Skip to main content

The Functions and Regulatory Principles of mRNA Intracellular Trafficking

  • Chapter
  • First Online:
Systems Biology of RNA Binding Proteins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 825))

Abstract

The subcellular localization of RNA molecules is a key step in the control of gene expression that impacts a broad array of biological processes in different organisms and cell types. Like other aspects of posttranscriptional gene regulation discussed in this collection of reviews, the intracellular trafficking of mRNAs is modulated by a complex regulatory code implicating specific cis-regulatory elements, RNA-binding proteins, and cofactors that function combinatorially to dictate precise localization mechanisms. In this review, we first discuss the functional benefits of transcript localization, the regulatory principles involved, and specific molecular mechanisms that have been described for a few well-characterized mRNAs. We also overview some of the emerging genomic and imaging technologies that have provided significant insights into this layer of gene regulation. Finally, we highlight examples of human diseases where defective transcript localization has been documented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe H, Kool ET (2006) Flow cytometric detection of specific RNAs in native human cells with quenched autoligating FRET probes. Proc Natl Acad Sci U S A 103(2):263–268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adereth Y et al (2005) RNA-dependent integrin alpha3 protein localization regulated by the Muscleblind-like protein MLP1. Nat Cell Biol 7(12):1240–1247

    PubMed  PubMed Central  Google Scholar 

  • Ainger K et al (1997) Transport and localization elements in myelin basic protein mRNA. J Cell Biol 138(5):1077–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akten B et al (2011) Interaction of survival of motor neuron (SMN) and HuD proteins with mRNA cpg15 rescues motor neuron axonal deficits. Proc Natl Acad Sci U S A 108(25):10337–10342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amrute-Nayak M, Bullock SL (2012) Single-molecule assays reveal that RNA localization signals regulate dynein-dynactin copy number on individual transcript cargoes. Nat Cell Biol 14(4):416–423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Antar LN, Dictenberg JB, Plociniak M, Afroz R, Bassell GJ (2005) Localization of FMRP-associated mRNA granules and requirement of microtubules for activity-dependent trafficking in hippocampal neurons. Genes Brain Behav 4(6):350–359

    CAS  PubMed  Google Scholar 

  • Ashley CT Jr, Wilkinson KD, Reines D, Warren ST (1993) FMR1 protein: conserved RNP family domains and selective RNA binding. Science 262(5133):563–566

    CAS  PubMed  Google Scholar 

  • Aumiller V, Graebsch A, Kremmer E, Niessing D, Forstemann K (2012) Drosophila Pur-alpha binds to trinucleotide-repeat containing cellular RNAs and translocates to the early oocyte. RNA Biol 9(5):633–643

    CAS  PubMed  Google Scholar 

  • Bagni C, Tassone F, Neri G, Hagerman R (2012) Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics. J Clin Invest 122(12):4314–4322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bashirullah A et al (1999) Joint action of two RNA degradation pathways controls the timing of maternal transcript elimination at the midblastula transition in Drosophila melanogaster. EMBO J 18(9):2610–2620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bashirullah A, Cooperstock RL, Lipshitz HD (2001) Spatial and temporal control of RNA stability. Proc Natl Acad Sci U S A 98(13):7025–7028

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bassell GJ et al (1998) Sorting of beta-actin mRNA and protein to neurites and growth cones in culture. J Neurosci 18(1):251–265

    CAS  PubMed  Google Scholar 

  • Batista PJ, Chang HY (2013) Cytotopic localization by long noncoding RNAs. Curr Opin Cell Biol 25(2):195–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beach DL, Salmon ED, Bloom K (1999) Localization and anchoring of mRNA in budding yeast. Curr Biol 9(11):569–578

    CAS  PubMed  Google Scholar 

  • Becalska AN et al (2011) Aubergine is a component of a nanos mRNA localization complex. Dev Biol 349(1):46–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bechade C et al (1999) Subcellular distribution of survival motor neuron (SMN) protein: possible involvement in nucleocytoplasmic and dendritic transport. Eur J Neurosci 11(1):293–304

    CAS  PubMed  Google Scholar 

  • Berleth T et al (1988) The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J 7(6):1749–1756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand E et al (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2(4):437–445

    CAS  PubMed  Google Scholar 

  • Besse F, Lopez de Quinto S, Marchand V, Trucco A, Ephrussi A (2009) Drosophila PTB promotes formation of high-order RNP particles and represses oskar translation. Genes Dev 23(2):195–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Betley JN et al (2004) Kinesin II mediates Vg1 mRNA transport in Xenopus oocytes. Curr Biol 14(3):219–224

    CAS  PubMed  Google Scholar 

  • Bianco A, Dienstbier M, Salter HK, Gatto G, Bullock SL (2010) Bicaudal-D regulates fragile X mental retardation protein levels, motility, and function during neuronal morphogenesis. Curr Biol 20(16):1487–1492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bilinski SM, Jaglarz MK, Szymanska B, Etkin LD, Kloc M (2004) Sm proteins, the constituents of the spliceosome, are components of nuage and mitochondrial cement in Xenopus oocytes. Exp Cell Res 299(1):171–178

    CAS  PubMed  Google Scholar 

  • Blichenberg A et al (2001) Identification of a cis-acting dendritic targeting element in the mRNA encoding the alpha subunit of Ca2+/calmodulin-dependent protein kinase II. Eur J Neurosci 13(10):1881–1888

    CAS  PubMed  Google Scholar 

  • Blower MD, Feric E, Weis K, Heald R (2007) Genome-wide analysis demonstrates conserved localization of messenger RNAs to mitotic microtubules. J Cell Biol 179(7):1365–1373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bobola N, Jansen RP, Shin TH, Nasmyth K (1996) Asymmetric accumulation of Ash1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell 84(5):699–709

    CAS  PubMed  Google Scholar 

  • Bohl F, Kruse C, Frank A, Ferring D, Jansen RP (2000) She2p, a novel RNA-binding protein tethers ASH1 mRNA to the Myo4p myosin motor via She3p. EMBO J 19(20):5514–5524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brook JD et al (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68(4):799–808

    CAS  PubMed  Google Scholar 

  • Buckley PT et al (2011) Cytoplasmic intron sequence-retaining transcripts can be dendritically targeted via ID element retrotransposons. Neuron 69(5):877–884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bullock SL, Ish-Horowicz D (2001) Conserved signals and machinery for RNA transport in Drosophila oogenesis and embryogenesis. Nature 414(6864):611–616

