemical assay for 2,6-dinitrotoluene, based on a screen-printed carbon electrode, and its potential application in bioanalysis, occupational and public health. Biosens Bioelectron 19:305–312

    Article  CAS  Google Scholar 

  27. Chen J-C, Shih J-L, Liu C-H et al (2006) Disposable electrochemical sensor for determination of nitroaromatic compounds by a single-run approach. Anal Chem 78:3752–3757

    Article  CAS  Google Scholar 

  28. Wang J, Lu F, MacDonald D et al (1998) Screen-printed voltammetric sensor for TNT. Talanta 46:1405–1412

    Article  CAS  Google Scholar 

  29. Pumera M (2006) Analysis of explosives via microchip electrophoresis and conventional capillary electrophoresis: a review. Electrophoresis 27:244–256

    Article  CAS  Google Scholar 

  30. Pumera M (2008) Trends in analysis of explosives by microchip electrophoresis and conventional CE. Electrophoresis 29:269–273

    Article  CAS  Google Scholar 

  31. Wang J, Tian BM, Sahlin E (1999) Micromachined electrophoresis chips with thick-film electrochemical detectors. Anal Chem 71:5436–5440

    Article  CAS  Google Scholar 

  32. Vyskocil V, Barek J (2009) Mercury electrodes—possibilities and limitations in environmental electroanalysis. Crit Rev Anal Chem 39:173–188

    Article  CAS  Google Scholar 

  33. Danhel A, Barek J (2011) Amalgam electrodes in organic electrochemistry. Curr Org Chem 15:2957–2969

    Article  CAS  Google Scholar 

  34. Yosypchuk B, Barek J (2009) Analytical applications of solid and paste amalgam electrodes. Crit Rev Anal Chem 39:189–203

    Article  CAS  Google Scholar 

  35. Niaz A, Fischer J, Barek J et al (2009) Voltammetric determination of 4-nitrophenol using novel type of silver amalgam paste electrode. Electroanalysis 21:1786–1791

    Article  CAS  Google Scholar 

  36. Jacobsen M, Duwensee H, Wachholz F et al (2010) Directly heated bismuth film electrodes based on gold microwires. Electroanalysis 22:1483–1488

    Article  CAS  Google Scholar 

  37. Lezi N, Vyskocil V, Economou A et al (2012) Electroanalysis of organic compounds at bismuth electrodes: a short review. In: Kalcher K, Metelka R, Svancara I et al (eds) Sensing in electroanalysis, vol 7. University Press Centre, Pardubice, pp 71–78

    Google Scholar 

  38. Wang J, Chen G, Chatrathi MP et al (2003) Microchip capillary electrophoresis coupled with a boron-doped diamond electrode-based electrochemical detector. Anal Chem 75:935–939

    Article  CAS  Google Scholar 

  39. Pearson R, Rogers K (2000) Electrochemical technique for detection of TNT using disposable screen-printed electrodes. Paper present on environmental chemistry: emphasis on EPA and EPA supported research, American Chemical Society, Division of Environmental Chemistry, Washington, DC, 20–24 Aug 2000

    Google Scholar 

  40. Wang J, Thongngamdee S, Kumar A (2004) Highly stable voltammetric detection of nitroaromatic explosives in the presence of organic surfactants at a polyphenol-coated carbon electrode. Electroanalysis 16:1232–1235

    Article  CAS  Google Scholar 

  41. Tang L, Feng H, Cheng J et al (2010) Uniform and rich-wrinkled electrophoretic deposited graphene film: a robust electrochemical platform for TNT sensing. Chem Commun 46:5882–5884

    Article  CAS  Google Scholar 

  42. Chen T-W, Sheng Z-H, Wang K et al (2011) Determination of explosives using electrochemically reduced graphene. Chem Asian J 6:1210–1216

    Article  CAS  Google Scholar 

  43. Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39:4146–4157

    Article  CAS  Google Scholar 

  44. Pumera M (2009) Electrochemistry of graphene: new horizons for sensing and energy storage. Chem Rec 9:211–223

    Article  CAS  Google Scholar 

  45. Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4:668–674

    Article  CAS  Google Scholar 

  46. Wang J, Hocevar SB, Ogorevc B (2004) Carbon nanotube-modified glassy carbon electrode for adsorptive stripping voltammetric detection of ultratrace levels of 2,4,6-trinitrotoluene. Electrochem Commun 6:176–179

    Article  CAS  Google Scholar 

  47. Rezaei B, Damiri S (2010) Using of multi-walled carbon nanotubes electrode for adsorptive stripping voltammetric determination of ultratrace levels of RDX explosive in the environmental samples. J Hazard Mater 183:138–144

    Article  CAS  Google Scholar 

  48. Filanovsky B, Markovsky B, Bourenko T et al (2007) Carbon electrodes modified with TiO2/metal nanoparticles and their application to the detection of trinitrotoluene. Adv Funct Mater 17:1487–1492

    Article  CAS  Google Scholar 

  49. Riskin M, Tel-Vered R, Bourenko T et al (2008) Imprinting of molecular recognition sites through electropolymerization of functionalized Au nanoparticles: development of an electrochemical TNT sensor based on π-donor-acceptor interactions. J Am Chem Soc 130:9726–9733

