Skip to main content

Mental Effort: Brain and Autonomic Correlates in Health and Disease

  • Chapter
  • First Online:

Abstract

Mental effort is an embodied process for the short-term deployment of attentional, cognitive and affective resources. The engagement of mental effort involves whole brain shifts in the activation and functional connectivity of sensory and integrative brain regions. Concurrent changes in bodily internal physiology are mediated by cortically driven modulation of subcortical and brainstem homeostatic centres. Within the brain, there is typically engagement of components of the salience network including (sympathetic visceromotor) dorsal anterior cingulate cortex and (viscerosensory) bilateral insula cortex. There is also commonly a disengagement of the default mode network (‘antisympathetic’ ventromedial prefrontal cortex and posterior cingulate/precuneus) regions. The bidirectional impact of these changes on bodily states of preparedness is mediated neurally via midbrain and brainstem centres. The accompanying state of autonomic arousal is proposed to facilitate goal-directed cognitive processes and underpin feelings of perceived difficulty, control and achievement. Mental effort also elicits more task-specific involvement of executive frontoparietal centres and sensory cortices, while the achievability and control of sustained effort feeds back into affective circuitry. Clinical disorders of effort accompany inflammation-induced stereotyped sickness responses and span developmental, ‘functional’ and degenerative psychiatric diagnostic boundaries. Fatigue states, inattentiveness and diminished motivational drive suggest discrete dimensions through which effort is compromised. Mental effort is ultimately tied to top-down predictions and the value associated with active more precise inferences about future behavioural outcomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Avery, R., Startup, M., & Calabria, K. (2009). The role of effort, cognitive expectancy appraisals and coping style in the maintenance of the negative symptoms of schizophrenia. Psychiatry Research, 167, 36–46. doi:10.1016/j.psychres.2008.04.016.

    Article  PubMed  Google Scholar 

  • Azouvi, P., Couillet, J., Leclercq, M., Marti, Y., Asloun, S., & Rousseaux, M. (2004). Divided attention and mental effort after severe traumatic brain injury. Neuropsychologia, 42, 1260–1268. doi:10.1016/j.neuropsychologia.2004.01.001.

    Article  PubMed  Google Scholar 

  • Barrett, L. F. (2006). Are emotions natural kinds? Perspective on Psychological Science, 1, 28–58. doi:10.1111/j.1745-6916.2006.00003.

    Article  Google Scholar 

  • Berman, K. F., Zec, R. F., & Weinberger, D. R. (1986). Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. II. Role of neuroleptic treatment, attention, and mental effort. Archives of General Psychiatry, 43, 126–135. doi:10.1001/archpsyc.1986.01800020032005.

    Article  PubMed  Google Scholar 

  • Botvinick, M. M., Huffstetler, S., & McGuire, J. T. (2009). Effort discounting in human nucleus accumbens. Cognitive, Affective, & Behavioral Neuroscience, 9, 16–27. doi:10.3758/CABN.9.1.16.

    Article  Google Scholar 

  • Brehm, J. W., & Self, E. A. (1989). The intensity of motivation. Annual Review Psychology, 40, 109–131. doi:10.1146/annurev.ps.40.020189.000545.

    Article  Google Scholar 

  • Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition, emerging methods and principles. Trends in Cognitive Sciences, 14, 277–290. doi:10.1016/j.tics.2010.04.004.

    Article  PubMed  Google Scholar 

  • Brinkmann, K., Schüpbach, L., Joye, I. A., & Gendolla, G. H. (2009). Anhedonia and effort mobilization in dysphoria, reduced cardiovascular response to reward and punishment. International Journal of Psychophysiology, 74, 250–258. doi:10.1016/j.ijpsycho.2009.09.009.

    Article  PubMed  Google Scholar 

  • Brydon, L., Harrison, N. A., Walker, C., Steptoe, A., & Critchley, H. D. (2008). Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans. Biological Psychiatry, 63, 1022–1029. doi:10.1016/j.biopsych.2007.12.007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215–222. doi:10.1016/S1364-6613(00)01483-2.