    CAS  PubMed  Google Scholar 

  • Burghes AH (1997) When is a deletion not a deletion? When it is converted. Am J Hum Genet 61(1):9–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burghes AH, Beattie CE (2009) Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 10(8):597–609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casolari JM et al (2012) Widespread mRNA association with cytoskeletal motor proteins and identification and dynamics of myosin-associated mRNAs in S. cerevisiae. PLoS One 7(2):e31912

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cha BJ, Koppetsch BS, Theurkauf WE (2001) In vivo analysis of Drosophila bicoid mRNA localization reveals a novel microtubule-dependent axis specification pathway. Cell 106(1):35–46

    CAS  PubMed  Google Scholar 

  • Chang JS et al (2001) Functioning of the Drosophila orb gene in gurken mRNA localization and translation. Development 128(16):3169–3177

    CAS  PubMed  Google Scholar 

  • Chang P et al (2004) Localization of RNAs to the mitochondrial cloud in Xenopus oocytes through entrapment and association with endoplasmic reticulum. Mol Biol Cell 15(10):4669–4681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chao JA et al (2010) ZBP1 recognition of beta-actin zipcode induces RNA looping. Genes Dev 24(2):148–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Liu TW, Lo PC, Wilson BC, Zheng G (2009) “Zipper” molecular beacons: a generalized strategy to optimize the performance of activatable protease probes. Bioconjug Chem 20(10):1836–1842

    CAS  PubMed  Google Scholar 

  • Chen Q, Jagannathan S, Reid DW, Zheng T, Nicchitta CV (2011) Hierarchical regulation of mRNA partitioning between the cytoplasm and the endoplasmic reticulum of mammalian cells. Mol Biol Cell 22(14):2646–2658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chung S, Takizawa PA (2010) Multiple Myo4 motors enhance ASH1 mRNA transport in Saccharomyces cerevisiae. J Cell Biol 189(4):755–767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark A, Meignin C, Davis I (2007) A Dynein-dependent shortcut rapidly delivers axis determination transcripts into the Drosophila oocyte. Development 134(10):1955–1965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colegrove-Otero LJ, Devaux A, Standart N (2005) The Xenopus ELAV protein ElrB represses Vg1 mRNA translation during oogenesis. Mol Cell Biol 25(20):9028–9039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Condeelis J, Singer RH (2005) How and why does beta-actin mRNA target? Biol Cell 97(1):97–110

    CAS  PubMed  Google Scholar 

  • Coovert DD et al (1997) The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet 6(8):1205–1214

    CAS  PubMed  Google Scholar 

  • Crawford TO, Pardo CA (1996) The neurobiology of childhood spinal muscular atrophy. Neurobiol Dis 3(2):97–110

    CAS  PubMed  Google Scholar 

  • Crofts AJ et al (2004) Targeting of proteins to endoplasmic reticulum-derived compartments in plants. The importance of RNA localization. Plant Physiol 136(3):3414–3419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daigle N, Ellenberg J (2007) LambdaN-GFP: an RNA reporter system for live-cell imaging. Nat Methods 4(8):633–636

    CAS  PubMed  Google Scholar 

  • Darnell RB (2011) HITS-CLIP: panoramic views of protein-RNA regulation in living cells (Translated from eng). Wiley Interdiscip Rev RNA 1(2):266–286 (in eng)

    Google Scholar 

  • Delanoue R, Davis I (2005) Dynein anchors its mRNA cargo after apical transport in the Drosophila blastoderm embryo. Cell 122(1):97–106

    CAS  PubMed  Google Scholar 

  • Deng Y, Singer RH, Gu W (2008) Translation of ASH1 mRNA is repressed by Puf6p-Fun12p/eIF5B interaction and released by CK2 phosphorylation. Genes Dev 22(8):1037–1050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis PP, Omer A (2005) Small non-coding RNAs in Archaea. Curr Opin Microbiol 8(6):685–694

    CAS  PubMed  Google Scholar 

  • Deshler JO, Highett MI, Schnapp BJ (1997) Localization of Xenopus Vg1 mRNA by Vera protein and the endoplasmic reticulum. Science 276(5315):1128–1131

    CAS  PubMed  Google Scholar 

  • Devys D, Lutz Y, Rouyer N, Bellocq JP, Mandel JL (1993) The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nat Genet 4(4):335–340

    CAS  PubMed  Google Scholar 

  • Dictenberg JB, Swanger SA, Antar LN, Singer RH, Bassell GJ (2008) A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome. Dev Cell 14(6):926–939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dienstbier M, Li X (2009) Bicaudal-D and its role in cargo sorting by microtubule-based motors. Biochem Soc Trans 37(Pt 5):1066–1071

    CAS  PubMed  Google Scholar 

  • Dienstbier M, Boehl F, Li X, Bullock SL (2009) Egalitarian is a selective RNA-binding protein linking mRNA localization signals to the dynein motor. Genes Dev 23(13):1546–1558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding D, Parkhurst SM, Halsell SR, Lipshitz HD (1993) Dynamic Hsp83 RNA localization during Drosophila oogenesis and embryogenesis. Mol Cell Biol 13(6):3773–3781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du TG et al (2008) Nuclear transit of the RNA-binding protein She2 is required for translational control of localized ASH1 mRNA. EMBO Rep 9(8):781–787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubowy J, Macdonald PM (1998) Localization of mRNAs to the oocyte is common in Drosophila ovaries. (Translated from eng). Mech Dev 70(1–2):193–195 (in eng)

    CAS  PubMed  Google Scholar 

  • Eberwine J, Miyashiro K, Kacharmina JE, Job C (2001) Local translation of classes of mRNAs that are targeted to neuronal dendrites. Proc Natl Acad Sci U S A 98(13):7080–7085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eliscovich C, Buxbaum AR, Katz ZB, Singer RH (2013) mRNA on the move: the road to its biological destiny. J Biol Chem 288(28):20361–20368

    Google Scholar 

  • Ephrussi A, Dickinson LK, Lehmann R (1991) Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66(1):37–50

    CAS  PubMed  Google Scholar 

  • Estrada P et al (2003) Myo4p and She3p are required for cortical ER inheritance in Saccharomyces cerevisiae. J Cell Biol 163(6):1255–1266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fallini C, Bassell GJ, Rossoll W (2010) High-efficiency transfection of cultured primary motor neurons to study protein localization, trafficking, and function. Mol Neurodegener 5:17

