Skip to main content

Manipulation of RNA Using Engineered Proteins with Customized Specificity

  • Chapter
  • First Online:
Systems Biology of RNA Binding Proteins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 825))

Abstract

A large number of RNA-binding proteins play critical roles in controlling eukaryotic gene expression at multiple RNA-processing steps. Many of these proteins have modular configuration, containing a RNA binding domain to recognize their target and functional module to affect RNA metabolism. This simple configuration motivated the design of artificial factors that specifically manipulate RNA. While significant progress has been made since 1990s to engineer DNA binding proteins with designed specificity, design of analogous RNA binding factors was not practical until recently. With the increasing complexity of biological pathways involving RNA regulation, engineering RNA binding factors with customized specificity and function has become an emerging field of research. Such factors can serve as novel method to manipulate RNA metabolism and thus are very useful in basic biological and medical research. Here we discuss the current advances in engineering RNA binding proteins, with emphasis on the design principles and their potential applications as new therapeutic reagents and basic biological tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelman K, Lis JT (2012) Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 13(10):720–731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Argos P (1990) An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J Mol Biol 211(4):943–958

    CAS  PubMed  Google Scholar 

  • Auweter SD, Oberstrass FC, Allain FH (2006a) Sequence-specific binding of single-stranded RNA: is there a code for recognition? Nucleic Acids Res 34(17):4943–4959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Auweter SD, Fasan R, Reymond L, Underwood JG, Black DL, Pitsch S et al (2006b) Molecular basis of RNA recognition by the human alternative splicing factor Fox-1. EMBO J 25(1):163–173, PMCID: 1356361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barkan A, Rojas M, Fujii S, Yap A, Chong YS, Bond CS et al (2012) A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins. PLoS Genet 8(8):e1002910, PMCID: 3420917

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barker DD, Wang C, Moore J, Dickinson LK, Lehmann R (1992) Pumilio is essential for function but not for distribution of the Drosophila abdominal determinant Nanos. Genes Dev 6(12A):2312–2326

    CAS  PubMed  Google Scholar 

  • Beintema JJ, Kleineidam RG (1998) The ribonuclease A superfamily: general discussion. Cell Mol Life Sci 54(8):825–832

    CAS  PubMed  Google Scholar 

  • Beuth B, Pennell S, Arnvig KB, Martin SR, Taylor IA (2005) Structure of a Mycobacterium tuberculosis NusA-RNA complex. EMBO J 24(20):3576–3587, PMCID: 1276712

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhaskara RM, de Brevern AG, Srinivasan N (2012) Understanding the role of domain-domain linkers in the spatial orientation of domains in multi-domain proteins. J Biomol Struct Dyn 31(12):1467–1480

    PubMed  Google Scholar 

  • Birney E, Kumar S, Krainer AR (1993) Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res 21(25):5803–5816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blancafort P, Beltran AS (2008) Rational design, selection and specificity of artificial transcription factors (ATFs): the influence of chromatin in target gene regulation. Comb Chem High Throughput Screen 11(2):146–158

    CAS  PubMed  Google Scholar 

  • Blancafort P, Segal DJ, Barbas CF III (2004) Designing transcription factor architectures for drug discovery. Mol Pharmacol 66(6):1361–1371

    CAS  PubMed  Google Scholar 

  • Blewett NH, Goldstrohm AC (2012) A eukaryotic translation initiation factor 4E-binding protein promotes mRNA decapping and is required for PUF repression. Mol Cell Biol 32(20):4181–4194, PMCID: 3457345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Braddock DT, Louis JM, Baber JL, Levens D, Clore GM (2002) Structure and dynamics of KH domains from FBP bound to single-stranded DNA. Nature 415(6875):1051–1056

    CAS  PubMed  Google Scholar 

  • Burd CG, Matunis EL, Dreyfuss G (1991) The multiple RNA-binding domains of the mRNA poly(A)-binding protein have different RNA-binding activities. Mol Cell Biol 11(7):3419–3424, PMCID: 361068

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caceres JF, Krainer AR (1993) Functional analysis of pre-mRNA splicing factor SF2/ASF structural domains. EMBO J 12(12):4715–4726

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calvin K, Li H (2008) RNA-splicing endonuclease structure and function. Cell Mol Life Sci 65(7–8):1176–1185

