Skip to main content

Relationship Between Substrate Metabolism and Cardiac Efficiency

  • Chapter
  • First Online:
Book cover Cardiac Energy Metabolism in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 11))

Abstract

The heart requires large amounts of energy to sustain its continuous pumping activity, and is highly dependent on an optimal energy substrate metabolism with efficient ATP generation and utilization. As ATP is primarily derived from mitochondrial oxidative phosphorylation, myocardial oxygen consumption (MVO2) can be used to measure the rate of energy expenditure of the heart. Although cardiac efficiency is an ambiguous term, it commonly embraces the relationship between MVO2 and cardiac work. There is close coupling between myocardial oxygen consumption and the factors that determine cardiac work such as wall stress (influenced by pre- and after-load), heart rate and contractile state. Substrate metabolism may also affect myocardial oxygen consumption, and has through this been considered to contribute to the pathogenesis of cardiac dysfunction in several forms of heart disease. Part of the beneficial effect of metabolic therapies may also relate to improvement of cardiac efficiency. The focus in this chapter will therefore be on our current understanding of how myocardial substrate supply and/or utilization contribute to altered cardiac efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yeo GF (1885) An attempt to estimate the gaseous interchange of the frog’s heart by means of the spectroscope. J Physiol 6:93–121

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Starling EH (1918) The Linacre lecture on the law of the heart, London

    Google Scholar 

  3. Bing RJ, Hammon MM, Handelsman JC et al (1949) The measurement of coronary blood flow, oxygen consumption, and efficiency of the left ventricle in man. Am Heart J 38:1–24

    Article  CAS  PubMed  Google Scholar 

  4. Gibbs CL, Loiselle DS (2001) Cardiac basal metabolism. Jpn J Physiol 51:399–426

    Article  CAS  PubMed  Google Scholar 

  5. Suga H (1990) Ventricular energetics. Physiol Rev 70:247–277

    CAS  PubMed  Google Scholar 

  6. Bing RJ (1955) The metabolism of the heart. Harvey Lect 50:27–70

    CAS  Google Scholar 

  7. Lopaschuk GD, Ussher JR, Folmes CD et al (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258

    Article  CAS  PubMed  Google Scholar 

  8. Challoner DR, Steinberg D (1966) Effect of free fatty acid on the oxygen consumption of perfused rat heart. Am J Physiol 210:280–286

    CAS  PubMed  Google Scholar 

  9. Mjøs OD (1971) Effect of fatty acids on myocardial function and oxygen consumtion in intact dogs. J Clin Invest 50:1386–1389

    Article  PubMed Central  PubMed  Google Scholar 

  10. Korvald C, Elvenes OP, Myrmel T (2000) Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol 278:H1345–H1351

    CAS  PubMed  Google Scholar 

  11. Burkhoff D, Weiss RG, Schulman SP et al (1991) Influence of metabolic substrate on rat heart function and metabolism at different coronary flows. Am J Physiol 26:H741–H750

    Google Scholar 

  12. How OJ, Aasum E, Kunnathu S et al (2005) Influence of substrate supply on cardiac efficiency, as measured by pressure-volume analysis in ex vivo mouse hearts. Am J Physiol Heart Circ Physiol 288:H2979–H2985

    Article  CAS  PubMed  Google Scholar 

  13. Boardman NT, Larsen TS, Severson DL et al (2011) Chronic and acute exposure of mouse hearts to fatty acids increases oxygen cost of excitation-contraction coupling. Am J Physiol Heart Circ Physiol 300:H1631–H1636

    Article  CAS  PubMed  Google Scholar 

  14. Luptak I, Balschi JA, Xing Y et al (2005) Decreased contractile and metabolic reserve in peroxisome proliferator-activated receptor-alpha-null hearts can be rescued by increasing glucose transport and utilization. Circulation 112:2339–2346

    Article  CAS  PubMed  Google Scholar 

  15. Kolwicz SC Jr, Olson DP, Marney LC et al (2012) Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circ Res 111:728–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Bricknell OL, Daries PS, Opie LH (1981) A relationship between adenosine triphosphate, glycolysis and ischaemic contracture in the isolated rat heart. J Mol Cell Cardiol 13:941–945

    Article  CAS  PubMed  Google Scholar 

  17. Korvald C, Elvenes OP, Aghajani E et al (2001) Postischemic mechanoenergetic inefficiency is related to contractile dysfunction and not altered metabolism. Am J Physiol Heart Circ Physiol 281:H2645–H2653

