Skip to main content

Control of Myocardial Fatty Acid Uptake

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 11))

Abstract

Carbohydrates and long-chain fatty acids are the predominant substrates for cardiac energy production. While the mechanism and regulation of myocardial carbohydrate (glucose, lactate) uptake have been unraveled in detail in the 1990s, insight into fatty acid uptake originates from more recent studies. Fatty acid movement across the sarcolemma is facilitated by membrane-associated proteins, specifically CD36, membrane-associated fatty acid-binding protein (FABPpm) and selected fatty acid transport protein (FATP) isoforms, and is up- or downregulated through changes in sarcolemmal content of (primarily) CD36. The recruitment of CD36 from an endosomal storage pool to the sarcolemma, which is under the control of various physiological stimuli (including insulin and contraction), represents a pivotal step in the overall regulation of myocardial fatty acid uptake and utilization. Dysregulation of the intracellular cycling of CD36 underlies various cardiac metabolic diseases. As a result, the mechanism and regulation of myocardial glucose uptake by GLUT4 cycling and of fatty acid uptake by CD36 cycling are very similar. Likely, manipulation of the presence and/or activity of substrate transporters for glucose and fatty acids in the sarcolemma holds promise as therapeutic approach to alter cardiac substrate preference in disease so as to regain metabolic homeostasis and rectify cardiac functioning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Glatz JFC, Van der Vusse GJ (1996) Cellular fatty acid-binding proteins: their function and physiological significance. Prog Lipid Res 35:243–282

    Article  CAS  PubMed  Google Scholar 

  2. Storch J, Thumser AE (2010) Tissue-specific functions in the fatty acid-binding protein family. J Biol Chem 285:32679–32683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Smathers RL, Petersen DR (2011) The human fatty acid-binding protein family: evolutionary divergences and functions. Hum Genomics 5:170–191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Vorum H, Brodersen R, Kragh-Hansen U, Pedersen AO (1992) Solubility of long-chain fatty acids in phosphate buffer at pH 7.4. Biochim Biophys Acta 1126:135–142

    Article  CAS  PubMed  Google Scholar 

  5. Richieri RV, Kleinfeld AM (1995) Unbound free fatty acid levels in human serum. J Lipid Res 36:229–240

    CAS  PubMed  Google Scholar 

  6. Vork MM, Glatz JFC, Van der Vusse GJ (1993) On the mechanisms of long chain fatty acid transport in cardiomyocytes as facilitated by cytoplasmic fatty acid-binding protein. J Theor Biol 160:207–222

    Article  CAS  PubMed  Google Scholar 

  7. Glatz JFC, Luiken JJFP, Van Nieuwenhoven FA, Van der Vusse GJ (1997) Molecular mechanism of cellular uptake and intracellular translocation of fatty acids. Prostaglandines Leukot Essent Fatty Acids 57:3–9

    Article  CAS  Google Scholar 

  8. Van der Vusse GJ, Van Bilsen M, Glatz JFC (2000) Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res 45:279–293

    Article  PubMed  Google Scholar 

  9. Furuhashi M, Hotamisligil GS (2008) Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 7:489–503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Iso T, Maeda K, Hanaoka H et al (2013) Capillary endothelial fatty acid binding proteins 4 and 5 play a critical role in fatty acid uptake in heart and skeletal muscle. Arterioscler Thromb Vasc Biol 33:2549–2557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Hagberg CE, Falkevall A, Wang X et al (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464:917–921

    Article  CAS  PubMed  Google Scholar 

  12. Silverstein RL, Febbraio M (2009) CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci. Signal. 2: re3

    Google Scholar 

  13. Madonna R, Salerni S, Schiavone D et al (2011) Omega-3 fatty acids attenuate constitutive and insulin-induced CD36 expression through a suppression of PPARα/γ activity in microvascular endothelial cells. Thromb Haemost 106:500–510

    Article  CAS  PubMed  Google Scholar 

  14. Luiken JJFP, Koonen DPY, Coumans WA et al (2003) Long-chain fatty acid uptake by skeletal muscle is impaired in homozygous, but not heterozygous, heart-type-FABP null mice. Lipids 38:491–496

    Article  CAS  PubMed  Google Scholar 

  15. Bonen A, Chabowksi A, Luiken JJFP, Glatz JFC (2007) Mechanisms and regulation of protein-mediated cellular fatty acid uptake: molecular, biochemical and physiological evidence. Physiology (Bethesda) 22:15–28

