Skip to main content

Transcriptional Control of Mitochondrial Biogenesis and Maturation

  • Chapter
  • First Online:
Cardiac Energy Metabolism in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 11))

  • 1179 Accesses

Abstract

The mitochondrion is the main site for ATP production in the adult heart and comprises up to 40 % of the cardiac myocyte volume. It is now recognized that a complex network of nuclear transcription factors is essential for the coordinated regulation of mitochondrial biogenesis, maturation and function. These transcription factors guide developmental changes in mitochondrial number, structure, and dynamics as well as respond to various physiologic and pathophysiologic cues to meet the energetic needs of the adult heart. The peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) orchestrates the actions of many of these transcription factors to maintain a high level of mitochondrial ATP production. There is increasing evidence that during the development of cardiac hypertrophy and in the failing heart, the activity of this network, including PGC-1, is altered. This review summarizes our current understanding of the perturbations in the gene regulatory pathways that occur during the development of heart failure. An appreciation of the role this regulatory circuitry serves in the regulation of cardiac energy metabolism may guide the development of novel therapeutic targets aimed at the metabolic disturbances that presage heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller FJ, Rosenfeldt FL, Zhang C et al (2003) Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res 31:e61

    Article  PubMed Central  PubMed  Google Scholar 

  2. Scarpulla RC, Vega RB, Kelly DP (2012) Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab 23:459–466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Evans MJ, Scarpulla RC (1989) Interaction of nuclear factors with multiple sites in the somatic cytochrome c promoter. Characterization of upstream NRF-1, ATF, and intron Sp1 recognition sequences. J Biol Chem 264:14361–14368

    CAS  PubMed  Google Scholar 

  4. Virbasius JV, Scarpulla RC (1994) Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci U S A 91:1309–1313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Gleyzer N, Vercauteren K, Scarpulla RC (2005) Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol 25:1354–1366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Huo L, Scarpulla RC (2001) Mitochondrial DNA instability and peri-implantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice. Mol Cell Biol 21:644–654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Ongwijitwat S, Liang HL, Graboyes EM et al (2006) Nuclear respiratory factor 2 senses changing cellular energy demands and its silencing down-regulates cytochrome oxidase and other target gene mRNAs. Gene 374:39–49

    Article  CAS  PubMed  Google Scholar 

  8. Dhar SS, Ongwijitwat S, Wong-Riley MT (2008) Nuclear respiratory factor 1 regulates all ten nuclear-encoded subunits of cytochrome c oxidase in neurons. J Biol Chem 283:3120–3129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Satoh J, Kawana N, Yamamoto Y (2013) Pathway analysis of ChIP-Seq-based NRF1 target genes suggests a logical hypothesis of their involvement in the pathogenesis of neurodegenerative diseases. Gene Regul Syst Biol 7:139–152

    Article  Google Scholar 

  10. Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645–650

    Article  CAS  PubMed  Google Scholar 

  11. Leone TC, Weinheimer CJ, Kelly DP (1999) A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci U S A 96:7473–7478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Djouadi F, Brandt JM, Weinheimer CJ et al (1999) The role of the peroxisome proliferator-activated receptor alpha (PPAR alpha) in the control of cardiac lipid metabolism. Prostaglandins Leukot Essent Fatty Acids 60:339–343

    Article  CAS  PubMed  Google Scholar 

  13. Watanabe K, Fujii H, Takahashi T et al (2000) Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age-dependent cardiac toxicity. J Biol Chem 275:22293–22299

    Article  CAS  PubMed  Google Scholar 

  14. Finck BN, Han X, Courtois M et al (2003) A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci U S A 100:1226–1231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Haemmerle G, Moustafa T, Woelkart G et al (2011) ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-alpha and PGC-1. Nat Med 17:1076–1085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Banke NH, Wende AR, Leone TC et al (2010) Preferential oxidation of triacylglyceride-derived fatty acids in heart is augmented by the nuclear receptor PPARalpha. Circ Res 107:233–241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wang P, Liu J, Li Y et al (2010) Peroxisome proliferator-activated receptor delta is an essential transcriptional regulator for mitochondrial protection and biogenesis in adult heart. Circ Res 106:911–919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Burkart EM, Sambandam N, Han X et al (2007) Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest 117:3930–3939

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Liu J, Wang P, Luo J et al (2011) Peroxisome proliferator-activated receptor beta/delta activation in adult hearts facilitates mitochondrial function and cardiac performance under pressure-overload condition. Hypertension 57:223–230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Dufour CR, Wilson BJ, Huss JM et al (2007) Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRalpha and gamma. Cell Metab 5:345–356