    Article  CAS  Google Scholar 

  50. Wang J, Liu G, Wu H et al (2008) Sensitive electrochemical immunoassay for 2,4,6-trinitrotoluene based on functionalized silica nanoparticle labels. Anal Chim Acta 610:112–118

    Article  CAS  Google Scholar 

  51. Zhang H-X, Cao A-M, Hu J-S et al (2006) Electrochemical sensor for detecting ultratrace nitroaromatic compounds using mesoporous SiO2-modified electrode. Anal Chem 78:1967–1971

    Article  CAS  Google Scholar 

  52. Shi G, Qu Y, Zhai Y et al (2007) {MSU/PDDA}n layer-by-layer assembled modified sensor for electrochemical detection of ultratrace explosive nitroaromatic compounds. Electrochem Commun 9:1719–1724

    Article  CAS  Google Scholar 

  53. Trammell SA, Zeinali M, Melde BJ et al (2008) Nanoporous organosilicas as preconcentration materials for the electrochemical detection of trinitrotoluene. Anal Chem 80:4627–4633

    Article  CAS  Google Scholar 

  54. Fu X-C, Chen X, Wang J et al (2010) Amino functionalized mesoporous silica microspheres with perpendicularly aligned mesopore channels for electrochemical detection of trace 2,4,6-trinitrotoluene. Electrochim Acta 56:102–107

    Article  CAS  Google Scholar 

  55. Zang J, Guo CX, Hu F et al (2011) Electrochemical detection of ultratrace nitroaromatic explosives using ordered mesoporous carbon. Anal Chim Acta 683:187–191

    Article  CAS  Google Scholar 

  56. Poh HL, Pumera M (2012) Nanoporous carbon materials for electrochemical sensing. Chem Asian J 7:412–416

    Article  CAS  Google Scholar 

  57. Guo SJ, Wen D, Zhai YM et al (2010) Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 4:3959–3968

    Article  CAS  Google Scholar 

  58. Guo CX, Lu ZS, Lei Y et al (2010) Ionic liquid-graphene composite for ultratrace explosive trinitrotoluene detection. Electrochem Commun 12:1237–1240

    Article  CAS  Google Scholar 

  59. Guo S, Wen D, Zhai Y et al (2011) Ionic liquid-graphene hybrid nanosheets as an enhanced material for electrochemical determination of trinitrotoluene. Biosens Bioelectron 26:3475–3481

    Article  CAS  Google Scholar 

  60. Hrapovic S, Majid E, Liu Y et al (2006) Metallic nanoparticle-carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds. Anal Chem 78:5504–5512

    Article  CAS  Google Scholar 

  61. Zhang H-X, Hu J-S, Yan C-J et al (2006) Functionalized carbon nanotubes as sensitive materials for electrochemical detection of ultra-trace 2,4,6-trinitrotoluene. Phys Chem Chem Phys 8:3567–3572

    Article  CAS  Google Scholar 

  62. Polsky R, Stork CL, Wheeler DR et al (2009) Multivariate analysis for the electrochemical discrimination and quantitation of nitroaromatic explosives. Electroanalysis 21:550–556

    Article  CAS  Google Scholar 

  63. Marple RL, LaCourse WR (2005) Application of photoassisted electrochemical detection to explosive-containing environmental samples. Anal Chem 77:6709–6714

    Article  CAS  Google Scholar 

  64. Wang J, Pumera M, Chatrathi MP et al (2002) Single-channel microchip for fast screening and detailed identification of nitroaromatic explosives or organophosphate nerve agents. Anal Chem 74:1187–1191

    Article  CAS  Google Scholar 

  65. Hetman JS (1973) Polarography of explosives. Fresenius J Anal Chem 264:159–164

    Article  CAS  Google Scholar 

  66. Zimmermann Y, Broekaert JAC (2005) Determination of TNT and its metabolites in water samples by voltammetric techniques. Anal Bioanal Chem 383:998–1002

    Article  CAS  Google Scholar 

  67. Chen W, Wang Y, Brueckner C et al (2010) Poly[meso-tetrakis(2-thienyl)porphyrin] for the sensitive electrochemical detection of explosives. Sens Actuators B 147:191–197

    Article  CAS  Google Scholar 

  68. Ong BK, Poh HL, Chua CK et al (2012) Graphenes prepared by hummers, Staudenmaier and Hofmann methods for analysis of TNT-based nitroaromatic explosives in seawater. Electroanalysis 24:2085–2093

    Article  CAS  Google Scholar 

  69. Pesavento M, D'Agostino G, Alberti G et al (2013) Voltammetric platform for detection of 2,4,6-trinitrotoluene based on a molecularly imprinted polymer. Anal Bioanal Chem 405:3559–3570

    Article  CAS  Google Scholar 

  70. Sarlauskas J, Krikstopaitis K, Miliukiene V et al (2011) Investigation on the electrochemistry and cytotoxicity of organic nitrates and nitroamines. Cent Eur J Energ Mater 8:15–24

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Education, Youth and Sports of the Czech Republic (project LH 13002 Program KONTAKT II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiri Barek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barek, J., Fischer, J., Wang, J. (2015). Explosives. In: Moretto, L., Kalcher, K. (eds) Environmental Analysis by Electrochemical Sensors and Biosensors. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1301-5_12

Download citation

Publish with us

Policies and ethics