    CAS  PubMed  Google Scholar 

  • Chen Y, Varani G (2013) Engineering RNA-binding proteins for biology. FEBS J 280(16):3734–3754

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheong CG, Hall TMT (2006) Engineering RNA sequence specificity of Pumilio repeats. Proc Natl Acad Sci U S A 103(37):13635–13639

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choudhury R, Tsai YS, Dominguez D, Wang Y, Wang Z (2012) Engineering RNA endonucleases with customized sequence specificities. Nat Commun 3:1147

    PubMed Central  PubMed  Google Scholar 

  • Cooke A, Prigge A, Opperman L, Wickens M (2011) Targeted translational regulation using the PUF protein family scaffold. Proc Natl Acad Sci U S A 108(38):15870–15875

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crick F (1970) Central dogma of molecular biology. Nature 227(5258):561–563

    CAS  PubMed  Google Scholar 

  • Daubner GM, Clery A, Allain FH (2013) RRM-RNA recognition: NMR or crystallography…and new findings. Curr Opin Struct Biol 23(1):100–108

    CAS  PubMed  Google Scholar 

  • Delannoy E, Stanley WA, Bond CS, Small ID (2007) Pentatricopeptide repeat (PPR) proteins as sequence-specificity factors in post-transcriptional processes in organelles. Biochem Soc Trans 35(Pt 6):1643–1647

    CAS  PubMed  Google Scholar 

  • Dominguez C, Fisette JF, Chabot B, Allain FH (2010) Structural basis of G-tract recognition and encaging by hnRNP F quasi-RRMs. Nat Struct Mol Biol 17(7):853–861

    CAS  PubMed  Google Scholar 

  • Dong S, Wang Y, Cassidy-Amstutz C, Lu G, Bigler R, Jezyk MR et al (2011) Specific and modular binding code for cytosine recognition in Pumilio/FBF (PUF) RNA-binding domains. J Biol Chem 286(30):26732–26742

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elzoghby AO, Samy WM, Elgindy NA (2012) Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release 161(1):38–49

    CAS  PubMed  Google Scholar 

  • Filipovska A, Razif MF, Nygard KK, Rackham O (2011) A universal code for RNA recognition by PUF proteins. Nat Chem Biol 7(7):425–427

    CAS  PubMed  Google Scholar 

  • Furman JL, Badran AH, Ajulo O, Porter JR, Stains CI, Segal DJ et al (2010) Toward a general approach for RNA-templated hierarchical assembly of split-proteins. J Am Chem Soc 132(33):11692–11701

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galka-Marciniak P, Urbanek MO, Krzyzosiak WJ (2012) Triplet repeats in transcripts: structural insights into RNA toxicity. Biol Chem 393(11):1299–1315

    CAS  PubMed  Google Scholar 

  • George RA, Heringa J (2002) An analysis of protein domain linkers: their classification and role in protein folding. Protein Eng 15(11):871–879

    CAS  PubMed  Google Scholar 

  • Goldstrohm AC, Hook BA, Seay DJ, Wickens M (2006) PUF proteins bind Pop2p to regulate messenger RNAs. Nat Struct Mol Biol 13(6):533–539

    CAS  PubMed  Google Scholar 

  • Goldstrohm AC, Seay DJ, Hook BA, Wickens M (2007) PUF protein-mediated deadenylation is catalyzed by Ccr4p. J Biol Chem 282(1):109–114

    CAS  PubMed  Google Scholar 

  • Greisman HA, Pabo CO (1997) A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science 275(5300):657–661

    CAS  PubMed  Google Scholar 

  • Grishin NV (2001) KH domain: one motif, two folds. Nucleic Acids Res 29(3):638–643, PMCID: 30387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hall-Pogar T, Liang S, Hague LK, Lutz CS (2007) Specific trans-acting proteins interact with auxiliary RNA polyadenylation elements in the COX-2 3′-UTR. RNA 13(7):1103–1115

    CAS  PubMed Central  PubMed  Google Scholar 

  • Howard MJ, Lim WH, Fierke CA, Koutmos M (2012) Mitochondrial ribonuclease P structure provides insight into the evolution of catalytic strategies for precursor-tRNA 5′ processing. Proc Natl Acad Sci U S A 109(40):16149–16154, PMCID: 3479547

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jamieson AC, Miller JC, Pabo CO (2003) Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov 2(5):361–368