    Article  CAS  PubMed  Google Scholar 

  21. Huss JM, Imahashi K, Dufour CR et al (2007) The nuclear receptor ERRalpha is required for the bioenergetic and functional adaptation to cardiac pressure overload. Cell Metab 6:25–37

    Article  CAS  PubMed  Google Scholar 

  22. Alaynick WA, Kondo RP, Xie W et al (2007) ERRgamma directs and maintains the transition to oxidative metabolism in the postnatal heart. Cell Metab 6:13–24

    Article  CAS  PubMed  Google Scholar 

  23. Cunningham JT, Rodgers JT, Arlow DH et al (2007) mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450:736–740

    Article  CAS  PubMed  Google Scholar 

  24. Blattler SM, Verdeguer F, Liesa M et al (2012) Defective mitochondrial morphology and bioenergetic function in mice lacking the transcription factor Yin Yang 1 in skeletal muscle. Mol Cell Biol 32:3333–3346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Li F, Wang Y, Zeller KI et al (2005) Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol 25:6225–6234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kim J, Lee JH, Iyer VR (2008) Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS One 3:e1798

    Article  PubMed Central  PubMed  Google Scholar 

  27. Izumo S, Nadal-Ginard B, Mahdavi V (1988) Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci U S A 85:339–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Ahuja P, Zhao P, Angelis E et al (2010) Myc controls transcriptional regulation of cardiac metabolism and mitochondrial biogenesis in response to pathological stress in mice. J Clin Invest 120:1494–1505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Lee HG, Chen Q, Wolfram JA et al (2009) Cell cycle re-entry and mitochondrial defects in myc-mediated hypertrophic cardiomyopathy and heart failure. PLoS One 4:e7172

    Article  PubMed Central  PubMed  Google Scholar 

  30. Puigserver P, Wu Z, Park CW et al (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839

    Article  CAS  PubMed  Google Scholar 

  31. Kressler D, Schreiber SN, Knutti D et al (2002) The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha. J Biol Chem 277:13918–13925

    Article  CAS  PubMed  Google Scholar 

  32. Lin J, Puigserver P, Donovan J et al (2002) Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem 277:1645–1648

    Article  CAS  PubMed  Google Scholar 

  33. Andersson U, Scarpulla RC (2001) PGC-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells. Mol Cell Biol 21:3738–3749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Baar K, Wende AR, Jones TE et al (2002) Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J 16:1879–1886

    Article  CAS  PubMed  Google Scholar 

  35. Terada S, Goto M, Kato M et al (2002) Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun 296:350–354

    Article  CAS  PubMed  Google Scholar 

  36. Wu Z, Puigserver P, Andersson U et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    Article  CAS  PubMed  Google Scholar 

  37. Lehman JJ, Barger PM, Kovacs A et al (2000) Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106:847–856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Vega RB, Huss JM, Kelly DP (2000) The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20:1868–1876

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Wang YX, Lee CH, Tiep S et al (2003) Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113:159–170

    Article  CAS  PubMed  Google Scholar 

  40. Hentschke M, Susens U, Borgmeyer U (2002) PGC-1 and PERC, coactivators of the estrogen receptor-related receptor gamma. Biochem Biophys Res Commun 299:872–879

    Article  CAS  PubMed  Google Scholar 

  41. Huss JM, Kopp RP, Kelly DP (2002) Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and -gamma. Identification of novel leucine-rich interaction motif within PGC-1alpha. J Biol Chem 277:40265–40274

    Article  CAS  PubMed  Google Scholar 

  42. Schreiber SN, Knutti D, Brogli K et al (2003) The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor alpha (ERRalpha). J Biol Chem 278:9013–9018

    Article  CAS  PubMed  Google Scholar 

  43. Lin J, Wu PH, Tarr PT et al (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119:121–135

    Article  CAS  PubMed  Google Scholar 

  44. Leone TC, Lehman JJ, Finck BN et al (2005) PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 3:e101

    Article  PubMed Central  PubMed  Google Scholar 

  45. Lelliott CJ, Medina-Gomez G, Petrovic N et al (2006) Ablation of PGC-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. PLoS Biol 4:e369

    Article  PubMed Central  PubMed  Google Scholar 

  46. Sonoda J, Mehl IR, Chong LW et al (2007) PGC-1beta controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis. Proc Natl Acad Sci U S A 104:5223–5228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Arany Z, Novikov M, Chin S et al (2006) Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-gamma coactivator 1alpha. Proc Natl Acad Sci U S A 103:10086–10091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Riehle C, Wende AR, Zaha VG et al (2011) PGC-1beta deficiency accelerates the transition to heart failure in pressure overload hypertrophy. Circ Res 109:783–793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Lai L, Leone TC, Zechner C et al (2008) Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Genes Dev 22:1948–1961