    Article  PubMed  Google Scholar 

  • Butler, P. D., Silverstein, S. M., & Dakin, S. C. (2008). Visual perception and its impairment in schizophrenia. Biological Psychiatry, 64, 40–47. doi:10.1016/j.biopsych.2008.03.023.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cacioppo, J. T., Tassinary, L. G., & Berntson, G. (2007). Handbook of psychophysiology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Cantril, H., & Hunt, W. (1932). Emotional effects produced by the injection of adrenaline. American Journal of Psychology, 44, 300–307. doi:10.2307/1414829.

    Article  Google Scholar 

  • Carter, C. S., Botvinick, M. M., & Cohen, J. D. (1999). The contribution of the anterior cingulate cortex to executive processes in cognition. Review in the Neuroscience, 10, 49–57. doi:10.1515/REVNEURO.1999.10.1.49.

    Google Scholar 

  • Chaudhuri, A., & Behan, P. O. (2000). Fatigue and basal ganglia. Journal of Neurological Science, 179, 34–42. (http://dx.doi.org/10.1016/S0022-510×(00)00411-1).

    Article  Google Scholar 

  • Cooney, R. E., Joormann, J., Eugène, F., Dennis, E. L., & Gotlib, I. H. (2010). Neural correlates of rumination in depression. Cognitive, Affective, & Behavioral Neuroscience, 10, 470–478. doi:10.3758/CABN.10.4. 470.

    Article  Google Scholar 

  • Critchley, H. D. (2004). The human cortex responds to an interoceptive challenge. Proceedings of the National Academic Science of United State of America, 101, 6333–6334. doi:10.1073/pnas.0401510101.

    Article  Google Scholar 

  • Critchley, H. D. (2009). Psychophysiology of neural, cognitive and affective integration, fMRI and autonomic indicants. International Journal of Psychophysiology, 73, 88–94. doi:10.1016/j.ijpsycho.2009.01.012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Critchley, H. D., Corfield, D. R., Chandler, M. P., Mathias, C. J., & Dolan, R. J. (2000). Cerebral correlates of autonomic cardiovascular arousal, A functional neuroimaging investigation. Journal of Physiology (London), 523, 259–270. doi:10.1111/j.1469-7793.2000.t01-1-00259.x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Critchley, H. D., Mathias, C. J., & Dolan, R. J. (2001). Neural correlates of first- and second-order representation of bodily states. Nature Neuroscience, 4, 207–212. doi:10.1038/84048.

    Article  PubMed  Google Scholar 

  • Critchley, H. D., Josephs, O., O’Doherty, J., Zanini, S., Dewar, B.-K., Mathias, C. J., Cipolotti, L., Shallice, T., & Dolan, R. J. (2003). Human cingulate cortex and autonomic cardiovascular control, Converging neuroimaging and clinical evidence. Brain: A Journal of Neurology, 216, 2139–2156. doi:10.1093/brain/awg216.

    Article  Google Scholar 

  • Critchley, H. D., Wiens, S., Rotshtein, P., Öhman, A., & Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nature Neuroscience, 7, 189–195. doi:10.1038/nn1176.

    Article  PubMed  Google Scholar 

  • Critchley, H. D., Tang, J., Glaser, D., Butterworth, B., & Dolan, R. J. (2005). Anterior cingulate activity during error and autonomic response. NeuroImage, 27, 885–895. doi:10.1016/j.neuroimage.2005.05.047.

    Article  PubMed  Google Scholar 

  • Critchley, H. D., Nagai, Y., Gray, M. A., & Mathias, C. J. (2011). Dissecting axes of autonomic control in humans, Insights from neuroimaging. Autonomic Neuroscience, 161, 34–42. doi:10.1016/j.autneu.2010.09.005.

    Article  PubMed  Google Scholar 

  • Crowell, S. E., Beauchaine, T. P., Gatzke-Kopp, L., Sylvers, P., Mead, H., & Chipman-Chacon, J. (2006). Autonomic correlates of attention-deficit/hyperactivity disorder and oppositional defiant disorder in preschool children. Journal of Abnormal Psychology, 115, 174–178. doi:10.1037/0021-843X.115.1.174.

