Skip to main content

Fuel Metabolism Plasticity in Pathological Cardiac Hypertrophy and Failure

  • Chapter
  • First Online:
Cardiac Energy Metabolism in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 11))

  • 1123 Accesses

Abstract

The cardiac metabolic network is a highly flexible system that adapts to the environment to maintain a high capacity for ATP production. During the development of pathological cardiac hypertrophy, a significant remodeling of metabolic pathways leads to a disruption in energy homeostasis, which contributes to the eventual heart failure. These changes include a shift of substrate preference from fatty acids to glucose, a reduction in the overall oxidative capacity, and a depletion of high energy phosphate content of the heart. Recent studies, using both pharmacological and genetic approaches, have focused on the functional significance of these metabolic changes and have suggested that the loss of metabolic flexibility is a key contributor to the development of cardiac dysfunction. This chapter will focus on advances in the understanding of cardiac metabolic plasticity in pathological cardiac hypertrophy and heart failure as well as therapeutic strategies based on these observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ingwall JS (2002) ATP and the heart. Kluwer, Boston

    Book  Google Scholar 

  2. Fisher DJ (1984) Oxygenation and metabolism in the developing heart. Semin Perinatol 8:217–225

    CAS  PubMed  Google Scholar 

  3. Lopaschuk GD, Belke DD, Gamble J, Itoi T, Schonekess BO (1994) Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta 1213:263–276

    Article  CAS  PubMed  Google Scholar 

  4. Belke DD, Larsen TS, Gibbs EM, Severson DL (2000) Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol Endocrinol Metab 279:E1104–E1113

    CAS  PubMed  Google Scholar 

  5. Mazumder PK, O'Neill BT, Roberts MW et al (2004) Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes 53:2366–2374

    Article  CAS  PubMed  Google Scholar 

  6. Barger PM, Kelly DP (1999) Fatty acid utilization in the hypertrophied and failing heart: molecular regulatory mechanisms. Am J Med Sci 318:36–42

    Article  CAS  PubMed  Google Scholar 

  7. Allard MF, Schonekess BO, Henning SL et al (1994) Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol 267:H742–H750

    CAS  PubMed  Google Scholar 

  8. Goodwin GW, Taegtmeyer H (2000) Improved energy homeostasis of the heart in the metabolic state of exercise. Am J Physiol Heart Circ Physiol 279:H1490–H1501

    CAS  PubMed  Google Scholar 

  9. Wentz AE, d'Avignon DA, Weber ML et al (2010) Adaptation of myocardial substrate metabolism to a ketogenic nutrient environment. J Biol Chem 285:24447–24456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Alaynick WA, Kondo RP, Xie W et al (2007) ERRgamma directs and maintains the transition to oxidative metabolism in the postnatal heart. Cell Metab 6:13–24

    Article  CAS  PubMed  Google Scholar 

  11. Lehman JJ, Barger PM, Kovacs A et al (2000) Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106:847–856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Michalik L, Desvergne B, Dreyer C et al (2002) PPAR expression and function during vertebrate development. Int J Dev Biol 46:105–114

    CAS  PubMed  Google Scholar 

  13. Semenza GL (2011) Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta 1813:1263–1268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kim M, Tian R (2011) Targeting AMPK for cardiac protection: opportunities and challenges. J Mol Cell Cardiol 51:548–553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Buttrick PM, Kaplan M, Leinwand LA, Scheuer J (1994) Alterations in gene expression in the rat heart after chronic pathological and physiological loads. J Mol Cell Cardiol 26:61–67

    Article  CAS  PubMed  Google Scholar 

  16. Razeghi P, Young ME, Alcorn JL et al (2001) Metabolic gene expression in fetal and failing human heart. Circulation 104:2923–2931

    Article  CAS  PubMed  Google Scholar 

  17. Leong HS, Grist M, Parsons H et al (2002) Accelerated rates of glycolysis in the hypertrophied heart: are they a methodological artifact? Am J Physiol Endocrinol Metab 282:E1039–E1045