    PubMed  PubMed Central  Google Scholar 

  • Fallini C et al (2011) The survival of motor neuron (SMN) protein interacts with the mRNA-binding protein HuD and regulates localization of poly(A) mRNA in primary motor neuron axons. J Neurosci 31(10):3914–3925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forrest KM, Gavis ER (2003) Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Curr Biol 13(14):1159–1168

    CAS  PubMed  Google Scholar 

  • Fusco D et al (2003) Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr Biol 13(2):161–167

    CAS  PubMed  Google Scholar 

  • Gabanella F et al (2007) Ribonucleoprotein assembly defects correlate with spinal muscular atrophy severity and preferentially affect a subset of spliceosomal snRNPs. PLoS One 2(9):e921

    PubMed  PubMed Central  Google Scholar 

  • Gagnon JA, Mowry KL (2011) Molecular motors: directing traffic during RNA localization. Crit Rev Biochem Mol Biol 46(3):229–239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galka-Marciniak P, Urbanek MO, Krzyzosiak WJ (2012) Triplet repeats in transcripts: structural insights into RNA toxicity. Biol Chem 393(11):1299–1315

    CAS  PubMed  Google Scholar 

  • Garcia M, Darzacq X, Devaux F, Singer RH, Jacq C (2007) Yeast mitochondrial transcriptomics. Methods Mol Biol 372:505–528

    CAS  PubMed  Google Scholar 

  • Gaspar I (2011) Microtubule-based motor-mediated mRNA localization in Drosophila oocytes and embryos. Biochem Soc Trans 39(5):1197–1201

    CAS  PubMed  Google Scholar 

  • Gerber AP, Herschlag D, Brown PO (2004) Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. (Translated from eng). PLoS Biol 2(3):E79

    PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Marchand V, Gaspar I, Ephrussi A (2012) Control of RNP motility and localization by a splicing-dependent structure in oskar mRNA. Nat Struct Mol Biol 19(4):441–449

    CAS  PubMed  Google Scholar 

  • Gibson TJ, Rice PM, Thompson JD, Heringa J (1993) KH domains within the FMR1 sequence suggest that fragile X syndrome stems from a defect in RNA metabolism. Trends Biochem Sci 18(9):331–333

    CAS  PubMed  Google Scholar 

  • Glotzer JB, Saffrich R, Glotzer M, Ephrussi A (1997) Cytoplasmic flows localize injected oskar RNA in Drosophila oocytes. Curr Biol 7(5):326–337

    CAS  PubMed  Google Scholar 

  • Greco CM et al (2006) Neuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS). Brain 129(Pt 1):243–255

    CAS  PubMed  Google Scholar 

  • Gu W, Pan F, Zhang H, Bassell GJ, Singer RH (2002) A predominantly nuclear protein affecting cytoplasmic localization of beta-actin mRNA in fibroblasts and neurons. J Cell Biol 156(1):41–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu W, Deng Y, Zenklusen D, Singer RH (2004) A new yeast PUF family protein, Puf6p, represses ASH1 mRNA translation and is required for its localization. Genes Dev 18(12):1452–1465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu W, Pan F, Singer RH (2009) Blocking beta-catenin binding to the ZBP1 promoter represses ZBP1 expression, leading to increased proliferation and migration of metastatic breast-cancer cells. J Cell Sci 122(Pt 11):1895–1905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu W et al (2012) Regulation of local expression of cell adhesion and motility-related mRNAs in breast cancer cells by IMP1/ZBP1. J Cell Sci 125(Pt 1):81–91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gumy LF et al (2011) Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization. RNA 17(1):85–98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hachet O, Ephrussi A (2004) Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization. Nature 428(6986):959–963

    CAS  PubMed  Google Scholar 

  • Haim L, Zipor G, Aronov S, Gerst JE (2007) A genomic integration method to visualize localization of endogenous mRNAs in living yeast. Nat Methods 4(5):409–412

    CAS  PubMed  Google Scholar 

  • Hamilton RS, Davis I (2011) Identifying and searching for conserved RNA localisation signals. Methods Mol Biol 714:447–466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henry JJ, Perry KJ, Fukui L, Alvi N (2010) Differential localization of mRNAs during early development in the mollusc, Crepidula fornicata. Integr comp Biol 50(5):720–733

    CAS  PubMed  Google Scholar 

  • Heym RG, Niessing D (2012) Principles of mRNA transport in yeast. Cell Mol Life Sci 69(11):1843–1853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hillebrand J et al (2010) The Me31B DEAD-box helicase localizes to postsynaptic foci and regulates expression of a CaMKII reporter mRNA in dendrites of Drosophila olfactory projection neurons. Front Neural Circ 4:121

    Google Scholar 

  • Hinds HL et al (1993) Tissue specific expression of FMR-1 provides evidence for a functional role in fragile X syndrome. Nat Genet 3(1):36–43

    CAS  PubMed  Google Scholar 

  • Hinton VJ, Brown WT, Wisniewski K, Rudelli RD (1991) Analysis of neocortex in three males with the fragile X syndrome. Am J Med Genet 41(3):289–294

    CAS  PubMed  Google Scholar 

  • Hoek KS et al (1998) hnRNP A2 selectively binds the cytoplasmic transport sequence of myelin basic protein mRNA. Biochemistry 37(19):7021–7029

    CAS  PubMed  Google Scholar 

  • Huang YS, Carson JH, Barbarese E, Richter JD (2003) Facilitation of dendritic mRNA transport by CPEB. Genes Dev 17(5):638–653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hubers L et al (2011) HuD interacts with survival motor neuron protein and can rescue spinal muscular atrophy-like neuronal defects. Hum Mol Genet 20(3):553–579

    CAS  PubMed  Google Scholar 

  • Huttelmaier S et al (2005) Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438(7067):512–515

    PubMed  Google Scholar 

  • Irie K et al (2002) The Khd1 protein, which has three KH RNA-binding motifs, is required for proper localization of ASH1 mRNA in yeast. EMBO J 21(5):1158–1167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Irion U et al (2006) Miranda couples oskar mRNA/Staufen complexes to the bicoid mRNA localization pathway. Dev Biol 297(2):522–533

    CAS  PubMed  Google Scholar 

  • Jagannathan S, Nwosu C, Nicchitta CV (2011) Analyzing mRNA localization to the endoplasmic reticulum via cell fractionation. Methods Mol Biol 714:301–321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jain RA, Gavis ER (2008) The Drosophila hnRNP M homolog Rumpelstiltskin regulates nanos mRNA localization. Development 135(5):973–982