    Article  PubMed  Google Scholar 

  • Cubillo, A., Halari, R., Ecker, C., Giampietro, V., Taylor, E., & Rubia, K. (2010). Reduced activation and inter-regional functional connectivity of fronto-striatal networks in adults with childhood attention-deficit hyperactivity disorder (ADHD) and persisting symptoms during tasks of motor inhibition and cognitive switching. Journal of Psychiatric Research, 44, 629–639. doi:10.1016/j.jpsychires.2009.11.016.

    Article  PubMed  Google Scholar 

  • Dalton, K. M., Kalin, N. H., Grist, T. M., & Davidson, R. J. (2005). Neural-cardiac coupling in threat-evoked anxiety. Journal of Cognitive Neuroscience, 17, 969–980. doi:10.1162/0898929054021094.

    Article  PubMed  Google Scholar 

  • Damasio, A. (1999). The feeling of what happens. New York: Harcourt Brace & Co.

    Google Scholar 

  • Di Martino, A., Zuo, X. N., Kelly, C., Grzadzinski, R., Mennes, M., Schvarcz, A., Rodman, J., Lord, C., Castellanos, F. X., & Milham, M. P. (2013). Shared and distinct intrinsic functional network centrality in autism and attention-deficit/hyperactivity disorder. Biological Psychiatry. doi:10.1016/j.biopsych.2013.02.011, pii: S0006-3223(13)00176-5.

    Google Scholar 

  • Drevets, W. C. (2007). Orbitofrontal cortex function and structure in depression. Annals of New York Academy of Sciences, 1121, 499–527. doi:10.1196/annals.1401.029.

    Article  Google Scholar 

  • Esterman, M., Noonan, S. K., Rosenberg, M., & Degutis, J. (2012). In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention. Cerebral Cortex, Online. doi:10.1093/cercor/bhs261.

    Google Scholar 

  • Fairclough, S. H., & Houston, K. (2004). A metabolic measure of mental effort. Biological Psychology, 66, 177–1790. doi:10.1016/j.biopsycho.2003.10.001.

    Article  PubMed  Google Scholar 

  • Freydefont, L., Gendolla, G. H. E., & Silvestrini, N. (2012). Beyond valence, the differential effect of masked anger and sadness stimuli on effort-related cardiac response. Psychophysiology, 49, 665–671. doi:10.1111/j.1469-8986.2011.01340.x.

    Article  PubMed  Google Scholar 

  • Friston, K., & Kiebel, S. (2009). Predictive coding under the free-energy principle. Philosophical Transaction of Royal Society in London B Biological Sciences, 364, 1211–1221. doi:10.1098/rstb.2008.0300.

    Article  Google Scholar 

  • Gaultney, J. F., Kipp, K., Weinstein, J., & McNeill, J. (1999). Inhibition and mental effort in attention deficit hyperactivity disorder. Journal of Developmental and Physical Disabilities, 11, 105–114. doi:10.1023/A:1021890919601.

    Article  Google Scholar 

  • Gendolla, G. H., & Silvestrini, N. (2011). Smiles make it easier and so do frowns, masked affective stimuli influence mental effort. Emotion, 11, 320–328. doi:10.1037/a0022593.

    Article  PubMed  Google Scholar 

  • Ghoshal, S., Gokhale, S., Rebovich, G., & Caplan, L. R. (2011). The neurology of decreased activity, abulia. Review in Neurological Diseases, 8, 55–67. doi:10.1148/rg.311105041.

    Google Scholar 

  • Gianaros, P. J., Sheu, L. K., Remo, A. M., Christie, I. C., Critchley, H. D., & Wang, J. (2009). Heightened resting neural activity predicts exaggerated stressor-evoked blood pressure reactivity. Hypertension, 53, 819–825. doi:10.1161/HYPERTENSIONAHA.108.126227.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gianaros, P. J., Onyewuenyi, I. C., Sheu, L. K., Christie, I. C., & Critchley, H. D. (2012). Brain systems for baroreflex suppression during stress in humans. Human Brain Mapping, 33, 1700–1716. doi:10.1002/hbm.21315.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gold, J. M., Strauss, G. P., Waltz, J. A., Robinson, B. M., Brown, J. K., & Frank, M. J. (2013). Negative symptoms of schizophrenia are associated with abnormal effort-cost computations. Biological Psychiatry, 74, 130–136. doi:10.1016/j.biopsych.2012.12.022.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorissen, M., Sanz, J. C., & Schmand, B. (2005). Effort and cognition in schizophrenia patients. Schizophrenia Research, 78, 199–208. (http://dx.doi.org/10.1016/j.schres.2005.02.016).