    CAS  Google Scholar 

  16. Hamilton JA (2007) New insights into the roles of proteins and lipids in membrane transport of fatty acids. Prostaglandines Leukot Essent Fatty Acids 77:355–361

    Article  CAS  Google Scholar 

  17. Zhang F, Kamp F, Hamilton JA (1996) Dissociation of long and very long fatty acids from phospholipid bilayers. Biochemistry 35:16055–16060

    Article  CAS  PubMed  Google Scholar 

  18. Stremmel W, Strohmeyer G, Borchard F, Kochwa S, Berk PD (1985) Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes. Proc Natl Acad Sci U S A 82:4–8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Roepstorff C, Helge JW, Vistisen B, Kiens B (2004) Studies of plasma membrane fatty acid-binding protein and other lipid-binding proteins in human skeletal muscle. Proc Nutr Soc 63:239–244

    Article  CAS  PubMed  Google Scholar 

  20. Dutta-Roy AK (2009) Transport of fatty acids across the human placenta: a review. Prog Lipid Res 48:52–61

    Article  CAS  Google Scholar 

  21. Kazantzis M, Stahl A (2012) Fatty acid transport proteins, implications in physiology and diseases. Biochim Biophys Acta 1821:852–857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Glatz JFC, Luiken JJFP, Bonen A (2010) Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev 90:367–417

    Article  CAS  PubMed  Google Scholar 

  23. Degrace-Passilly P, Besnard P (2012) CD36 and taste of fat. Curr Opin Clin Nutr Metab Care 15:107–111

    Article  CAS  PubMed  Google Scholar 

  24. Habets DD, Coumans WA, Voshol PJ et al (2007) AMPK-mediated increase in myocardial long-chain fatty acid uptake critically depends on sarcolemmal CD36. Biochem Biophys Res Commun 355:204–210

    Article  CAS  PubMed  Google Scholar 

  25. Angin Y, Steinbusch LKM, Simons PJ et al (2012) CD36 inhibition prevents lipid accumulation and contractile dysfunction in rat cardiomyocytes. Biochem J 448:43–53

    Article  CAS  PubMed  Google Scholar 

  26. Stremmel W, Pohl L, Ring A, Herrmann T (2001) A new concept of cellular uptake and intracellular trafficking of long-chain fatty acids. Lipids 36:981–989

    Article  CAS  PubMed  Google Scholar 

  27. Kerner J, Hoppel C (2000) Fatty acid import into mitochondria. Biochim Biophys Acta 1486:1–17

    Article  CAS  PubMed  Google Scholar 

  28. Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129

    Article  CAS  PubMed  Google Scholar 

  29. Awan MM, Saggerson ED (1993) Malonyl-CoA metabolism in cardiac myocytes and its relevance to the control of fatty acid oxidation. Biochem J 295:61–66

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Saddik M, Gamble J, Witters LA, Lopaschuk GD (1993) Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem 268:25836–25845

    CAS  PubMed  Google Scholar 

  31. Eaton S (2002) Control of mitochondrial beta-oxidation flux. Prog Lipid Res 41:197–239

    Article  CAS  PubMed  Google Scholar 

  32. Carley AN, Atkinson LL, Bonen A et al (2007) Mechanisms responsible for enhanced fatty acid utilization by perfused hearts from type 2 diabetic db/db mice. Arch Physiol Biochem 113:65–75

    Article  CAS  PubMed  Google Scholar 

  33. Bonen A, Han XX, Habets DD et al (2007) A null-mutation in skeletal muscle FAT/CD36 reveals its essential role in insulin- and AICAR-stimulated fatty acid metabolism. Am J Physiol Endocrinol Metab 292:E1740–E1749

    Article  CAS  PubMed  Google Scholar 

  34. Luiken JJFP, Niessen HEC, Coort SLM et al (2009) Etomoxir-induced partial carnitine palmitoyltransferase-I (CPT-I) inhibition in vivo does not alter cardiac long-chain fatty acid uptake and oxidation rates. Biochem J 419:447–455

    Article  CAS  PubMed  Google Scholar 

  35. Bonen A, Luiken JJFP, Arumugam Y et al (2000) Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase. J Biol Chem 275:14501–14508