    CAS  PubMed  Google Scholar 

  • Jambhekar A, Derisi JL (2007) Cis-acting determinants of asymmetric, cytoplasmic RNA transport. RNA 13(5):625–642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen RP, Niessing D (2012) Assembly of mRNA-protein complexes for directional mRNA transport in eukaryotes—an overview. Curr Protein Pept Sci 13(4):284–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen RP, Dowzer C, Michaelis C, Galova M, Nasmyth K (1996) Mother cell-specific HO expression in budding yeast depends on the unconventional myosin myo4p and other cytoplasmic proteins. Cell 84(5):687–697

    CAS  PubMed  Google Scholar 

  • Jeffery WR (1988) The role of cytoplasmic determinants in embryonic development. Dev Biol (N Y 1985) 5:3–56

    CAS  Google Scholar 

  • Jeffery WR, Tomlinson CR, Brodeur RD (1983) Localization of actin messenger RNA during early ascidian development. Dev Biol 99(2):408–417

    CAS  PubMed  Google Scholar 

  • Jenny A et al (2006) A translation-independent role of oskar RNA in early Drosophila oogenesis. Development 133(15):2827–2833

    CAS  PubMed  Google Scholar 

  • Jensen KB, Darnell RB (2008) CLIP: crosslinking and immunoprecipitation of in vivo RNA targets of RNA-binding proteins. (translated from eng). Methods Mol Biol 488:85–98

    CAS  PubMed  Google Scholar 

  • Jiang H, Mankodi A, Swanson MS, Moxley RT, Thornton CA (2004) Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Hum Mol Genet 13(24):3079–3088

    CAS  PubMed  Google Scholar 

  • Jin P et al (2007) Pur alpha binds to rCGG repeats and modulates repeat-mediated neurodegeneration in a Drosophila model of fragile X tremor/ataxia syndrome. Neuron 55(4):556–564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson EM et al (2006) Role of Pur alpha in targeting mRNA to sites of translation in hippocampal neuronal dendrites. J Neurosci Res 83(6):929–943

    CAS  PubMed  Google Scholar 

  • Jung H, Yoon BC, Holt CE (2012) Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci 13(5):308–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanai Y et al (2004) Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43(4):513–525

    CAS  PubMed  Google Scholar 

  • Kanadia RN et al (2003) A muscleblind knockout model for myotonic dystrophy. Science 302(5652):1978–1980

    CAS  PubMed  Google Scholar 

  • Kazan H, Morris Q (2013) RBPmotif: a web server for the discovery of sequence and structure preferences of RNA-binding proteins. Nucleic Acids Res 41:W180–186

    PubMed  PubMed Central  Google Scholar 

  • Keiler KC (2011) RNA localization in bacteria. Curr Opin Microbiol 14(2):155–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim-Ha J, Smith JL, Macdonald PM (1991) oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell 66(1):23–35

    CAS  PubMed  Google Scholar 

  • Kim-Ha J, Kerr K, Macdonald PM (1995) Translational regulation of oskar mRNA by bruno, an ovarian RNA-binding protein, is essential. Cell 81(3):403–412

    CAS  PubMed  Google Scholar 

  • King ML, Messitt TJ, Mowry KL (2005) Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol Cell 97(1):19–33

    CAS  PubMed  Google Scholar 

  • Kingsley EP, Chan XY, Duan Y, Lambert JD (2007) Widespread RNA segregation in a spiralian embryo. Evol Dev 9(6):527–539

    CAS  PubMed  Google Scholar 

  • Kloc M, Etkin LD (1995) Two distinct pathways for the localization of RNAs at the vegetal cortex in Xenopus oocytes. Development 121(2):287–297

    CAS  PubMed  Google Scholar 

  • Kloc M et al (2002) Three-dimensional ultrastructural analysis of RNA distribution within germinal granules of Xenopus. Dev Biol 241(1):79–93

    CAS  PubMed  Google Scholar 

  • Kohler O, Jarikote DV, Seitz O (2005) Forced intercalation probes (FIT Probes): thiazole orange as a fluorescent base in peptide nucleic acids for homogeneous single-nucleotide-polymorphism detection. Chembiochem 6(1):69–77

    PubMed  Google Scholar 

  • Kolev NG, Huber PW (2003) VgRBP71 stimulates cleavage at a polyadenylation signal in Vg1 mRNA, resulting in the removal of a cis-acting element that represses translation. Mol Cell 11(3):745–755

    CAS  PubMed  Google Scholar 

  • Kopczynski CC et al (1998) A high throughput screen to identify secreted and transmembrane proteins involved in Drosophila embryogenesis. Proc Natl Acad Sci U S A 95(17):9973–9978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krauss J, Lopez de Quinto S, Nusslein-Volhard C, Ephrussi A (2009) Myosin-V regulates oskar mRNA localization in the Drosophila oocyte. Curr Biol 19(12):1058–1063

    CAS  PubMed  Google Scholar 

  • Krementsova EB et al (2011) Two single-headed myosin V motors bound to a tetrameric adapter protein form a processive complex. J Cell Biol 195(4):631–641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kroll TT et al (2009) Interactions of 40LoVe within the ribonucleoprotein complex that forms on the localization element of Xenopus Vg1 mRNA. Mech Dev 126(7):523–538

    CAS  PubMed  Google Scholar 

  • Kugler JM, Lasko P (2009) Localization, anchoring and translational control of oskar, gurken, bicoid and nanos mRNA during Drosophila oogenesis. Fly 3(1):15–28

    CAS  PubMed  Google Scholar 

  • Kummer S et al (2011) Fluorescence imaging of influenza H1N1 mRNA in living infected cells using single-chromophore FIT-PNA. Angew Chem 50(8):1931–1934

    CAS  Google Scholar 

  • La Via L et al (2013) Modulation of dendritic AMPA receptor mRNA trafficking by RNA splicing and editing. Nucleic Acids Res 41(1):617–631

    PubMed  PubMed Central  Google Scholar 

  • Lange S et al (2008) Simultaneous transport of different localized mRNA species revealed by live-cell imaging. Traffic 9(8):1256–1267

    CAS  PubMed  Google Scholar 

  • Lapidus K et al (2007) ZBP1 enhances cell polarity and reduces chemotaxis. J Cell Sci 120(Pt 18):3173–3178

    CAS  PubMed  Google Scholar 

  • Lasko P (2012) mRNA localization and translational control in Drosophila oogenesis. Cold Spring Harb Perspect Biol 4(10)