    CAS  PubMed  Google Scholar 

  18. Nascimben L, Ingwall JS, Lorell BH et al (2004) Mechanisms for increased glycolysis in the hypertrophied rat heart. Hypertension 44:662–667

    Article  CAS  PubMed  Google Scholar 

  19. Kagaya Y, Kanno Y, Takeyama D et al (1990) Effects of long-term pressure overload on regional myocardial glucose and free fatty acid uptake in rats. A quantitative autoradiographic study. Circulation 81:1353–1361

    Article  CAS  PubMed  Google Scholar 

  20. Tian R, Musi N, D'Agostino J et al (2001) Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure-overload hypertrophy. Circulation 104:1664–1669

    Article  CAS  PubMed  Google Scholar 

  21. Zhang J, Duncker DJ, Ya X et al (1995) Effect of left ventricular hypertrophy secondary to chronic pressure overload on transmural myocardial 2-deoxyglucose uptake. A 31P NMR spectroscopic study. Circulation 92:1274–1283

    Article  CAS  PubMed  Google Scholar 

  22. El Alaoui-Talibi Z, Guendouz A, Moravec M, Moravec J (1997) Control of oxidative metabolism in volume-overloaded rat hearts: effect of propionyl-L-carnitine. Am J Physiol 272:H1615–H1624

    PubMed  Google Scholar 

  23. Wambolt RB, Henning SL, English DR et al (1999) Glucose utilization and glycogen turnover are accelerated in hypertrophied rat hearts during severe low-flow ischemia. J Mol Cell Cardiol 31:493–502

    Article  CAS  PubMed  Google Scholar 

  24. Taegtmeyer H, Overturf ML (1988) Effects of moderate hypertension on cardiac function and metabolism in the rabbit. Hypertension 11:416–426

    Article  CAS  PubMed  Google Scholar 

  25. Smith SH, Kramer MF, Reis I et al (1990) Regional changes in creatine kinase and myocyte size in hypertensive and nonhypertensive cardiac hypertrophy. Circ Res 67:1334–1344

    Article  CAS  PubMed  Google Scholar 

  26. Akki A, Smith K, Seymour AM (2008) Compensated cardiac hypertrophy is characterised by a decline in palmitate oxidation. Mol Cell Biochem 311:215–224

    Article  CAS  PubMed  Google Scholar 

  27. Schonekess BO, Allard MF, Lopaschuk GD (1995) Propionyl L-carnitine improvement of hypertrophied heart function is accompanied by an increase in carbohydrate oxidation. Circ Res 77:726–734

    Article  CAS  PubMed  Google Scholar 

  28. Owen OE, Kalhan SC, Hanson RW (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 277:30409–30412

    Article  CAS  PubMed  Google Scholar 

  29. Pound KM, Sorokina N, Ballal K et al (2009) Substrate-enzyme competition attenuates upregulated anaplerotic flux through malic enzyme in hypertrophied rat heart and restores triacylglyceride content: attenuating upregulated anaplerosis in hypertrophy. Circ Res 104:805–812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Sorokina N, O'Donnell JM, McKinney RD et al (2007) Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts. Circulation 115:2033–2041

    Article  CAS  PubMed  Google Scholar 

  31. Buchanan J, Mazumder PK, Hu P et al (2005) Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology 146:5341–5349

    Article  CAS  PubMed  Google Scholar 

  32. Rijzewijk LJ, van der Meer RW, Lamb HJ et al (2009) Altered myocardial substrate metabolism and decreased diastolic function in nonischemic human diabetic cardiomyopathy: studies with cardiac positron emission tomography and magnetic resonance imaging. J Am Coll Cardiol 54:1524–1532

    Article  CAS  PubMed  Google Scholar 

  33. Burkhoff D, Weiss RG, Schulman SP et al (1991) Influence of metabolic substrate on rat heart function and metabolism at different coronary flows. Am J Physiol 261:H741–H750