    CAS  PubMed  Google Scholar 

  18. Sunderdiek U, Schmitz-Spanke S, Korbmacher B et al (2001) Left ventricular dysfunction and disturbed O(2)-utilization in stunned myocardium: influence of ischemic preconditioning. Eur J Cardiothorac Surg 20:770–776

    Article  CAS  PubMed  Google Scholar 

  19. Lopaschuk GD, Spafford MA, Davies NJ et al (1990) Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia. Circ Res 66:546–553

    Article  CAS  PubMed  Google Scholar 

  20. Folmes CD, Sowah D, Clanachan AS et al (2009) High rates of residual fatty acid oxidation during mild ischemia decrease cardiac work and efficiency. J Mol Cell Cardiol 47:142–148

    Article  CAS  PubMed  Google Scholar 

  21. Opie LH (1975) Metabolism of free fatty acids, glucose and catecholamines in acute myocardial infarction. Relation to myocardial ischemia and infarct size. Am J Cardiol 36:938–953

    Article  CAS  PubMed  Google Scholar 

  22. Kurien VA, Oliver MF (1970) Free fatty acids and cardiac arrhythmias. Lancet 1:847

    Article  CAS  PubMed  Google Scholar 

  23. Liu Q, Docherty JC, Rendell JC et al (2002) High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation. J Am Coll Cardiol 39:718–725

    Article  CAS  PubMed  Google Scholar 

  24. Vik-Mo H, Mjøs OD, Neely JR et al (1986) Limitation of myocardial infarct size by metabolic interventions that reduce accumulation of fatty acid metabolites in ischemic myocardium. Am Heart J 111:1048–1054

    Article  CAS  PubMed  Google Scholar 

  25. Larsen TS, Myrmel T, Skulberg A et al (1989) Effects of hypoxia on lipolysis in isolated rat myocardial cells. Mol Cell Biochem 88:139–144

    CAS  PubMed  Google Scholar 

  26. Rame JE, Barouch LA, Sack MN et al (2011) Caloric restriction in leptin deficiency does not correct myocardial steatosis: failure to normalize PPAR{alpha}/PGC1{alpha} and thermogenic glycerolipid/fatty acid cycling. Physiol Genomics 43:726–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Chandler MP, Chavez PN, McElfresh TA et al (2003) Partial inhibition of fatty acid oxidation increases regional contractile power and efficiency during demand-induced ischemia. Cardiovasc Res 59:143–151

    Article  CAS  PubMed  Google Scholar 

  28. Zhou L, Huang H, McElfresh TA et al (2008) Impact of anaerobic glycolysis and oxidative substrate selection on contractile function and mechanical efficiency during moderate severity ischemia. Am J Physiol Heart Circ Physiol 295:H939–H945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Peterson LR, Herrero P, Schechtman KB et al (2004) Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 109:2191–2196

    Article  PubMed  Google Scholar 

  30. Mazumder PK, O’Neill BT, Roberts MW et al (2004) Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes 53:2366–2374

    Article  CAS  PubMed  Google Scholar 

  31. Hafstad AD, Lund J, Hadler-Olsen E et al (2013) High- and moderate-intensity training normalizes ventricular function and mechanoenergetics in mice with diet-induced obesity. Diabetes 62:2287–2294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Boudina S, Sena S, O’Neill BT et al (2005) Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation 112:2686–2695

    Article  PubMed  Google Scholar 

  33. How OJ, Aasum E, Severson DL et al (2006) Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice. Diabetes 55:466–473

    Article  CAS  PubMed  Google Scholar 

  34. Boardman NT, Hafstad AD, Larsen T et al (2009) Increased O2 cost of basal metabolism and excitation-contraction coupling in hearts from type 2 diabetic mice. Am J Physiol Heart Circ Physiol 296:1373–1379

    Article  Google Scholar 

  35. Buchanan J, Mazumder PK, Hu P et al (2005) Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology 146:5341–5349

    Article  CAS  PubMed  Google Scholar 

  36. Hafstad AD, Khalid AM, How OJ et al (2007) Glucose and insulin improve cardiac efficiency and postischemic functional recovery in perfused hearts from type 2 diabetic (db/db) mice. Am J Physiol Endocrinol Metab 292:E1288–E1294

    Article  CAS  PubMed  Google Scholar 

  37. Ramanathan T, Morita S, Huang Y et al (2004) Glucose-insulin-potassium solution improves left ventricular energetics in chronic ovine diabetes. Ann Thorac Surg 77:1408–1414