    Google Scholar 

  • Latham VM, Yu EH, Tullio AN, Adelstein RS, Singer RH (2001) A Rho-dependent signaling pathway operating through myosin localizes beta-actin mRNA in fibroblasts. Curr Biol 11(13):1010–1016

    CAS  PubMed  Google Scholar 

  • Lecuyer E et al (2007) Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131(1):174–187

    CAS  PubMed  Google Scholar 

  • Lecuyer E, Yoshida H, Krause HM (2009) Global implications of mRNA localization pathways in cellular organization. Curr Opin Cell Biol 21(3):409–415

    CAS  PubMed  Google Scholar 

  • Leehey MA (2009) Fragile X-associated tremor/ataxia syndrome: clinical phenotype, diagnosis, and treatment. J Investig Med 57(8):830–836

    PubMed  PubMed Central  Google Scholar 

  • Lefebvre S et al (1997) Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet 16(3):265–269

    CAS  PubMed  Google Scholar 

  • Lein ES et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124):168–176

    CAS  PubMed  Google Scholar 

  • Lerner RS et al (2003) Partitioning and translation of mRNAs encoding soluble proteins on membrane-bound ribosomes. RNA 9(9):1123–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Jin P (2012) RNA-mediated neurodegeneration in fragile X-associated tremor/ataxia syndrome (translated from eng). Brain Res 1462:112–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao B et al (2004) Targeted knockdown of the RNA-binding protein CRD-BP promotes cell proliferation via an insulin-like growth factor II-dependent pathway in human K562 leukemia cells. J Biol Chem 279(47):48716–48724

    CAS  PubMed  Google Scholar 

  • Licatalosi DD et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing (translated from eng). Nature 456(7221):464–469 (in eng)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lifland AW, Zurla C, Yu J, Santangelo PJ (2011) Dynamics of native beta-actin mRNA transport in the cytoplasm. Traffic 12(8):1000–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lionnet T et al (2011) A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat Methods 8(2):165–170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lipshitz HD, Smibert CA (2000) Mechanisms of RNA localization and translational regulation. Curr Opin Genet Dev 10(5):476–488

    CAS  PubMed  Google Scholar 

  • Liu G et al (2002) Interactions of elongation factor 1 alpha with F-actin and beta-actin mRNA: implications for anchoring mRNA in cell protrusions. Mol Biol Cell 13(2):579–592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long RM et al (1997) Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science 277(5324):383–387

    CAS  PubMed  Google Scholar 

  • Long RM, Gu W, Lorimer E, Singer RH, Chartrand P (2000) She2p is a novel RNA-binding protein that recruits the Myo4p-She3p complex to ASH1 mRNA. EMBO J 19(23):6592–6601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long RM et al (2001) An exclusively nuclear RNA-binding protein affects asymmetric localization of ASH1 mRNA and Ash1p in yeast. J Cell Biol 153(2):307–318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu G, Dolgner SJ, Hall TM (2009) Understanding and engineering RNA sequence specificity of PUF proteins. Curr Opin Struct Biol 19(1):110–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lunde BM, Moore C, Varani G (2007) RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 8(6):479–490

    CAS  PubMed  Google Scholar 

  • Ma B et al (2011) Huntingtin mediates dendritic transport of beta-actin mRNA in rat neurons. Sci Rep 1:140

    PubMed  PubMed Central  Google Scholar 

  • Macchi P et al (2003) Barentsz, a new component of the Staufen-containing ribonucleoprotein particles in mammalian cells, interacts with Staufen in an RNA-dependent manner. J Neurosci 23(13):5778–5788

    CAS  PubMed  Google Scholar 

  • Makabe KW et al (2001) Large-scale cDNA analysis of the maternal genetic information in the egg of Halocynthia roretzi for a gene expression catalog of ascidian development (translated from eng). Development 128(13):2555–2567 (in eng)

    CAS  PubMed  Google Scholar 

  • Marc P et al (2002) Genome-wide analysis of mRNAs targeted to yeast mitochondria. EMBO Rep 3(2):159–164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medioni C, Mowry K, Besse F (2012) Principles and roles of mRNA localization in animal development. Development 139(18):3263–3276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meer EJ et al (2012) Identification of a cis-acting element that localizes mRNA to synapses. Proc Natl Acad Sci U S A 109(12):4639–4644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 105(2):716–721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Messitt TJ et al (2008) Multiple kinesin motors coordinate cytoplasmic RNA transport on a subpopulation of microtubules in Xenopus oocytes. Dev Cell 15(3):426–436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mhlanga MM et al (2009) In vivo colocalisation of oskar mRNA and trans-acting proteins revealed by quantitative imaging of the Drosophila oocyte. PLoS One 4(7):e6241

    PubMed  PubMed Central  Google Scholar 

  • Micklem DR (2000) Distinct roles of two conserved Staufen domains in oskar mRNA localization and translation. EMBO J 19(6):1366–1377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mili S, Moissoglu K, Macara IG (2008) Genome-wide screen reveals APC-associated RNAs enriched in cell protrusions. Nature 453(7191):115–119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller S et al (2002) Disruption of dendritic translation of CaMKIIalpha impairs stabilization of synaptic plasticity and memory consolidation. Neuron 36(3):507–519

    CAS  PubMed  Google Scholar 

  • Mingle LA et al (2005) Localization of all seven messenger RNAs for the actin-polymerization nucleator Arp2/3 complex in the protrusions of fibroblasts. J Cell Sci 118(Pt 11):2425–2433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohr SE et al (2001) The RNA-binding protein Tsunagi interacts with Mago Nashi to establish polarity and localize oskar mRNA during Drosophila oogenesis. Genes Dev 15(21):2886–2899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mori Y, Imaizumi K, Katayama T, Yoneda T, Tohyama M (2000) Two cis-acting elements in the 3′ untranslated region of alpha-CaMKII regulate its dendritic targeting. Nat Neurosci 3(11):1079–1084

    CAS  PubMed  Google Scholar 

  • Mowry KL, Melton DA (1992) Vegetal messenger RNA localization directed by a 340-nt RNA sequence element in Xenopus oocytes. Science 255(5047):991–994

    CAS  PubMed  Google Scholar 

  • Muller M et al (2011) A cytoplasmic complex mediates specific mRNA recognition and localization in yeast. PLoS Biol 9(4):e1000611

    PubMed  PubMed Central  Google Scholar 

  • Munro TP et al (1999) Mutational analysis of a heterogeneous nuclear ribonucleoprotein A2 response element for RNA trafficking. J Biol Chem 274(48):34389–34395