    Article  PubMed  Google Scholar 

  • Grabenhorst, F., & Rolls, E. T. (2011). Value, pleasure and choice in the ventral prefrontal cortex. Trends in Cognitive Science, 15, 56–67. doi:10.1016/j.tics.2010.12.004.

    Article  Google Scholar 

  • Granholm, E., Verney, S. P., Perivoliotis, D., & Miura, T. (2007). Effortful cognitive resource allocation and negative symptom severity in chronic schizophrenia. Schizophrenia Bulletin, 33, 831–842. doi:10.1093/schbul/sbl040.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray, M. A., Rylander, K., Harrison, N. A., Wallin, B. G., & Critchley, H. D. (2009). Following one’s heart: Cardiac rhythms gate central initiation of sympathetic reflexes. Journal of Neuroscience, 29, 1817–1825. doi:10.1523/JNEUROSCI.3363-08.2009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray, M. A., Minati, L., Paoletti, G., & Critchley, H. (2010). Baroreceptor activation attenuates attentional effects on pain evoked potentials. Pain, 151, 853–861. doi:10.1016/j.pain.2010.09.028.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray, M. A., Beacher, F. D., Minati, L., Nagai, Y., Kemp, A. H., Harrison, N. A., & Critchley, H. D. (2012). Emotional appraisal is influenced by cardiac afferent information. Emotion, 12, 180–191. doi:10.1037/a0025083.

    Article  PubMed  Google Scholar 

  • Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain, a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences United State of America, 100, 253–258. doi:10.1073/pnas.0135058100.

    Article  Google Scholar 

  • Gross, C. G. (1995). Aristotle on the brain. The Neuroscientist, 1, 245–250. doi:10.1177/107385849500100408.

    Article  Google Scholar 

  • Gruberger, M., Ben-Simo, E., Levkovitz, Y., Zangen, A., & Hendler, T. (2011). Towards a neuroscience of mind-wandering. Frontiers in Human Neuroscience, 5, 56. doi:10.3389/fnhum.2011.00056.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline, Functional imaging and the resting human brain. Nature Reviews Neuroscience, 2, 685–694. doi:10.1038/35094500.

    Article  PubMed  Google Scholar 

  • Harrison, N. A., Brydon, L., Walker, C., Gray, M. A., Steptoe, A., & Critchley, H. D. (2009a). Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biological Psychiatry, 66, 407–414. doi:10.1016/j.biopsych.2009.03.015.

    Article  Google Scholar 

  • Harrison, N. A., Brydon, L., Walker, C., Gray, M. A., Steptoe, A., Dolan, R. J., & Critchley, H. D. (2009b). Neural origins of human sickness in interoceptive responses to inflammation. Biological Psychiatry, 66, 415–422. doi:10.1016/j.biopsych.2009.03.007.

    Article  Google Scholar 

  • Hars, M., Hars, M., Stam, C. J., & Calmels, C. (2011). Effects of visual context upon functional connectivity during observation of biological motions. PLoS ONE, 6, 25903. doi:10.1371/journal.pone.0025903.

    Article  Google Scholar 

  • Ingvar, D. H., & Risberg, J. (1967). Increase of regional cerebral blood flow during mental effort in normals and in patients with focal brain disorders. Experimental Brain Research, 3, 195–211. doi:10.1007/BF00235584.

    Article  PubMed  Google Scholar 

  • James, W. (1894). Physical basis of emotion. Psychological Review, 1, 516–529 (reprinted in 1994. Psychological Review, 101, 205–210). doi:0033-295X.

