Skip to main content

Cardiac Metabolic Protection for the Newborn Heart

  • Chapter
  • First Online:
Cardiac Energy Metabolism in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 11))

  • 1097 Accesses

Abstract

As the newborn heart transitions into the extrauterine environment, it emerges from a relatively hypoxic state, restricted predominately to glucose for energy, into an oxygen abundant environment in which a wider selection of substrates is available. Exposed to the unique milieu in utero, the fetal cardiac myocyte developed metabolic pathways that will subsequently adapt to postnatal life. Prior to the transition to a more adult-like metabolism, the newborn heart can take advantage of the metabolic profile developed in utero to protect itself during times of stress such as global ischemia and abrupt hypoxia. This relative tolerance to low oxygen levels and robust coronary perfusion of the neonatal heart have been exploited by surgeons to allow prolonged periods of bypass or cardiac arrest, facilitating repair of complex congenital heart defects. The ability of the newborn heart to utilize a variety of energy substrates has generated great interest in defining the optimal composition of cardioplegia solutions to enhance the ability of newborn myocardium to tolerate open heart surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lopaschuk GD, Collins-Nakai RL, Itoi T (1992) Developmental changes in energy substrate use by the heart. Cardiovasc Res 26:1172–1180

    Article  CAS  PubMed  Google Scholar 

  2. Hocquette JF, Sauerwein H, Higashiyama Y et al (2006) Prenatal developmental changes in glucose transporters, intermediary metabolism and hormonal receptors related to the IGF/insulin-glucose axis in the heart and adipose tissue of bovines. Reprod Nutr Dev 46:257–272

    Article  CAS  PubMed  Google Scholar 

  3. Santalucia T, Camps M, Castello A et al (1992) Developmental regulation of GLUT-1 (erythroid/Hep G2) and GLUT-4 (muscle/fat) glucose transporter expression in rat heart, skeletal muscle, and brown adipose tissue. Endocrinology 130:837–846

    CAS  PubMed  Google Scholar 

  4. Wang C, Hu SM (1991) Developmental regulation in the expression of rat heart glucose transporters. Biochem Biophys Res Commun 177:1095–1100

    Article  CAS  PubMed  Google Scholar 

  5. Ralphe JC, Nau PN, Mascio CE et al (2005) Regulation of myocardial glucose transporters GLUT1 and GLUT4 in chronically anemic fetal lambs. Pediatr Res 58:713–718

    Article  CAS  PubMed  Google Scholar 

  6. Leong HS, Brownsey RW, Kulpa JE et al (2003) Glycolysis and pyruvate oxidation in cardiac hypertrophy–why so unbalanced? Comp Biochem Physiol A Mol Integr Physiol 135:499–513

    CAS  PubMed  Google Scholar 

  7. Werner JC, Sicard RE (1987) Lactate metabolism of isolated, perfused fetal, and newborn pig hearts. Pediatr Res 22:552–556

    Article  CAS  PubMed  Google Scholar 

  8. Lopaschuk GD, Spafford MA, Marsh DR (1991) Glycolysis is the predominant source of myocardial ATP production immediately after birth. Am J Physiol 261:H1698–H1705

    CAS  PubMed  Google Scholar 

  9. Lehninger AL (1951) Phosphorylation coupled to oxidation of dihydrodiphosphopyridine nucleotide. J Biol Chem 190:345–359

    CAS  PubMed  Google Scholar 

  10. Purvis JL, Lowenstein JM (1961) The relationship between intra- and extra-mitochondrial pyridine nucleotides. J Biol Chem 236:2794–2803

    CAS  PubMed  Google Scholar 

  11. Dawson AG (1979) Oxidation of cytosolic NADH formed during aerobic metabolism in mammalian cells. Trends Biochem Sci 4:171–176

    Article  CAS  Google Scholar 

  12. Scholz TD, Koppenhafer SL (1995) Reducing equivalent shuttles in developing myocardium: enhanced capacity in the newborn heart. Pediatr Res 38:221–227

    Article  CAS  PubMed  Google Scholar 

  13. Williamson JR, Safer B, LaNoue KF et al (1973) Mitochondrial-cytosolic interactions in cardiac tissue: role of the malate-aspartate cycle in the removal of glycolytic NADH from the cytosol. Symp Soc Exp Biol 27:241–282

    CAS  PubMed  Google Scholar 

  14. Scholz T, Koppenhafer S, TenEyck C et al (1997) Developmental regulation of the α-glycerophosphate shuttle in porcine myocardium. J Mol Cell Cardiol 29:1605–1613

    Article  CAS  PubMed  Google Scholar 

  15. Griffin JL, O'Donnell JM, White LT et al (2000) Postnatal expression and activity of the mitochondrial 2-oxoglutarate- malate carrier in intact hearts. Am J Physiol Cell Physiol 279:C1704–C1709