    CAS  PubMed  Google Scholar 

  • Muslimov IA, Iacoangeli A, Brosius J, Tiedge H (2006) Spatial codes in dendritic BC1 RNA. J Cell Biol 175(3):427–439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muslimov IA, Patel MV, Rose A, Tiedge H (2011) Spatial code recognition in neuronal RNA targeting: role of RNA-hnRNP A2 interactions. J Cell Biol 194(3):441–457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaoka K, Udagawa T, Richter JD (2012) CPEB-mediated ZO-1 mRNA localization is required for epithelial tight-junction assembly and cell polarity. Nat Commun 3:675

    PubMed  Google Scholar 

  • Nakamura A et al (2001) Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis. Development 128(17):3233–3242

    CAS  PubMed  Google Scholar 

  • Nitin N, Santangelo PJ, Kim G, Nie S, Bao G (2004) Peptide-linked molecular beacons for efficient delivery and rapid mRNA detection in living cells. Nucleic Acids Res 32(6):e58

    PubMed  PubMed Central  Google Scholar 

  • Norvell A et al (2005) Squid is required for efficient posterior localization of oskar mRNA during Drosophila oogenesis. Dev Genes Evol 215(7):340–349

    CAS  PubMed  Google Scholar 

  • Noubissi FK et al (2006) CRD-BP mediates stabilization of betaTrCP1 and c-myc mRNA in response to beta-catenin signalling. Nature 441(7095):898–901

    CAS  PubMed  Google Scholar 

  • Oleynikov Y, Singer RH (2003) Real-time visualization of ZBP1 association with beta-actin mRNA during transcription and localization. Curr Biol 13(3):199–207

    CAS  PubMed  Google Scholar 

  • Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621

    CAS  PubMed  Google Scholar 

  • Otero LJ, Devaux A, Standart N (2001) A 250-nucleotide UA-rich element in the 3′ untranslated region of Xenopus laevis Vg1 mRNA represses translation both in vivo and in vitro. RNA 7(12):1753–1767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozawa T, Natori Y, Sato M, Umezawa Y (2007) Imaging dynamics of endogenous mitochondrial RNA in single living cells. Nat Methods 4(5):413–419

    CAS  PubMed  Google Scholar 

  • Pagliardini S et al (2000) Subcellular localization and axonal transport of the survival motor neuron (SMN) protein in the developing rat spinal cord. Hum Mol Genet 9(1):47–56

    CAS  PubMed  Google Scholar 

  • Paige JS, Nguyen-Duc T, Song W, Jaffrey SR (2012) Fluorescence imaging of cellular metabolites with RNA. Science 335(6073):1194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan F, Huttelmaier S, Singer RH, Gu W (2007) ZBP2 facilitates binding of ZBP1 to beta-actin mRNA during transcription. Mol Cell Biol 27(23):8340–8351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paquin N, Chartrand P (2008) Local regulation of mRNA translation: new insights from the bud. Trends Cell Biol 18(3):105–111

    CAS  PubMed  Google Scholar 

  • Paquin N et al (2007) Local activation of yeast ASH1 mRNA translation through phosphorylation of Khd1p by the casein kinase Yck1p. Mol Cell 26(6):795–809

    CAS  PubMed  Google Scholar 

  • Patel VL et al (2012) Spatial arrangement of an RNA zipcode identifies mRNAs under post-transcriptional control. Genes Dev 26(1):43–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piazzon N et al (2008) In vitro and in cellulo evidences for association of the survival of motor neuron complex with the fragile X mental retardation protein. J Biol Chem 283(9):5598–5610

    CAS  PubMed  Google Scholar 

  • Portera-Cailliau C (2012) Which comes first in fragile X syndrome, dendritic spine dysgenesis or defects in circuit plasticity? Neuroscientist 18(1):28–44

    CAS  PubMed  Google Scholar 

  • Prodon F, Yamada L, Shirae-Kurabayashi M, Nakamura Y, Sasakura Y (2007) Postplasmic/PEM RNAs: a class of localized maternal mRNAs with multiple roles in cell polarity and development in ascidian embryos. Dev Dyn 236(7):1698–1715

    CAS  PubMed  Google Scholar 

  • Rackham O, Brown CM (2004) Visualization of RNA-protein interactions in living cells: FMRP and IMP1 interact on mRNAs. EMBO J 23(16):3346–3355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raju CS et al (2008) In cultured oligodendrocytes the A/B-type hnRNP CBF-A accompanies MBP mRNA bound to mRNA trafficking sequences. Mol Biol Cell 19(7):3008–3019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rehbein M et al (2002) Molecular characterization of MARTA1, a protein interacting with the dendritic targeting element of MAP2 mRNAs. J Neurochem 82(5):1039–1046

    CAS  PubMed  Google Scholar 

  • Ross AF, Oleynikov Y, Kislauskis EH, Taneja KL, Singer RH (1997) Characterization of a beta-actin mRNA zipcode-binding protein. Mol Cell Biol 17(4):2158–2165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ross J, Lemm I, Berberet B (2001) Overexpression of an mRNA-binding protein in human colorectal cancer. Oncogene 20(45):6544–6550

    CAS  PubMed  Google Scholar 

  • Rossoll W et al (2002) Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons? Hum Mol Genet 11(1):93–105

    CAS  PubMed  Google Scholar 

  • Rossoll W et al (2003) Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J Cell Biol 163(4):801–812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rudelli RD et al (1985) Adult fragile X syndrome. Clinico-neuropathologic findings. Acta Neuropathol 67(3–4):289–295

    CAS  PubMed  Google Scholar 

  • Saint-Georges Y et al (2008) Yeast mitochondrial biogenesis: a role for the PUF RNA-binding protein Puf3p in mRNA localization. PLoS One 3(6):e2293

    PubMed  PubMed Central  Google Scholar 

  • Sanchez G et al (2013) A novel function for the survival motoneuron protein as a translational regulator. Hum Mol Genet 22(4):668–684

    CAS  PubMed  Google Scholar 

  • Santangelo PJ, Nix B, Tsourkas A, Bao G (2004) Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Res 32(6):e57

    PubMed  PubMed Central  Google Scholar 

  • Santangelo PJ et al (2009) Single molecule-sensitive probes for imaging RNA in live cells. Nat Methods 6(5):347–349