    Article  CAS  PubMed  Google Scholar 

  36. Luiken JJFP, Koonen DPY, Willems J et al (2002) Insulin stimulates long-chain fatty acid utilization by rat cardiac myocytes through cellular redistribution of FAT/CD36. Diabetes 51:3113–3119

    Article  CAS  PubMed  Google Scholar 

  37. Luiken JJFP, Coort SLM, Willems J et al (2003) Contraction-induced FAT/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling. Diabetes 52:1627–1634

    Article  CAS  PubMed  Google Scholar 

  38. Luiken JJFP, Willems J, Van der Vusse GJ, Glatz JFC (2001) Electrostimulation enhances FAT/CD36-mediated long-chain fatty acid uptake by isolated rat cardiac myocytes. Am J Physiol 281:E704–E712

    CAS  Google Scholar 

  39. Karlsson HK, Chibalin AV, Koistinen HK et al (2009) Kinetics of GLUT4 trafficking in rat and human skeletal muscle. Diabetes 58:847–854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Van Oort MM, Van Doorn JM, Bonen A et al (2008) Insulin-induced translocation of CD36 to the plasma membrane is reversible and shows similarity to that of GLUT4. Biochim Biophys Acta 1781:61–71

    Article  PubMed  Google Scholar 

  41. Turcotte LP, Raney MA, Todd MK (2005) ERK1/2 inhibition prevents contraction-induced increase in plasma membrane FAT/CD36 content and FA uptake in rodent muscle. Acta Physiol Scand 184:131–139

    Article  CAS  PubMed  Google Scholar 

  42. Jain SS, Chabowski A, Snook LA et al (2009) Additive effects of insulin and muscle contraction on fatty acid transport and fatty acid transporters FAT/CD36, FABPpm, FATP1, 4 and 6. FEBS Lett 583:2294–2300

    Article  CAS  PubMed  Google Scholar 

  43. Chabowksi A, Coort SLM, Calles-Escandon J et al (2005) The subcellular compartmentation of fatty acid transporters is regulated differently by insulin and by AICAR. FEBS Lett 579:2428–2432

    Article  Google Scholar 

  44. Schwenk RW, Dirkx E, Coumans WA et al (2010) Requirement for distinct vesicle-associated membrane proteins in insulin- and AMP-activated protein kinas (AMPK)-induced translocation of GLUT4 and CD36 in cultured cardiomyocytes. Diabetologia 53:2209–2219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Lauzier B, Merlen C, Vaillant F et al (2011) Post-translocational modifications, a key process in CD36 function: lessons from the spontaneously hypertensive rat heart. J Mol Cell Cardiol 51:99–108

    Article  CAS  PubMed  Google Scholar 

  46. Smith J, Su X, El-Maghrabi R et al (2008) Opposite regulation of CD36 ubiquitination by fatty acids and insulin. J Biol Chem 283:13578–13585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Kim KY, Stevens MV, Akter MH et al (2011) Parkin is a lipid-responsive regulator of fat uptake in mice and mutant human cells. J Clin Invest 121:3701–3712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Barger PM, Kelly DP (2000) PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med 10:238–245

    Article  CAS  PubMed  Google Scholar 

  49. Sato O, Kuriki C, Fukui Y, Motojima K (2002) Dual promotor structure of mouse and human fatty acid translocase/CD36 genes and unique transcriptional activation by peroxisome proliferator-activated receptor alpha and gamma ligands. J Biol Chem 277:15703–15711

    Article  CAS  PubMed  Google Scholar 

  50. Bonen A, Nickerson JG, Momken I et al (2006) Tissue-specific and fatty acid transporter-specific changes in heart and skeletal muscle over a 1-yr period. Mol Cell Biochem 291:145–154

    Article  CAS  PubMed  Google Scholar 

  51. Chabowski A, Coort SLM, Calles-Escandon J et al (2004) Insulin stimulates fatty acid transport by regulating expression of FAT/CD36 but not FABPpm. Am J Physiol Endocrinol Metab 287:E781–E789

    Article  CAS  PubMed  Google Scholar 

  52. Burelle Y, Wambolt RB, Grist M et al (2004) Regular exercise is associated with a protective metabolic phenotype in the rat heart. Am J Physiol Heart Circ Physiol 287:H1055–H1063

    CAS  PubMed  Google Scholar 

  53. Heather LC, Pates KM, Atherton HJ et al (2013) Differential translocation of the fatty acid transporter, FAT/CD36, and the glucose transporter, GLUT4, coordinates changes in cardiac substrate metabolism during ischemia and reperfusion. Circ Heart Fail 6:1058–1066