    Article  Google Scholar 

  • Jansma, J. M., Ramsey, N. F., de Zwart, J. A., van Gelderen, P., & Duyn, J. H. (2007). fMRI study of effort and information processing in a working memory task. Human Brain Mapping, 28, 431–440. doi:10.1002/hbm.20297.

    Article  PubMed  Google Scholar 

  • Jones, C. L., Minati, L., Harrison, N. A., Ward, J., & Critchley, H. D. (2011). Under pressure, response urgency modulates striatal and insula activity during decision-making under risk. PLoS ONE, 6, 20942. doi:10.1371/journal.pone.0020942.

    Article  Google Scholar 

  • Kahneman, D. (1973). Attention and effort. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Kahneman, D., Tursky, B., Shapiro, D., & Crider, A. (1969). Pupillary, heart rate, and skin resistance changes during a mental task. Journal of Experimental Psychology, 79, 164–167. doi:10.1037/h0026952.

    Article  PubMed  Google Scholar 

  • Keedwell, P. A., Andrew, C., Williams, S. C., Brammer, M. J., & Phillips, M. L. (2005). The neural correlates of anhedonia in major depressive disorder. Biological Psychiatry, 58, 843–853. doi:10.1016/j.biopsych.2005.05.019.

    Article  PubMed  Google Scholar 

  • Kohl, A. D., Wylie, G. R., Genova, H. M., Hillary, F. G., & Deluca, J. (2009). The neural correlates of cognitive fatigue in traumatic brain injury using functional MRI. Brain Injury, 23, 420–432. doi:10.1080/02699050902788519.

    Article  PubMed  Google Scholar 

  • Kurniawan, I. T., Guitart-Masip, M., Dayan, P., & Dolan, R. J. (2013). Effort and valuation in the brain, the effects of anticipation and execution. Journal of Neuroscience, 33, 6160–6169. doi:10.1523/JNEUROSCI.4777-12.2013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lange, C. G. (1885). The mechanism of the emotions. In B. Rand (Eds.), The classical psychologist (pp. 672–685). Boston: Houghton Mifflin.

    Google Scholar 

  • Matthews, S. C., Paulus, M. P., Simmons, A. N., Nelesen, R. A., & Dimsdale, J. E. (2004). Functional subdivisions within anterior cingulate cortex and their relationship to autonomic nervous system function. NeuroImage, 22, 1151–1156. doi:10.1016/j.neuroimage.2004.03.005.

    Article  PubMed  Google Scholar 

  • Medford, N., & Critchley, H. D. (2010). Conjoint activity of anterior insular and anterior cingulate cortex, awareness and response. Brain Structure and Function, 214, 535–549. doi:10.1007/s00429-010-0265-x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulder, G. (1986). The concept and measurement of mental effort. In G. R. Hockey, A. W. Gaillard, & M. G. Coles (Eds.), Energetics and human information processing (pp. 175–198). Dordrecht: Nijhoff.

    Chapter  Google Scholar 

  • Mulert, C., Seifert, C., Leicht, G., Kirsch, V., Ertl, M., Karch, S., Moosmann, M., Lutz, J., Möller, H. J., Hegerl, U., Pogarell, O., & Jäger, L. (2008). Single-trial coupling of EEG and fMRI reveals the involvement of early anterior cingulate cortex activation in effortful decision making. NeuroImage, 42, 158–168. doi:10.1016/j.neuroimage.2008.04.236.

    Article  PubMed  Google Scholar 

  • Naccache, L., Dehaene, S., Cohen, L., Habert, M. O., Guichart-Gomez, E., Galanaud, D., & Willer, J. C. (2005). Effortless control, executive attention and conscious feeling of mental effort are dissociable. Neuropsychologia, 43, 1318–1328. doi:10.1016/j.neuropsychologia.2004.11.0.24.

    Article  PubMed  Google Scholar 

  • Nagai, Y., Critchley, H. D., Featherstone, E., Trimble, M. R., & Dolan, R. J. (2004). Activity in ventromedial prefrontal cortex covaries with sympathetic skin conductance level, a physiological account of a “default mode” of brain function. NeuroImage, 22, 243–251. doi:10.1016/j.neuroimage.2004.01.019.