    CAS  PubMed  Google Scholar 

  • Sasaki Y et al (2010) Phosphorylation of zipcode binding protein 1 is required for brain-derived neurotrophic factor signaling of local beta-actin synthesis and growth cone turning. J Neurosci 30(28):9349–9358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schrank B et al (1997) Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci U S A 94(18):9920–9925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuldt AJ et al (1998) Miranda mediates asymmetric protein and RNA localization in the developing nervous system. Genes Dev 12(12):1847–1857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Semotok JL et al (2005) Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila embryo. Curr Biol 15(4):284–294

    CAS  PubMed  Google Scholar 

  • Semotok JL et al (2008) Drosophila maternal Hsp83 mRNA destabilization is directed by multiple SMAUG recognition elements in the open reading frame. Mol Cell Biol 28(22):6757–6772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serano J, Rubin GM (2003) The Drosophila synaptotagmin-like protein bitesize is required for growth and has mRNA localization sequences within its open reading frame. Proc Natl Acad Sci U S A 100(23):13368–13373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serikawa KA, Porterfield DM, Mandoli DF (2001) Asymmetric subcellular mRNA distribution correlates with carbonic anhydrase activity in Acetabularia acetabulum. Plant Physiol 125(2):900–911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp JA, Plant JJ, Ohsumi TK, Borowsky M, Blower MD (2011) Functional analysis of the microtubule-interacting transcriptome. Mol Biol Cell 22(22):4312–4323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Z, Paquin N, Forget A, Chartrand P (2009) Nuclear shuttling of She2p couples ASH1 mRNA localization to its translational repression by recruiting Loc1p and Puf6p. Mol Biol Cell 20(8):2265–2275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shestakova EA, Wyckoff J, Jones J, Singer RH, Condeelis J (1999) Correlation of beta-actin messenger RNA localization with metastatic potential in rat adenocarcinoma cell lines. Cancer Res 59(6):1202–1205

    CAS  PubMed  Google Scholar 

  • Shestakova EA, Singer RH, Condeelis J (2001) The physiological significance of beta -actin mRNA localization in determining cell polarity and directional motility. Proc Natl Acad Sci U S A 98(13):7045–7050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sidorov MS, Auerbach BD, Bear MF (2013) Fragile X mental retardation protein and synaptic plasticity. Mol Brain 6:15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sil A, Herskowitz I (1996) Identification of asymmetrically localized determinant, Ash1p, required for lineage-specific transcription of the yeast HO gene. Cell 84(5):711–722

    CAS  PubMed  Google Scholar 

  • Siomi H, Siomi MC, Nussbaum RL, Dreyfuss G (1993) The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell 74(2):291–298

    CAS  PubMed  Google Scholar 

  • Sofola OA et al (2007) RNA-binding proteins hnRNP A2/B1 and CUGBP1 suppress fragile X CGG premutation repeat-induced neurodegeneration in a Drosophila model of FXTAS. Neuron 55(4):565–571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenson EC (2004) Localization of swallow-green fluorescent protein in Drosophila oogenesis and implications for the role of swallow in RNA. Genesis 39(4):280–287

    CAS  PubMed  Google Scholar 

  • Stohr N, Huttelmaier S (2012) IGF2BP1: a post-transcriptional “driver” of tumor cell migration. Cell Adh Migr 6(4):312–318

    PubMed  PubMed Central  Google Scholar 

  • Stohr N et al (2012) IGF2BP1 promotes cell migration by regulating MK5 and PTEN signaling. Genes Dev 26(2):176–189

    PubMed  PubMed Central  Google Scholar 

  • Stylli SS, Kaye AH, Lock P (2008) Invadopodia: at the cutting edge of tumour invasion. J Clin Neurosci 15(7):725–737

    CAS  PubMed  Google Scholar 

  • Subramanian M et al (2011) G-quadruplex RNA structure as a signal for neurite mRNA targeting. EMBO Rep 12(7):697–704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sundell CL, Singer RH (1991) Requirement of microfilaments in sorting of actin messenger RNA. Science 253(5025):1275–1277

    CAS  PubMed  Google Scholar 

  • Tadesse H, Deschenes-Furry J, Boisvenue S, Cote J (2008) KH-type splicing regulatory protein interacts with survival motor neuron protein and is misregulated in spinal muscular atrophy. Hum Mol Genet 17(4):506–524

    CAS  PubMed  Google Scholar 

  • Tadros W et al (2003) Regulation of maternal transcript destabilization during egg activation in Drosophila. Genetics 164(3):989–1001

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takizawa PA, Sil A, Swedlow JR, Herskowitz I, Vale RD (1997) Actin-dependent localization of an RNA encoding a cell-fate determinant in yeast. Nature 389(6646):90–93

    CAS  PubMed  Google Scholar 

  • Takizawa PA, DeRisi JL, Wilhelm JE, Vale RD (2000) Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science 290(5490):341–344

    CAS  PubMed  Google Scholar 

  • Tassone F, Iwahashi C, Hagerman PJ (2004) FMR1 RNA within the intranuclear inclusions of fragile X-associated tremor/ataxia syndrome (FXTAS). RNA Biol 1(2):103–105

    CAS  PubMed  Google Scholar 

  • Taylor AM et al (2009) Axonal mRNA in uninjured and regenerating cortical mammalian axons. J Neurosci 29(15):4697–4707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tenenbaum SA, Lager PJ, Carson CC, Keene JD (2002) Ribonomics: identifying mRNA subsets in mRNP complexes using antibodies to RNA-binding proteins and genomic arrays (translated from eng). Methods 26(2):191–198 (in eng)

    CAS  PubMed  Google Scholar 

  • Tessier CR, Doyle GA, Clark BA, Pitot HC, Ross J (2004) Mammary tumor induction in transgenic mice expressing an RNA-binding protein. Cancer Res 64(1):209–214

    CAS  PubMed  Google Scholar 

  • Tiruchinapalli DM et al (2008) Activity-dependent expression of RNA binding protein HuD and its association with mRNAs in neurons. RNA Biol 5(3):157–168

    CAS  PubMed  Google Scholar 

  • Tomancak P et al (2002) Systematic determination of patterns of gene expression during Drosophila embryogenesis (translated from eng). Genome Biol 3(12):RESEARCH0088 (in eng)

    PubMed  PubMed Central  Google Scholar 

  • Tse JC, Kalluri R (2007) Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem 101(4):816–829

    CAS  PubMed  Google Scholar 

  • Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14(3):303–308

    CAS  PubMed  Google Scholar 

  • Udd B, Krahe R (2012) The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol 11(10):891–905

    CAS  PubMed  Google Scholar 

  • Ule J, Jensen K, Mele A, Darnell RB (2005) CLIP: a method for identifying protein-RNA interaction sites in living cells (translated from eng). Methods 37(4):376–386 (in eng)