    CAS  PubMed  Google Scholar 

  16. Lewandowski ED, O'Donnell JM, Scholz TD et al (2007) Recruitment of NADH shuttling in pressure-overloaded and hypertrophic rat hearts. Am J Physiol Cell Physiol 292:C1880–1886

    Google Scholar 

  17. Rupert BE, Segar JL, Schutte BC et al (2000) Metabolic adaptation of the hypertrophied heart: role of the malate/aspartate and alpha-glycerophosphate shuttles. J Mol Cell Cardiol 32:2287–2297

    Article  CAS  PubMed  Google Scholar 

  18. Scholz TD, Koppenhafer SL, TenEyck CJ et al (1998) Ontogeny of malate/aspartate shuttle capacity and gene expression in cardiac mitochondria. Am J Physiol 274:C780–C788

    CAS  PubMed  Google Scholar 

  19. Scholz TD, TenEyck CJ, Schutte BC (2000) Thyroid hormone regulation of the NADH shuttles in liver and cardiac mitochondria. J Mol Cell Cardiol 32:1–10

    Article  CAS  PubMed  Google Scholar 

  20. Lopaschuk GD, Witters LA, Itoi T et al (1994) Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart. J Biol Chem 269:25871–25878

    CAS  PubMed  Google Scholar 

  21. McGarry JD, Foster DW (1980) Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem 49:395–420

    Article  CAS  PubMed  Google Scholar 

  22. McGarry JD, Foster DW (1980) Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem 49:395–420

    Article  CAS  PubMed  Google Scholar 

  23. Makinde AO, Gamble J, Lopaschuk GD (1997) Upregulation of 5′-AMP-activated protein kinase is responsible for the increase in myocardial fatty acid oxidation rates following birth in the newborn rabbit. Circ Res 80:482–489

    Article  CAS  PubMed  Google Scholar 

  24. Onay-Besikci A, Campbell FM, Hopkins TA et al (2003) Relative importance of malonyl CoA and carnitine in maturation of fatty acid oxidation in newborn rabbit heart. Am J Physiol Heart Circ Physiol 284:H283–H289

    PubMed  Google Scholar 

  25. Lavrentyev EN, He D, Cook GA (2004) Expression of genes participating in regulation of fatty acid and glucose utilization and energy metabolism in developing rat hearts. Am J Physiol Heart Circ Physiol 287:H2035–H2042

    CAS  PubMed  Google Scholar 

  26. Barger PM, Kelly DP (1999) Fatty acid utilization in the hypertrophied and failing heart: molecular regulatory mechanisms. Am J Med Sci 318:36–42

    Article  CAS  PubMed  Google Scholar 

  27. Ascuitto RJ, Ross-Ascuitto NT (1996) Substrate metabolism in the developing heart. Semin Perinatol 20:542–563

    Article  CAS  PubMed  Google Scholar 

  28. Baker KM, Chernin MI, Schreiber T et al (2004) Evidence of a novel intracrine mechanism in angiotensin II-induced cardiac hypertrophy. Regul Pept 120:5–13

    Article  CAS  PubMed  Google Scholar 

  29. Ascuitto RJ, Ross-Ascuitto NT, Ramage D et al (1990) Importance of fatty acid oxidation in the neonatal pig heart with hypoxia and reoxygenation. J Dev Physiol 14:291–294

    CAS  PubMed  Google Scholar 

  30. Adamcova M, Pelouch V (1999) Isoforms of troponin in normal and diseased myocardium. Physiol Res 48:235–247

    CAS  PubMed  Google Scholar 

  31. Warren CM, Krzesinski PR, Campbell KS et al (2004) Titin isoform changes in rat myocardium during development. Mech Dev 121:1301–1312

    Article  CAS  PubMed  Google Scholar 

  32. Matherne GP, Headrick JP, Berr S et al (1993) Metabolic and functional responses of immature and mature rabbit hearts to hypoperfusion, ischemia, and reperfusion. Am J Physiol 264:H2141–H2153

    CAS  PubMed  Google Scholar 

  33. Kajimoto M, O'Kelly Priddy CM, Ledee DR et al (2013) Extracorporeal membrane oxygenation promotes long chain fatty acid oxidation in the immature swine heart in vivo. J Mol Cell Cardiol 62:144–152

    Article  CAS  PubMed  Google Scholar 

  34. Klein I (1988) Thyroxine-induced cardiac hypertrophy: time course of development and inhibition by propranolol. Endocrinology 123:203–210

    Article  CAS  PubMed  Google Scholar 

  35. Goglia F, Moreno M, Lanni A (1999) Action of thyroid hormones at the cellular level: the mitochondrial target. FEBS Lett 452:115–120

    Article  CAS  PubMed  Google Scholar 

  36. Weitzel JM, Iwen KA, Seitz HJ (2003) Regulation of mitochondrial biogenesis by thyroid hormone. Exp Physiol 88:121–128

    Article  CAS  PubMed  Google Scholar 

  37. Liu Y, Takeshita A, Misiti S et al (1998) Lack of coactivator interaction can be a mechanism for dominant negative activity by mutant thyroid hormone receptors. Endocrinology 139:4197–4204