    Article  PubMed  Google Scholar 

  • Nakagawa, S., Sugiura, M., Akitsuki, Y., Hosseini, S. M., Kotozaki, Y., Miyauchi, C. M., Yomogida, Y., Yokoyama, R., Takeuchi, H., & Kawashima, R. (2013). Compensatory effort parallels midbrain deactivation during mental fatigue, an fMRI study. PLoS ONE, 8, 56606. doi:10.1371/journal.pone.0056606.

    Article  Google Scholar 

  • Negrao, B. L., Bipath, P., van der Westhuizen, D., & Viljoen, M. (2011). Autonomic correlates at rest and during evoked attention in children with attention-deficit/hyperactivity disorder and effects of methylphenidate. Neuropsychobiology, 63, 82–91. doi:10.1159/000317548.

    Article  PubMed  Google Scholar 

  • Nuechterlein, K. H. (1987). Vulnerability models for schizophrenia. In H Hafner, W. F. Gattaz, & W. Janzarik (Eds.), Search for the causes of schizophrenia (pp. 297–316). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Nygård, M., Eichele, T., Løberg, E. M., Jørgensen, H. A., Johnsen, E., Kroken, R. A., Berle, J. Ø., & Hugdahl, K. (2012). Patients with schizophrenia fail to up-regulate task-positive and down regulate task-negative brain networks, An fMRI study using an ICA analysis approach. Frontiers in Human Neuroscience, 6, 149. doi:10.3389/fnhum.2012.00149.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paus, T., Koski, L., Caramanos, Z., & Westbury, C. (1998). Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex, a review of 107 PET activation studies. Neuroreport, 9, R37–R47. doi:10.1097/00001756-199806220-00001.

    Article  PubMed  Google Scholar 

  • Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences United State of America, 98, 676–682. doi:10.1073/pnas.98.2.676.

    Article  Google Scholar 

  • Rector, N. A., Beck, A. T., & Stolar, N. (2005). The negative symptoms of schizophrenia: A cognitive perspective. Canadian Journal of Psychiatry, 50, 247–257. doi:10.3410/f.13853959.

    Google Scholar 

  • Richter, M., Friedrich, A., & Gendolla, G. H. (2008). Task difficulty effects on cardiac activity. Psychophysiology, 45, 869–875. doi:10.1111/j.1469-8986.2008. 00688.x.

    Article  PubMed  Google Scholar 

  • Schachter, S., & Singer, J. E. (1962). Cognitive, social, and physiological determinants of emotional state. Psychological Review, 69, 379–399. doi:10.1037/h0046234.

    Article  PubMed  Google Scholar 

  • Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27, 2349–2356. doi:10.1523/JNEUROSCI.5587-06.2007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seth, A.K., (2013) Interoceptive inference, emotion, and the embodied self. Trends in Cognitive Science.17, 565–73.

    Google Scholar 

  • Seth, A. K., & Critchley, H. D. (2013). Extending predictive processing to the body, emotion as interoceptive inference. Behavioural Brain Sciences, 36, 227–228. doi:10.1017/S0140525×12002270.

    Article  Google Scholar 

  • Seth, A. K., Suzuki, K., & Critchley, H. D. (2011). An interoceptive predictive coding model of conscious presence. Frontiers in Psychology, 2, 395. doi:10.3389/fpsyg.2011.00395.

    PubMed  PubMed Central  Google Scholar 

  • Sheu, L. K., Jennings, J. R., & Gianaros, P. J. (2012). Test-retest reliability of an fMRI paradigm for studies of cardiovascular reactivity. Psychophysiology, 49, 873–884. doi:10.1111/j.1469-8986.2012.01382.x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Silvestrini, N., & Gendolla, G. H. (2011). β-adrenergic impact underlies the effect of mood and hedonic instrumentality on effort-related cardiovascular response. Biological Psychology, 87, 209–217. doi:10.1016/j.biopsycho.2011.02.017.

    Article  PubMed  Google Scholar 

  • Singer, T., Critchley, H. D., & Preuschoff, K. (2009). A common role of insula in feelings, empathy and uncertainty. Trends in Cognitive Science, 13, 334–340. doi:10.1016/j.tics.2009.05.001.