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Martin OJ, Lai L, Soundarapandian MM et al (2014) A role for PGC-1 coactivators in the control of mitochondrial dynamics during postnatal cardiac growth. Circ Res 114(4):626–636

    Google Scholar 

  51. Liesa M, Borda-d'Agua B, Medina-Gomez G et al (2008) Mitochondrial fusion is increased by the nuclear coactivator PGC-1beta. PLoS One 3:e3613

    Article  PubMed Central  PubMed  Google Scholar 

  52. Soriano FX, Liesa M, Bach D et al (2006) Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2. Diabetes 55:1783–1791

    Article  CAS  PubMed  Google Scholar 

  53. Kasahara A, Cipolat S, Chen Y et al (2013) Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and notch signaling. Science 342:734–737

    Article  CAS  PubMed  Google Scholar 

  54. Handschin C, Rhee J, Lin J et al (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci U S A 100:7111–7116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Schaeffer PJ, Wende AR, Magee CJ et al (2004) Calcineurin and calcium/calmodulin-dependent protein kinase activate distinct metabolic gene regulatory programs in cardiac muscle. J Biol Chem 279:39593–39603

    Article  CAS  PubMed  Google Scholar 

  56. Rohas LM, St-Pierre J, Uldry M et al (2007) A fundamental system of cellular energy homeostasis regulated by PGC-1alpha. Proc Natl Acad Sci U S A 104:7933–7938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Zong H, Ren JM, Young LH et al (2002) AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A 99:15983–15987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Jager S, Handschin C, St-Pierre J et al (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 104:12017–12022

    Article  PubMed Central  PubMed  Google Scholar 

  59. Canto C, Gerhart-Hines Z, Feige JN et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Iwabu M, Yamauchi T, Okada-Iwabu M et al (2010) Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature 464:1313–1319

    Article  CAS  PubMed  Google Scholar 

  61. Coste A, Louet JF, Lagouge M et al (2008) The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1alpha. Proc Natl Acad Sci U S A 105:17187–17192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Sack MN, Rader TA, Park S et al (1996) Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 94:2837–2842

    Article  CAS  PubMed  Google Scholar 

  63. Dewald O, Sharma S, Adrogue J et al (2005) Downregulation of peroxisome proliferator-activated receptor-alpha gene expression in a mouse model of ischemic cardiomyopathy is dependent on reactive oxygen species and prevents lipotoxicity. Circulation 112:407–415

    Article  CAS  PubMed  Google Scholar 

  64. Goikoetxea MJ, Beaumont J, Gonzalez A et al (2006) Altered cardiac expression of peroxisome proliferator-activated receptor-isoforms in patients with hypertensive heart disease. Cardiovasc Res 69:899–907

    Article  CAS  PubMed  Google Scholar 

  65. Karbowska J, Kochan Z, Smolenski RT (2003) Peroxisome proliferator-activated receptor alpha is downregulated in the failing human heart. Cell Mol Biol Lett 8:49–53

    CAS  PubMed  Google Scholar 

  66. Barger PM, Brandt JM, Leone TC et al (2000) Deactivation of peroxisome proliferator-activated receptor-alpha during cardiac hypertrophic growth. J Clin Invest 105:1723–1730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Bishop SP, Altschuld RA (1970) Increased glycolytic metabolism in cardiac hypertrophy and congestive failure. Am J Physiol 218:153–159

    CAS  PubMed  Google Scholar 

  68. Nascimben L, Ingwall JS, Lorell BH et al (2004) Mechanisms for increased glycolysis in the hypertrophied rat heart. Hypertension 44:662–667

    Article  CAS  PubMed  Google Scholar 

  69. Osorio JC, Stanley WC, Linke A et al (2002) Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation 106:606–612

    Article  CAS  PubMed  Google Scholar 

  70. Sihag S, Cresci S, Li AY et al (2009) PGC-1alpha and ERRalpha target gene downregulation is a signature of the failing human heart. J Mol Cell Cardiol 46:201–212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Hu X, Xu X, Lu Z et al (2011) AMP activated protein kinase-alpha2 regulates expression of estrogen-related receptor-alpha, a metabolic transcription factor related to heart failure development. Hypertension 58:696–703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Karamanlidis G, Nascimben L, Couper GS et al (2010) Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ Res 106:1541–1548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Huss JM, Torra IP, Staels B et al (2004) Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol Cell Biol 24:9079–9091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Garnier A, Zoll J, Fortin D et al (2009) Control by circulating factors of mitochondrial function and transcription cascade in heart failure: a role for endothelin-1 and angiotensin II. Circ Heart Fail 2:342–350