    CAS  PubMed  Google Scholar 

  34. Korvald C, Elvenes OP, Myrmel T (2000) Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol 278:H1345–H1351

    CAS  PubMed  Google Scholar 

  35. Boudina S, Sena S, Theobald H et al (2007) Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 56:2457–2466

    Article  CAS  PubMed  Google Scholar 

  36. Li SY, Yang X, Ceylan-Isik AF et al (2006) Cardiac contractile dysfunction in Lep/Lep obesity is accompanied by NADPH oxidase activation, oxidative modification of sarco(endo)plasmic reticulum Ca2+-ATPase and myosin heavy chain isozyme switch. Diabetologia 49:1434–1446

    Article  CAS  PubMed  Google Scholar 

  37. Szczepaniak LS, Dobbins RL, Metzger GJ et al (2003) Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn Reson Med 49:417–423

    Article  CAS  PubMed  Google Scholar 

  38. Szczepaniak LS, Victor RG, Orci L, Unger RH (2007) Forgotten but not gone: the rediscovery of fatty heart, the most common unrecognized disease in America. Circ Res 101:759–767

    Article  CAS  PubMed  Google Scholar 

  39. Finck BN, Lehman JJ, Leone TC et al (2002) The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 109:121–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Chiu HC, Kovacs A, Ford DA et al (2001) A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest 107:813–822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Tian R (2003) Transcriptional regulation of energy substrate metabolism in normal and hypertrophied heart. Curr Hypertens Rep 5:454–458

    Article  PubMed  Google Scholar 

  42. Arany Z, Novikov M, Chin S et al (2006) Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-gamma coactivator 1alpha. Proc Natl Acad Sci U S A 103:10086–10091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Lehman JJ, Kelly DP (2002) Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin Exp Pharmacol Physiol 29:339–345

    Article  CAS  PubMed  Google Scholar 

  44. Barger PM, Brandt JM, Leone TC et al (2000) Deactivation of peroxisome proliferator-activated receptor-alpha during cardiac hypertrophic growth. J Clin Invest 105:1723–1730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Depre C, Shipley GL, Chen W et al (1998) Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy. Nat Med 4:1269–1275

    Article  CAS  PubMed  Google Scholar 

  46. Aitman TJ, Glazier AM, Wallace CA et al (1999) Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 21:76–83

    Article  CAS  PubMed  Google Scholar 

  47. Vork MM, Trigault N, Snoeckx LH et al (1992) Heterogeneous distribution of fatty acid-binding protein in the hearts of Wistar Kyoto and spontaneously hypertensive rats. J Mol Cell Cardiol 24:317–321

    Article  CAS  PubMed  Google Scholar 

  48. Allard MF, Parsons HL, Saeedi R et al (2007) AMPK and metabolic adaptation by the heart to pressure overload. Am J Physiol Heart Circ Physiol 292:H140–H148

    CAS  PubMed  Google Scholar 

  49. Marsin AS, Bertrand L, Rider MH et al (2000) Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 10:1247–1255

    Article  CAS  PubMed  Google Scholar 

  50. Karamanlidis G, Nascimben L, Couper GS et al (2010) Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ Res 106:1541–1548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Sihag S, Cresci S, Li AY et al (2009) PGC-1alpha and ERRalpha target gene downregulation is a signature of the failing human heart. J Mol Cell Cardiol 46:201–212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Neubauer S (2007) The failing heart–an engine out of fuel. N Engl J Med 356:1140–1151

    Article  PubMed  Google Scholar 

  53. Iozzo P (2010) Metabolic toxicity of the heart: insights from molecular imaging. Nutr Metab Cardiovasc Dis 20:147156

    Article  Google Scholar 

  54. Taylor M, Wallhaus TR, Degrado TR et al (2001) An evaluation of myocardial fatty acid and glucose uptake using PET with 18F.fluoro-6-thia-heptadecanoic acid and 18F.FDG in patients with congestive heart failure. J Nucl Med 42:55–62