    Article  CAS  PubMed  Google Scholar 

  54. Unger RH (2002) Lipotoxic diseases. Annu Rev Med 53:319–336

    Article  CAS  PubMed  Google Scholar 

  55. Holland WL, Knotts TA, Chavez JA et al (2007) Lipid mediators of insulin resistance. Nutr Rev 65:S39–S46

    Article  PubMed  Google Scholar 

  56. Luiken JJFP, Arumugam Y, Dyck DJ et al (2001) Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats. J Biol Chem 276:40567–40573

    Article  CAS  PubMed  Google Scholar 

  57. Coort SLM, Hasselbaink DM, Koonen DPY et al (2004) Enhanced sarcolemmal FAT/CD36 content and triacylglycerol storage in cardiac myocytes from obese Zucker rats. Diabetes 53:1655–1663

    Article  CAS  PubMed  Google Scholar 

  58. Ouwens DM, Diamant M, Fodor M et al (2007) Cardiac contractile dysfunction in insulin-resistant rats fed a high-fat diet is associated with elevated CD36-mediated fatty acid uptake and esterification. Diabetologia 50:1938–1948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Bonen A, Parolin ML, Steinberg GR et al (2004) Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. FASEB J 18:1144–1146

    CAS  PubMed  Google Scholar 

  60. Holloway GP, Benton CR, Mullen KL et al (2009) In obese rat muscle transport of palmitate is increased and is channeled to triacylglycerol storage despite an increase in mitochondrial palmitate oxidation. Am J Physiol Endocrinol Metab 296:E738–E747

    Article  CAS  PubMed  Google Scholar 

  61. Glatz JFC, Bonen A, Ouwens DM, Luiken JJFP (2006) Regulation of sarcolemmal transport of substrates in the healthy and diseased heart. Cardiovasc Drugs Ther 20:471–476

    Article  CAS  PubMed  Google Scholar 

  62. Glatz JFC, Angin Y, Steinbusch LKM et al (2013) CD36 as target to prevent cardiac lipotoxicity and insulin resistance. Prostaglandins Leukot Essent Fatty Acids 88:71–77

    Article  CAS  PubMed  Google Scholar 

  63. Geloen A, Helin L, Geeraert B et al (2012) CD36 inhibitors reduce postprandial hypertriglyceridemia and protect against diabetic dyslipidemia and atherosclerosis. PLoS One 7:e37633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Bessi VL, Labbé SM, Huynh DN et al (2012) EP 80317, a selective CD36 ligand, shows cardioprotective effects against post-ischaemic myocardial damage in mice. Cardiovasc Res 96:99–108

    Article  CAS  PubMed  Google Scholar 

  65. Shulman GJ (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Van der Vusse GJ, Glatz JFC, Stam HC, Reneman RS (1992) Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 72:881–940

    PubMed  Google Scholar 

  67. Su X, Abumrad NA (2009) Cellular fatty acid uptake: a pathway under construction. Trends Endocrinol Metab 20:72–77

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Doege H, Stahl A (2006) Protein-mediated fatty acid uptake: novel insights from in vivo models. Physiology (Bethesda) 21:259–268

    Article  CAS  Google Scholar 

  69. Febbraio M, Silverstein RL (2007) CD36: implications in cardiovascular disease. Int J Biochem Cell Biol 39:2012–2030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Yang J, Sambandam N, Han X et al (2007) CD36 deficiency rescues lipotoxic cardiomyopathy. Circ Res 100:1208–1217

    Article  CAS  PubMed  Google Scholar 

  71. Lorente-Cebrián S, Costa AGV, Navas-Carretero S et al (2013) Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence. J Physiol Biochem 69:633–651

    Article  PubMed  Google Scholar 

  72. Saravanan P, Davidson NC, Schmidt EB, Calder PC (2010) Cardiovascular effects of marine omega-3 fatty acids. Lancet 376:540–550

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan F. C. Glatz Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Glatz, J.F.C., Luiken, J.J.F.P. (2014). Control of Myocardial Fatty Acid Uptake. In: Lopaschuk, G., Dhalla, N. (eds) Cardiac Energy Metabolism in Health and Disease. Advances in Biochemistry in Health and Disease, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1227-8_4

Download citation

Publish with us

Policies and ethics