    Article  CAS  PubMed  Google Scholar 

  75. Belke DD, Larsen TS, Gibbs EM et al (2000) Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol Endocrinol Metab 279:E1104–E1113

    CAS  PubMed  Google Scholar 

  76. Peterson LR, Herrero P, McGill J et al (2008) Fatty acids and insulin modulate myocardial substrate metabolism in humans with type 1 diabetes. Diabetes 57:32–40

    Article  CAS  PubMed  Google Scholar 

  77. Peterson LR, Soto PF, Herrero P et al (2008) Impact of gender on the myocardial metabolic response to obesity. JACC Cardiovasc Imaging 1:424–433

    Article  PubMed Central  PubMed  Google Scholar 

  78. Rijzewijk LJ, van der Meer RW, Lamb HJ et al (2009) Altered myocardial substrate metabolism and decreased diastolic function in nonischemic human diabetic cardiomyopathy: studies with cardiac positron emission tomography and magnetic resonance imaging. J Am Coll Cardiol 54:1524–1532

    Article  CAS  PubMed  Google Scholar 

  79. Hamblin M, Friedman DB, Hill S et al (2007) Alterations in the diabetic myocardial proteome coupled with increased myocardial oxidative stress underlies diabetic cardiomyopathy. J Mol Cell Cardiol 42:884–895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Jullig M, Hickey AJ, Middleditch MJ et al (2007) Characterization of proteomic changes in cardiac mitochondria in streptozotocin-diabetic rats using iTRAQ isobaric tags. Proteomics Clin Appl 1:565–576

    Article  CAS  PubMed  Google Scholar 

  81. Bugger H, Chen D, Riehle C et al (2009) Tissue-specific remodeling of the mitochondrial proteome in type 1 diabetic akita mice. Diabetes 58:1986–1997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. McGavock JM, Lingvay I, Zib I et al (2007) Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation 116:1170–1175

    Article  PubMed  Google Scholar 

  83. Korosoglou G, Humpert PM, Ahrens J et al (2012) Left ventricular diastolic function in type 2 diabetes mellitus is associated with myocardial triglyceride content but not with impaired myocardial perfusion reserve. J Magn Reson Imaging 35:804–811

    Article  PubMed  Google Scholar 

  84. Ng AC, Delgado V, Bertini M et al (2010) Myocardial steatosis and biventricular strain and strain rate imaging in patients with type 2 diabetes mellitus. Circulation 122:2538–2544

    Article  PubMed  Google Scholar 

  85. Unger RH, Scherer PE (2010) Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends Endocrinol Metab 21:345–352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Finck BN, Lehman JJ, Leone TC et al (2002) The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 109:121–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Park SY, Cho YR, Finck BN et al (2005) Cardiac-specific overexpression of peroxisome proliferator-activated receptor-alpha causes insulin resistance in heart and liver. Diabetes 54:2514–2524

    Article  CAS  PubMed  Google Scholar 

  88. Yang J, Sambandam N, Han X et al (2007) CD36 deficiency rescues lipotoxic cardiomyopathy. Circ Res 100:1208–1217

    Google Scholar 

  89. Duncan JG, Bharadwaj KG, Fong JL et al (2010) Rescue of cardiomyopathy in peroxisome proliferator-activated receptor-alpha transgenic mice by deletion of lipoprotein lipase identifies sources of cardiac lipids and peroxisome proliferator-activated receptor-alpha activators. Circulation 121:426–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Duncan JG, Fong JL, Medeiros DM et al (2007) Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-alpha/PGC-1alpha gene regulatory pathway. Circulation 115:909–917

    Article  CAS  PubMed  Google Scholar 

  91. Mitra R, Nogee DP, Zechner JF et al (2012) The transcriptional coactivators, PGC-1alpha and beta, cooperate to maintain cardiac mitochondrial function during the early stages of insulin resistance. J Mol Cell Cardiol 52:701–710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants (R01 DK045416, R01 HL058493, R01 HL101189 [D.P.K.]). We thank Lorenzo Thomas for help with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel P. Kelly M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vega, R.B., Leone, T.C., Kelly, D.P. (2014). Transcriptional Control of Mitochondrial Biogenesis and Maturation. In: Lopaschuk, G., Dhalla, N. (eds) Cardiac Energy Metabolism in Health and Disease. Advances in Biochemistry in Health and Disease, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1227-8_6

Download citation

Publish with us

Policies and ethics