    CAS  PubMed  Google Scholar 

  55. Wallhaus TR, Taylor M, DeGrado TR et al (2001) Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation 103:2441–2446

    Article  CAS  PubMed  Google Scholar 

  56. Mandavia CH, Pulakat L, DeMarco V, Sowers JR (2012) Over-nutrition and metabolic cardiomyopathy. Metabolism 61:1205–1210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Davidoff AJ, Davidson MB, Carmody MW et al (2004) Diabetic cardiomyocyte dysfunction and myocyte insulin resistance: role of glucose-induced PKC activity. Mol Cell Biochem 262:155–163

    Article  CAS  PubMed  Google Scholar 

  58. Suarez J, Hu Y, Makino A et al (2008) Alterations in mitochondrial function and cytosolic calcium induced by hyperglycemia are restored by mitochondrial transcription factor A in cardiomyocytes. Am J Physiol Cell Physiol 295:C1561–C1568

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Liao R, Jain M, Cui L et al (2002) Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice. Circulation 106:2125–2131

    Article  CAS  PubMed  Google Scholar 

  60. Luptak I, Yan J, Cui L et al (2007) Long-term effects of increased glucose entry on mouse hearts during normal aging and ischemic stress. Circulation 116:901–909

    Article  CAS  PubMed  Google Scholar 

  61. Yan J, Young ME, Cui L et al (2009) Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity. Circulation 119:2818–2828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Lionetti V, Linke A, Chandler MP et al (2005) Carnitine palmitoyl transferase-I inhibition prevents ventricular remodeling and delays decompensation in pacing-induced heart failure. Cardiovasc Res 66:454–461

    Article  CAS  PubMed  Google Scholar 

  63. Turcani M, Rupp H (1997) Etomoxir improves left ventricular performance of pressure-overloaded rat heart. Circulation 96:3681–3686

    Article  CAS  PubMed  Google Scholar 

  64. Rupp H, Vetter R (2000) Sarcoplasmic reticulum function and carnitine palmitoyltransferase-1 inhibition during progression of heart failure. Br J Pharmacol 131:1748–1756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Lee L, Campbell R, Scheuermann-Freestone M et al (2005) Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation 112:3280–3288

    Article  CAS  PubMed  Google Scholar 

  66. Vitale C, Wajngaten M, Sposato B et al (2004) Trimetazidine improves left ventricular function and quality of life in elderly patients with coronary artery disease. Eur Heart J 25:1814–1821

    Article  CAS  PubMed  Google Scholar 

  67. Tuunanen H, Engblom E, Naum A et al (2006) Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation 114:2130–2137

    Article  CAS  PubMed  Google Scholar 

  68. Augustus AS, Buchanan J, Park TS et al (2006) Loss of lipoprotein lipase-derived fatty acids leads to increased cardiac glucose metabolism and heart dysfunction. J Biol Chem 281:8716–8723

    Article  CAS  PubMed  Google Scholar 

  69. Luptak I, Balschi JA, Xing Y et al (2005) Decreased contractile and metabolic reserve in peroxisome proliferator-activated receptor-alpha-null hearts can be rescued by increasing glucose transport and utilization. Circulation 112:2339–2346

    Article  CAS  PubMed  Google Scholar 

  70. Watanabe K, Fujii H, Takahashi T et al (2000) Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age-dependent cardiac toxicity. J Biol Chem 275:22293–22299

    Article  CAS  PubMed  Google Scholar 

  71. Ashrafian H, Frenneaux MP, Opie LH (2007) Metabolic mechanisms in heart failure. Circulation 116:434–448

    Article  CAS  PubMed  Google Scholar 

  72. Witteles RM, Tang WH, Jamali AH et al (2004) Insulin resistance in idiopathic dilated cardiomyopathy: a possible etiologic link. J Am Coll Cardiol 44:78–81