    CAS  PubMed  Google Scholar 

  38. Olson AK, Bouchard B, Ning XH et al (2012) Triiodothyronine increases myocardial function and pyruvate entry into the citric acid cycle after reperfusion in a model of infant cardiopulmonary bypass. Am J Physiol Heart Circ Physiol 302:H1086–H1093

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Portman MA, Slee A, Olson AK et al (2010) Triiodothyronine Supplementation in Infants and Children Undergoing Cardiopulmonary Bypass (TRICC): a multicenter placebo-controlled randomized trial: age analysis. Circulation 122:S224–S233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Tani M (1990) Mechanisms of Ca2+ overload in reperfused ischemic myocardium. Annu Rev Physiol 52:543–559

    Article  CAS  PubMed  Google Scholar 

  41. Boland R, Martonosi A, Tillack TW (1974) Developmental changes in the composition and function of sarcoplasmic reticulum. J Biol Chem 249:612–623

    CAS  PubMed  Google Scholar 

  42. Kim HS, Hwang KC, Park WK (2010) Cardioprotection via modulation of calcium homeostasis by thiopental in hypoxia-reoxygenated neonatal rat cardiomyocytes. Yonsei Med J 51:187–196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Omar MA, Wang L, Clanachan AS (2010) Cardioprotection by GSK-3 inhibition: role of enhanced glycogen synthesis and attenuation of calcium overload. Cardiovasc Res 86:478–486

    Article  CAS  PubMed  Google Scholar 

  44. Balakumar P, Rohilla A, Singh M (2008) Pre-conditioning and postconditioning to limit ischemia-reperfusion-induced myocardial injury: what could be the next footstep? Pharmacol Res 57:403–412

    Article  PubMed  Google Scholar 

  45. Zhong H, Gao Z, Chen M et al (2013) Cardioprotective effect of remote ischemic postconditioning on children undergoing cardiac surgery: a randomized controlled trial. Paediatr Anaesth 23:726–733

    Article  PubMed  Google Scholar 

  46. Leung CH, Wang L, Nielsen JM et al (2014) Remote cardioprotection by transfer of coronary effluent from ischemic preconditioned rabbit heart preserves mitochondrial integrity and function via adenosine receptor activation. Cardiovasc Drugs Ther 28:7–17

    Article  CAS  PubMed  Google Scholar 

  47. Cheung MM, Kharbanda RK, Konstantinov IE et al (2006) Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J Am Coll Cardiol 47:2277–2282

    Article  PubMed  Google Scholar 

  48. Bolling K, Kronon M, Allen BS et al (1996) Myocardial protection in normal and hypoxically stressed neonatal hearts: the superiority of hypocalcemic versus normocalcemic blood cardioplegia. J Thorac Cardiovasc Surg 112:1193–1200; discussion 1200–1191

    Article  CAS  PubMed  Google Scholar 

  49. O'Brien JD, Howlett SE, Burton HJ et al (2009) Pediatric cardioplegia strategy results in enhanced calcium metabolism and lower serum troponin T. Ann Thorac Surg 87:1517–1523

    Article  PubMed  Google Scholar 

  50. Govindapillai A, Hua R, Rose R et al (2013) Protecting the aged heart during cardiac surgery: use of del Nido cardioplegia provides superior functional recovery in isolated hearts. J Thorac Cardiovasc Surg 146:940–948

    Article  PubMed  Google Scholar 

  51. Leung CH, Wang L, Fu YY et al (2011) Transient mitochondrial permeability transition pore opening after neonatal cardioplegic arrest. J Thorac Cardiovasc Surg 141:975–982

    Article  CAS  PubMed  Google Scholar 

  52. Pearl JM, Hiramoto J, Laks H et al (1994) Fumarate-enriched blood cardioplegia results in complete functional recovery of immature myocardium. Ann Thorac Surg 57:1636–1641

    Article  CAS  PubMed  Google Scholar 

  53. Weldner PW, Myers JL, Miller CA et al (1993) Improved recovery of immature myocardium with L-glutamate blood cardioplegia. Ann Thorac Surg 55:102–105

    Article  CAS  PubMed  Google Scholar 

  54. Kotani Y, Tweddell J, Gruber P et al (2013) Current cardioplegia practice in pediatric cardiac surgery: a North American multiinstitutional survey. Ann Thorac Surg 96:923–929

    Article  PubMed  Google Scholar 

  55. Jaswal JS, Keung W, Wang W et al (2011) Targeting fatty acid and carbohydrate oxidation–a novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta 1813:1333–1350

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Scholz M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ralphe, J.C., Scholz, T.D. (2014). Cardiac Metabolic Protection for the Newborn Heart. In: Lopaschuk, G., Dhalla, N. (eds) Cardiac Energy Metabolism in Health and Disease. Advances in Biochemistry in Health and Disease, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1227-8_17

Download citation

Publish with us

Policies and ethics