    CAS  PubMed  Google Scholar 

  • Ji Z, Tian B (2009) Reprogramming of 3' untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS One 4(12):e8419

    PubMed Central  PubMed  Google Scholar 

  • Kedde M, van Kouwenhove M, Zwart W, Oude Vrielink JA, Elkon R, Agami R (2010) A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility. Nat Cell Biol 12(10):1014–1020

    CAS  PubMed  Google Scholar 

  • Kim Y, Kweon J, Kim A, Chon JK, Yoo JY, Kim HJ et al (2013) A library of TAL effector nucleases spanning the human genome. Nat Biotechnol 31(3):251–258

    CAS  PubMed  Google Scholar 

  • Klug A (2010) The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem 79:213–231

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Kawabata M, Hisano K, Kazama T, Matsuoka K, Sugita M et al (2012) Identification and characterization of the RNA binding surface of the pentatricopeptide repeat protein. Nucleic Acids Res 40(6):2712–2723, PMCID: 3315335

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koren E, Torchilin VP (2012) Cell-penetrating peptides: breaking through to the other side. Trends Mol Med 18(7):385–393

    CAS  PubMed  Google Scholar 

  • Kotin RM, Siniscalco M, Samulski RJ, Zhu XD, Hunter L, Laughlin CA et al (1990) Site-specific integration by adeno-associated virus. Proc Natl Acad Sci U S A 87(6):2211–2215, PMCID: 53656

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larochelle S, Amat R, Glover-Cutter K, Sanso M, Zhang C, Allen JJ et al (2012) Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Nat Struct Mol Biol 19(11):1108–1115

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leibovich L, Mandel-Gutfreund Y, Yakhini Z (2010) A structural-based statistical approach suggests a cooperative activity of PUM1 and miR-410 in human 3′-untranslated regions. Silence 1(1):17

    PubMed Central  PubMed  Google Scholar 

  • Li Y, Wang J, Satterle A, Wu Q, Liu F (2012) Gene transfer to skeletal muscle by site-specific delivery of electroporation and ultrasound. Biochem Biophys Res Commun 424(2):203–207

    CAS  PubMed  Google Scholar 

  • Lionnet T, Czaplinski K, Darzacq X, Shav-Tal Y, Wells AL, Chao JA et al (2011) A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat Methods 8(2):165–170

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu G, Hall TMT (2011) Alternate modes of cognate RNA recognition by human PUMILIO proteins. Structure 19(3):361–367

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lunde BM, Moore C, Varani G (2007) RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 8(6):479–490

    CAS  PubMed  Google Scholar 

  • Macdonald PM (1992) The Drosophila pumilio gene: an unusually long transcription unit and an unusual protein. Development 114(1):221–232

    CAS  PubMed  Google Scholar 

  • Mackay JP, Font J, Segal DJ (2011) The prospects for designer single-stranded RNA-binding proteins. Nat Struct Mol Biol 18(3):256–261

    CAS  PubMed  Google Scholar 

  • Maris C, Dominguez C, Allain FH (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J 272(9):2118–2131

    CAS  PubMed  Google Scholar 

  • Marshall GR, Feng JA, Kuster DJ (2008) Back to the future: ribonuclease A. Biopolymers 90(3):259–277

    CAS  PubMed  Google Scholar 

  • Miles WO, Tschop K, Herr A, Ji JY, Dyson NJ (2012) Pumilio facilitates miRNA regulation of the E2F3 oncogene. Genes Dev 26(4):356–368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143–148

    CAS  PubMed  Google Scholar 

  • Newnham CM, Hall-Pogar T, Liang S, Wu J, Tian B, Hu J et al (2010) Alternative polyadenylation of MeCP2: influence of cis-acting elements and trans-acting factors. RNA Biol 7(3):361–372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nishikura K (2010) Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 79:321–349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nolde MJ, Saka N, Reinert KL, Slack FJ (2007) The Caenorhabditis elegans pumilio homolog, puf-9, is required for the 3′UTR-mediated repression of the let-7 microRNA target gene, hbl-1. Dev Biol 305(2):551–563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oberstrass FC, Auweter SD, Erat M, Hargous Y, Henning A, Wenter P et al (2005) Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science 309(5743):2054–2057