    Article  Google Scholar 

  • Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences United State of America, 105, 12569–12574. doi:10.1073/pnas.0800005105.

    Article  Google Scholar 

  • Takeuchi, T., Puntous, T., Tuladhar, A., Yoshimoto, S., & Shirama, A. (2011). Estimation of mental effort in learning visual search by measuring pupil response. PLoS ONE, 6, 21973. doi:10.1371/journal.pone.0021973.

    Article  Google Scholar 

  • van Beilen, M., van Zomeren, E. H., van den Bosch, R. J., Withaar, F. K., & Bouma, A. (2005). Measuring the executive functions in schizophrenia, the voluntary allocation of effort. Journal of Psychiatry Research, 39, 585–593. doi:10.1016/j.jpsychires.2005.02.001.

    Article  Google Scholar 

  • Wager, T. D., Waugh, C. E., Lindquist, M., Noll, D. C., Fredrickson, B. L., & Taylor, S. F. (2009). Brain mediators of cardiovascular responses to social threat, part I, Reciprocal dorsal and ventral sub-regions of the medial prefrontal cortex and heart-rate reactivity. NeuroImage, 47, 821–835. doi:10.1016/j.neuroimage.2009.05.043.

    Article  PubMed  PubMed Central  Google Scholar 

  • Warm, J. S., Parasuraman, R., & Matthews, G. (2008). Vigilance requires hard mental work and is stressful. Human Factors, 50, 433–441. doi:10.3410/f.1159457.619823.

    Article  PubMed  Google Scholar 

  • Williamson, P. C., & Allman, J. M. (2012). A framework for interpreting functional networks in schizophrenia. Frontiers in Human Neuroscience, 6, 184. doi:10.3389/fnhum.2012.00184.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright, R. A., & Kirby, L. D. (2001). Effort determination of cardiovascular response: An integrative analysis with applications in social psychology. Advances in Experimental Social Psychology, 33, 255–307. doi:10.1016/S0065-2601(01)80007-1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Critchley PhD .

Editor information

Editors and Affiliations

Conclusions

Conclusions

Neuroscientific studies of mental effort focus on descriptions of its affective and cognitive components, and the phsyiological correlates in bodily state (both as an objective index and as an account of the feeling state itself). Knowledge gained from neuroimaging and related techniques broadly endorse the notion that effort represents more than the allocation of attentional and information processing resources for enhanced task performance. In this context, effort has intrinsic value, visceral salience and its own sensory representation. Its dependent relationship to motivational drive is important for attaining immediate task goals, yet also weights future investment into effortful behaviour and adjusts the value of future outcomes. The experience of effort mirrors that of other feeling states including agency, achievement and emotion . Increasingly, predictive coding models are providing robust accounts of how the brain handles perception, experience and behaviour. There is an emphasis on the primacy of higher-order representations of external and internal environments, which in turn are tested against a stream of changing sensory data, including internal bodily signals (Friston and Keibel 2009; Seth et al. 2011; Seth and Critchley 2013; Seth 2013; Fig. 16.2). In this context, mental effort has a relationship to the notion of active inference, whereby sensory predictions are validated through the consequences of self-initiated behaviour. For effort, this includes the generation of internal bodily arousal states. The application of mental effort can thus be used to gauge the investment value of types of cognitive work and to tune both general and specific cognitive processes in anticipation of informational demand. The physiological embodiment of effort grounds its cognitive impact in action tendencies and motivational states. The enhanced understanding of mental effort and its underlying neurobiology has direct relevance to the expression of clinical symptoms across a range of psychiatric and neurological disorders including chronic fatigue, brain trauma, depression, Parkinson’s disease, ADHD and schizophrenia.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Radulescu, E., Nagai, Y., Critchley, H. (2015). Mental Effort: Brain and Autonomic Correlates in Health and Disease. In: Gendolla, G., Tops, M., Koole, S. (eds) Handbook of Biobehavioral Approaches to Self-Regulation. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1236-0_16

Download citation

Publish with us

Policies and ethics