    CAS  PubMed  Google Scholar 

  • Vaccaro MC et al (2010) A transient asymmetric distribution of XNOA 36 mRNA and the associated spectrin network bisects Xenopus laevis stage I oocytes along the future A/V axis. Eur J Cell Biol 89(7):525–536

    CAS  PubMed  Google Scholar 

  • Vaccaro MC, Wilding M, Dale B, Campanella C, Carotenuto R (2012) Expression of XNOA 36 in the mitochondrial cloud of Xenopus laevis oocytes. Zygote 20(3):237–242

    CAS  PubMed  Google Scholar 

  • Van de Bor V, Davis I (2004) mRNA localisation gets more complex. Curr Opin Cell Biol 16(3):300–307

    PubMed  Google Scholar 

  • van Eeden FJ, Palacios IM, Petronczki M, Weston MJ, St Johnston D (2001) Barentsz is essential for the posterior localization of oskar mRNA and colocalizes with it to the posterior pole. J Cell Biol 154(3):511–523

    PubMed  PubMed Central  Google Scholar 

  • Vendra G, Hamilton RS, Davis I (2007) Dynactin suppresses the retrograde movement of apically localized mRNA in Drosophila blastoderm embryos. RNA 13(11):1860–1867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vikesaa J et al (2006) RNA-binding IMPs promote cell adhesion and invadopodia formation. EMBO J 25(7):1456–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wan L et al (2005) The survival of motor neurons protein determines the capacity for snRNP assembly: biochemical deficiency in spinal muscular atrophy. Mol Cell Biol 25(13):5543–5551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W et al (2004) Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res 64(23):8585–8594

    CAS  PubMed  Google Scholar 

  • Wang ET et al (2012) Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell 150(4):710–724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm JE, Vale RD, Hegde RS (2000a) Coordinate control of translation and localization of Vg1 mRNA in Xenopus oocytes. Proc Natl Acad Sci U S A 97(24):13132–13137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm JE et al (2000b) Isolation of a ribonucleoprotein complex involved in mRNA localization in Drosophila oocytes. J Cell Biol 148(3):427–440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm JE, Hilton M, Amos Q, Henzel WJ (2003) Cup is an eIF4E binding protein required for both the translational repression of oskar and the recruitment of Barentsz. J Cell Biol 163(6):1197–1204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willis DE, Twiss JL (2011) Profiling axonal mRNA transport. Methods Mol Biol 714:335–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L et al (1998) CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses. Neuron 21(5):1129–1139

    CAS  PubMed  Google Scholar 

  • Yamada T, Yoshimura H, Inaguma A, Ozawa T (2011) Visualization of nonengineered single mRNAs in living cells using genetically encoded fluorescent probes. Anal Chem 83(14):5708–5714

    CAS  PubMed  Google Scholar 

  • Yamagishi M, Shirasaki Y, Funatsu T (2009a) Size-dependent accumulation of mRNA at the leading edge of chicken embryo fibroblasts. Biochem Biophys Res Commun 390(3):750–754

    CAS  PubMed  Google Scholar 

  • Yamagishi M, Ishihama Y, Shirasaki Y, Kurama H, Funatsu T (2009b) Single-molecule imaging of beta-actin mRNAs in the cytoplasm of a living cell. Exp Cell Res 315(7):1142–1147

    CAS  PubMed  Google Scholar 

  • Yano T et al (2004) Hrp48, a Drosophila hnRNPA/B homolog, binds and regulates translation of oskar mRNA. Dev Cell 6(5):637–648

    CAS  PubMed  Google Scholar 

  • Yantiss RK et al (2005) KOC (K homology domain containing protein overexpressed in cancer): a novel molecular marker that distinguishes between benign and malignant lesions of the pancreas. Am J Surg Pathol 29(2):188–195

    PubMed  Google Scholar 

  • Yisraeli JK (2005) VICKZ proteins: a multi-talented family of regulatory RNA-binding proteins. Biol Cell 97(1):87–96

    CAS  PubMed  Google Scholar 

  • Yisraeli JK, Melton DA (1988) The material mRNA Vg1 is correctly localized following injection into Xenopus oocytes. Nature 336(6199):592–595

    CAS  PubMed  Google Scholar 

  • Yoon YJ, Mowry KL (2004) Xenopus Staufen is a component of a ribonucleoprotein complex containing Vg1 RNA and kinesin. Development 131(13):3035–3045

    CAS  PubMed  Google Scholar 

  • Yoshimura H, Inaguma A, Yamada T, Ozawa T (2012) Fluorescent probes for imaging endogenous beta-actin mRNA in living cells using fluorescent protein-tagged pumilio. ACS Chem Biol 7(6):999–1005

    CAS  PubMed  Google Scholar 

  • Zaessinger S, Busseau I, Simonelig M (2006) Oskar allows nanos mRNA translation in Drosophila embryos by preventing its deadenylation by Smaug/CCR4. Development 133(22):4573–4583

    CAS  PubMed  Google Scholar 

  • Zarnack K, Feldbrugge M (2007) mRNA trafficking in fungi. Mol Genet Genomics 278(4):347–359

    CAS  PubMed  Google Scholar 

  • Zarnack K, Feldbrugge M (2010) Microtubule-dependent mRNA transport in fungi. Eukaryot Cell 9(7):982–990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HL et al (2001) Neurotrophin-induced transport of a beta-actin mRNP complex increases beta-actin levels and stimulates growth cone motility. Neuron 31(2):261–275

    CAS  PubMed  Google Scholar 

  • Zhang HL et al (2003) Active transport of the survival motor neuron protein and the role of exon-7 in cytoplasmic localization. J Neurosci 23(16):6627–6637

    CAS  PubMed  Google Scholar 

  • Zhang Z et al (2008) SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 133(4):585–600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimyanin VL et al (2008) In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization. Cell 134(5):843–853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zivraj KH et al (2010) Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs. J Neurosci 30(46):15464–15478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zivraj KH et al (2013) The RNA-binding protein MARTA2 regulates dendritic targeting of MAP2 mRNAs in rat neurons. J Neurochem 124(5):670–684

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Lécuyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bergalet, J., Lécuyer, E. (2014). The Functions and Regulatory Principles of mRNA Intracellular Trafficking. In: Yeo, G. (eds) Systems Biology of RNA Binding Proteins. Advances in Experimental Medicine and Biology, vol 825. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1221-6_2

Download citation

Publish with us

Policies and ethics