    CAS  PubMed  Google Scholar 

  • Ozawa T, Natori Y, Sato M, Umezawa Y (2007) Imaging dynamics of endogenous mitochondrial RNA in single living cells. Nat Methods 4(5):413–419

    CAS  PubMed  Google Scholar 

  • Park HY, Trcek T, Wells AL, Chao JA, Singer RH (2012) An unbiased analysis method to quantify mRNA localization reveals its correlation with cell motility. Cell Rep 1(2):179–184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parker JS (2010) How to slice: snapshots of Argonaute in action. Silence 1(1):3, PMCID: 2835997

    PubMed Central  PubMed  Google Scholar 

  • Perez-Canadillas JM (2006) Grabbing the message: structural basis of mRNA 3′UTR recognition by Hrp1. EMBO J 25(13):3167–3178, PMCID: 1500993

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perez-Pinera P, Ousterout DG, Gersbach CA (2012) Advances in targeted genome editing. Curr Opin Chem Biol 16(3–4):268–277, PMCID: 3424393

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peterson ML, Bingham GL, Cowan C (2006) Multiple features contribute to the use of the immunoglobulin M secretion-specific poly(A) signal but are not required for developmental regulation. Mol Cell Biol 26(18):6762–6771

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pomerantz JL, Sharp PA, Pabo CO (1995) Structure-based design of transcription factors. Science 267(5194):93–96

    CAS  PubMed  Google Scholar 

  • Querido E, Chartrand P (2008) Using fluorescent proteins to study mRNA trafficking in living cells. Methods Cell Biol 85:273–292

    CAS  PubMed  Google Scholar 

  • Rackham O, Filipovska A (2012) The role of mammalian PPR domain proteins in the regulation of mitochondrial gene expression. Biochim Biophys Acta 1819(9–10):1008–1016

    CAS  PubMed  Google Scholar 

  • Rebar EJ, Pabo CO (1994) Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science 263(5147):671–673

    CAS  PubMed  Google Scholar 

  • Ringel R, Sologub M, Morozov YI, Litonin D, Cramer P, Temiakov D (2011) Structure of human mitochondrial RNA polymerase. Nature 478(7368):269–273

    CAS  PubMed  Google Scholar 

  • Safaee N, Kozlov G, Noronha AM, Xie J, Wilds CJ, Gehring K (2012) Interdomain allostery promotes assembly of the poly(A) mRNA complex with PABP and eIF4G. Mol Cell 48(3):375–386

    CAS  PubMed  Google Scholar 

  • Saha D, Prasad AM, Srinivasan R (2007) Pentatricopeptide repeat proteins and their emerging roles in plants. Plant Physiol Biochem 45(8):521–534

    CAS  PubMed  Google Scholar 

  • Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (2008) Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320(5883):1643–1647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sepp A, Choo Y (2005) Cell-free selection of zinc finger DNA-binding proteins using in vitro compartmentalization. J Mol Biol 354(2):212–219

    CAS  PubMed  Google Scholar 

  • Shamoo Y, Abdul-Manan N, Williams KR (1995) Multiple RNA binding domains (RBDs) just don’t add up. Nucleic Acids Res 23(5):725–728, PMCID: 306750

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sickmier EA, Frato KE, Shen H, Paranawithana SR, Green MR, Kielkopf CL (2006) Structural basis for polypyrimidine tract recognition by the essential pre-mRNA splicing factor U2AF65. Mol Cell 23(1):49–59, PMCID: 2043114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh RK, Cooper TA (2012) Pre-mRNA splicing in disease and therapeutics. Trends Mol Med 18(8):472–482

    CAS  PubMed Central  PubMed  Google Scholar 

  • Small ID, Peeters N (2000) The PPR motif - a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25(2):46–47

    CAS  PubMed  Google Scholar 

  • Surosky RT, Urabe M, Godwin SG, McQuiston SA, Kurtzman GJ, Ozawa K et al (1997) Adeno-associated virus Rep proteins target DNA sequences to a unique locus in the human genome. J Virol 71(10):7951–7959, PMCID: 192153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takenaka M, Zehrmann A, Brennicke A, Graichen K (2013) Improved computational target site prediction for pentatricopeptide repeat RNA editing factors. PLoS One 8(6):e65343, PMCID: 3675099