    Article  CAS  PubMed  Google Scholar 

  73. Bhashyam S, Fields AV, Patterson B et al (2010) Glucagon-like peptide-1 increases myocardial glucose uptake via p38alpha MAP kinase-mediated, nitric oxide-dependent mechanisms in conscious dogs with dilated cardiomyopathy. Circ Heart Fail 3:512–521

    Article  PubMed Central  PubMed  Google Scholar 

  74. Nikolaidis LA, Mankad S, Sokos GG et al (2004) Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 109:962–965

    Article  CAS  PubMed  Google Scholar 

  75. Poornima I, Brown SB, Bhashyam S et al (2008) Chronic glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failure-prone rat. Circ Heart Fail 1:153–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Young ME, Laws FA, Goodwin GW, Taegtmeyer H (2001) Reactivation of peroxisome proliferator-activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart. J Biol Chem 276:44390–44395

    Article  CAS  PubMed  Google Scholar 

  77. Morgan EE, Rennison JH, Young ME et al (2006) Effects of chronic activation of peroxisome proliferator-activated receptor-alpha or high-fat feeding in a rat infarct model of heart failure. Am J Physiol Heart Circ Physiol 290:H1899–H1904

    CAS  PubMed  Google Scholar 

  78. Labinskyy V, Bellomo M, Chandler MP et al (2007) Chronic activation of peroxisome proliferator-activated receptor-alpha with fenofibrate prevents alterations in cardiac metabolic phenotype without changing the onset of decompensation in pacing-induced heart failure. J Pharmacol Exp Ther 321:165–171

    Article  CAS  PubMed  Google Scholar 

  79. Chess DJ, Khairallah RJ, O'Shea KM et al (2009) A high-fat diet increases adiposity but maintains mitochondrial oxidative enzymes without affecting development of heart failure with pressure overload. Am J Physiol Heart Circ Physiol 297:H1585–H1593

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Okere IC, Young ME, McElfresh TA et al (2006) Low carbohydrate/high-fat diet attenuates cardiac hypertrophy, remodeling, and altered gene expression in hypertension. Hypertension 48:1116–1123

    Article  CAS  PubMed  Google Scholar 

  81. Rennison JH, McElfresh TA, Okere IC et al (2007) High-fat diet postinfarction enhances mitochondrial function and does not exacerbate left ventricular dysfunction. Am J Physiol Heart Circ Physiol 292:H1498–H1506

    CAS  PubMed  Google Scholar 

  82. Kalantar-Zadeh K, Block G, Horwich T, Fonarow GC (2004) Reverse epidemiology of conventional cardiovascular risk factors in patients with chronic heart failure. J Am Coll Cardiol 43:1439–1444

    Article  PubMed  Google Scholar 

  83. Oreopoulos A, Padwal R, Kalantar-Zadeh K et al (2008) Body mass index and mortality in heart failure: a meta-analysis. Am Heart J 156:13–22

    Article  PubMed  Google Scholar 

  84. Kolwicz SC Jr, Olson DP, Marney LC et al (2012) Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circ Res 111:728–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Chambers KT, Leone TC, Sambandam N et al (2011) Chronic inhibition of pyruvate dehydrogenase in heart triggers an adaptive metabolic response. J Biol Chem 286:11155–11162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Kolwicz SC Jr, Purohit S, Tian R (2013) Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res 113:603–616

    Article  CAS  PubMed  Google Scholar 

  87. Kolwicz SC Jr, Tian R (2009) Metabolic therapy at the crossroad: how to optimize myocardial substrate utilization? Trends Cardiovasc Med 19:201–207

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Tian M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kolwicz, S.C., Tian, R. (2014). Fuel Metabolism Plasticity in Pathological Cardiac Hypertrophy and Failure. In: Lopaschuk, G., Dhalla, N. (eds) Cardiac Energy Metabolism in Health and Disease. Advances in Biochemistry in Health and Disease, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1227-8_11

Download citation

Publish with us

Policies and ethics