    Article  PubMed  Google Scholar 

  38. How OJ, Larsen TS, Hafstad AD et al (2007) Rosiglitazone treatment improves cardiac efficiency in hearts from diabetic mice. Arch Physiol Biochem 113:211–220

    Article  CAS  PubMed  Google Scholar 

  39. Yan J, Young ME, Cui L et al (2009) Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity. Circulation 119:2818–2828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Laine H, Katoh C, Luotolahti M et al (1999) Myocardial oxygen consumption is unchanged but efficiency is reduced in patients with essential hypertension and left ventricular hypertrophy. Circulation 100:2425–2430

    Article  CAS  PubMed  Google Scholar 

  41. de las FL, Soto PF, Cupps BP et al (2006) Hypertensive left ventricular hypertrophy is associated with abnormal myocardial fatty acid metabolism and myocardial efficiency. J Nucl Cardiol 13:369–377

    Article  Google Scholar 

  42. Knaapen P, Germans T, Knuuti J et al (2007) Myocardial energetics and efficiency: current status of the noninvasive approach. Circulation 115:918–927

    Article  PubMed  Google Scholar 

  43. Tuunanen H, Engblom E, Naum A et al (2006) Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation 114:2130–2137

    Article  CAS  PubMed  Google Scholar 

  44. Sorokina N, O’Donnell JM, McKinney RD et al (2007) Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts. Circulation 115:2033–2041

    Article  CAS  PubMed  Google Scholar 

  45. Wolff MR, de Tombe PP, Harasawa Y et al (1992) Alterations in left ventricular mechanics, energetics, and contractile reserve in experimental heart failure. Circ Res 70:516–529

    Article  CAS  PubMed  Google Scholar 

  46. Kameyama T, Chen Z, Bell SP et al (1998) Mechanoenergetic alterations during the transition from cardiac hypertrophy to failure in Dahl salt-sensitive rats. Circulation 98:2919–2929

    Article  CAS  PubMed  Google Scholar 

  47. Opie LH, Knuuti J (2009) The adrenergic-fatty acid load in heart failure. J Am Coll Cardiol 54:1637–1646

    Article  CAS  PubMed  Google Scholar 

  48. Tuunanen H, Ukkonen H, Knuuti J (2008) Myocardial fatty acid metabolism and cardiac performance in heart failure. Curr Cardiol Rep 10:142–148

    Article  PubMed  Google Scholar 

  49. Murray AJ, Cole MA, Lygate CA et al (2008) Increased mitochondrial uncoupling proteins, respiratory uncoupling and decreased efficiency in the chronically infarcted rat heart. J Mol Cell Cardiol 44:694–700

    Article  CAS  PubMed  Google Scholar 

  50. Bersin RM, Wolfe C, Kwasman M et al (1994) Improved hemodynamic function and mechanical efficiency in congestive heart failure with sodium dichloroacetate. J Am Coll Cardiol 23:1617–1624

    Article  CAS  PubMed  Google Scholar 

  51. Chandler MP, Stanley WC, Morita H et al (2002) Short-term treatment with ranolazine improves mechanical efficiency in dogs with chronic heart failure. Circ Res 91:278–280

    Article  CAS  PubMed  Google Scholar 

  52. Tuunanen H, Engblom E, Naum A et al (2008) Trimetazidine, a metabolic modulator, has cardiac and extracardiac benefits in idiopathic dilated cardiomyopathy. Circulation 118:1250–1258

    Article  CAS  PubMed  Google Scholar 

  53. Boudina S, Sena S, Theobald H et al (2007) Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 56:2457–2466

    Article  CAS  PubMed  Google Scholar 

  54. Cole MA, Murray AJ, Cochlin LE et al (2011) A high fat diet increases mitochondrial fatty acid oxidation and uncoupling to decrease efficiency in rat heart. Basic Res Cardiol 106:447–457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Murray AJ, Anderson RE, Watson GC et al (2004) Uncoupling proteins in human heart. Lancet 364:1786–1788

    Article  CAS  PubMed  Google Scholar 

  56. Echtay KS, Roussel D, St Pierre J et al (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415:96–99

    Article  CAS  PubMed  Google Scholar 

  57. Boudina S, Han YH, Pei S et al (2012) UCP3 regulates cardiac efficiency and mitochondrial coupling in high fat-fed mice but not in leptin-deficient mice. Diabetes 61:3260–3269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Fauconnier J, Andersson DC, Zhang SJ et al (2007) Effects of palmitate on Ca(2+) handling in adult control and ob/ob cardiomyocytes: impact of mitochondrial reactive oxygen species. Diabetes 56:1136–1142