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomsen S, Azzam G, Kaschula R, Williams LS, Alonso CR (2010) Developmental RNA processing of 3'UTRs in Hox mRNAs as a context-dependent mechanism modulating visibility to microRNAs. Development 137(17):2951–2960

    CAS  PubMed  Google Scholar 

  • Tilsner J, Linnik O, Christensen NM, Bell K, Roberts IM, Lacomme C et al (2009) Live-cell imaging of viral RNA genomes using a Pumilio-based reporter. Plant J 57(4):758–770

    CAS  PubMed  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11(9):636–646

    CAS  PubMed  Google Scholar 

  • Valverde R, Edwards L, Regan L (2008) Structure and function of KH domains. FEBS J 275(11):2712–2726

    CAS  PubMed  Google Scholar 

  • Van Etten J, Schagat TL, Hrit J, Weidmann CA, Brumbaugh J, Coon JJ et al (2012) Human Pumilio proteins recruit multiple deadenylases to efficiently repress messenger RNAs. J Biol Chem 287(43):36370–36383, PMCID: 3476303

    PubMed Central  PubMed  Google Scholar 

  • von Roretz C, Di Marco S, Mazroui R, Gallouzi IE (2011) Turnover of AU-rich-containing mRNAs during stress: a matter of survival. Wiley Interdiscip Rev RNA 2(3):336–347

    Google Scholar 

  • Wang Z, Burge CB (2008) Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14(5):802–813, PMCID: 2327353

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Zamore PD, Hall TMT (2001) Crystal structure of a Pumilio homology domain. Mol Cell 7(4):855–865

    CAS  PubMed  Google Scholar 

  • Wang X, McLachlan J, Zamore PD, Hall TMT (2002) Modular recognition of RNA by a human pumilio-homology domain. Cell 110(4):501–512

    CAS  PubMed  Google Scholar 

  • Wang Y, Cheong CG, Hall TMT, Wang Z (2009) Engineering splicing factors with designed specificities. Nat Methods 6(11):825–830

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Xiao X, Zhang J, Choudhury R, Robertson A, Li K et al (2012a) A complex network of factors with overlapping affinities represses splicing through intronic elements. Nat Struct Mol Biol 20(1):36–45, PMCID: 3537874

    PubMed Central  PubMed  Google Scholar 

  • Wang Y, Ma M, Xiao X, Wang Z (2012b) Intronic splicing enhancers, cognate splicing factors and context-dependent regulation rules. Nat Struct Mol Biol 19(10):1044–1052

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Wang Z, Tanaka Hall TM (2013) Engineered proteins with Pumilio/fem-3 mRNA binding factor scaffold to manipulate RNA metabolism. FEBS J 280(16):3755–3767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weidmann CA, Goldstrohm AC (2012) Drosophila Pumilio protein contains multiple autonomous repression domains that regulate mRNAs independently of Nanos and brain tumor. Mol Cell Biol 32(2):527–540, PMCID: 3255780

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada T, Yoshimura H, Inaguma A, Ozawa T (2011) Visualization of nonengineered single mRNAs in living cells using genetically encoded fluorescent probes. Anal Chem 83(14):5708–5714

    CAS  PubMed  Google Scholar 

  • Yoshida H (2001) The ribonuclease T1 family. Methods Enzymol 341:28–41

    CAS  PubMed  Google Scholar 

  • Yoshimura H, Inaguma A, Yamada T, Ozawa T (2012) Fluorescent probes for imaging endogenous beta-actin mRNA in living cells using fluorescent protein-tagged pumilio. ACS Chem Biol 7(6):999–1005

    CAS  PubMed  Google Scholar 

  • Zamore PD, Williamson JR, Lehmann R (1997) The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins. RNA 3(12):1421–1433, PMCID: 1369583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang B, Gallegos M, Puoti A, Durkin E, Fields S, Kimble J et al (1997) A conserved RNA-binding protein that regulates sexual fates in the C elegans hermaphrodite germ line. Nature 390(6659):477–484

    CAS  PubMed  Google Scholar 

  • Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29(2):149–153, PMCID: 3084533

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zefeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Choudhury, R., Wang, Z. (2014). Manipulation of RNA Using Engineered Proteins with Customized Specificity. In: Yeo, G. (eds) Systems Biology of RNA Binding Proteins. Advances in Experimental Medicine and Biology, vol 825. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1221-6_6

Download citation

Publish with us

Policies and ethics