    Article  CAS  PubMed  Google Scholar 

  59. Lee S, Araki J, Imaoka T et al (2000) Energy-wasteful total Ca(2+) handling underlies increased O(2) cost of contractility in canine stunned heart. Am J Physiol Heart Circ Physiol 278:H1464–H1472

    CAS  PubMed  Google Scholar 

  60. Trines SA, Slager CJ, Onderwater TA et al (2001) Oxygen wastage of stunned myocardium in vivo is due to an increased oxygen cost of contractility and a decreased myofibrillar efficiency. Cardiovasc Res 51:122–130

    Article  CAS  PubMed  Google Scholar 

  61. Shimizu J, Yamashita D, Misawa H et al (2009) Increased O2 consumption in excitation-contraction coupling in hypertrophied rat heart slices related to increased Na + −Ca2+ exchange activity. J Physiol Sci 59:63–74

    Article  CAS  PubMed  Google Scholar 

  62. Takewa Y, Chemaly ER, Takaki M et al (2009) Mechanical work and energetic analysis of eccentric cardiac remodeling in a volume overload heart failure in rats. Am J Physiol Heart Circ Physiol 296:H1117–H1124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Abe T, Ohga Y, Tabayashi N et al (2002) Left ventricular diastolic dysfunction in type 2 diabetes mellitus model rats. Am J Physiol Heart Circ Physiol 282:H138–H148

    CAS  PubMed  Google Scholar 

  64. Bers DM (2014) Cardiac sarcoplasmic reticulum calcium leak: basis and roles in cardiac dysfunction. Annu Rev Physiol 76:107–127

    Article  CAS  PubMed  Google Scholar 

  65. Belke DD, Swanson EA, Dillmann WH (2004) Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Diabetes 53:3201–3208

    Article  CAS  PubMed  Google Scholar 

  66. Sakata S, Lebeche D, Sakata Y et al (2006) Mechanical and metabolic rescue in a type II diabetes model of cardiomyopathy by targeted gene transfer. Mol Ther 13:987–996

    Article  CAS  PubMed  Google Scholar 

  67. Meyer M, Schillinger W, Pieske B et al (1995) Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92:778–784

    Article  CAS  PubMed  Google Scholar 

  68. Sakata S, Lebeche D, Sakata N et al (2007) Restoration of mechanical and energetic function in failing aortic-banded rat hearts by gene transfer of calcium cycling proteins. J Mol Cell Cardiol 42:852–861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Pinz I, Tian R, Belke D et al (2011) Compromised myocardial energetics in hypertrophied mouse hearts diminish the beneficial effect of overexpressing SERCA2a. J Biol Chem 286:10163–10168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Kohlhaas M, Maack C (2011) Interplay of defective excitation-contraction coupling, energy starvation, and oxidative stress in heart failure. Trends Cardiovasc Med 21:69–73

    Article  CAS  PubMed  Google Scholar 

  71. Tocchetti CG, Caceres V, Stanley BA et al (2012) GSH or palmitate preserves mitochondrial energetic/redox balance, preventing mechanical dysfunction in metabolically challenged myocytes/hearts from type 2 diabetic mice. Diabetes 61:3094–3105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Neubauer S, Horn M, Cramer M et al (1997) Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96:2190–2196

    Article  CAS  PubMed  Google Scholar 

  73. Neubauer S (2007) The failing heart–an engine out of fuel. N Engl J Med 356:1140–1151

    Article  PubMed  Google Scholar 

  74. Diamant M, Lamb HJ, Groeneveld Y et al (2003) Diastolic dysfunction is associated with altered myocardial metabolism in asymptomatic normotensive patients with well-controlled type 2 diabetes mellitus. J Am Coll Cardiol 42:328–335

    Article  CAS  PubMed  Google Scholar 

  75. Scheuermann Freestone M, Madsen PL, Manners D et al (2003) Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation 107:3040–3046

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Truls Myrmel and Terje S. Larsen for feedback on the manuscript, and also Neoma T. Boardman for her linguistic assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Aasum Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aasum, E. (2014). Relationship Between Substrate Metabolism and Cardiac Efficiency. In: Lopaschuk, G., Dhalla, N. (eds) Cardiac Energy Metabolism in Health and Disease. Advances in Biochemistry in Health and Disease, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1227-8_7

Download citation

Publish with us

Policies and ethics