Skip to main content

G-Protein–Effector Coupling in the Vertebrate Phototransduction Cascade

  • Chapter
  • First Online:
G Protein Signaling Mechanisms in the Retina

Part of the book series: Springer Series in Vision Research ((SSVR,volume 3))

  • 898 Accesses

Abstract

For many years, the rod phototransduction cascade has served as a valuable model to study the mechanisms of cellular signaling by G-protein-coupled receptors (GPCRs). Our understanding of the key steps of signal transfer from GPCRs to G proteins and further downstream to G protein effectors has been greatly advanced through extensive biochemical studies in rod photoreceptors. This review focuses on the coupling of the visual G protein transducin to its classical effector phosphodiesterase 6. A new level of mechanistic insight has been achieved from the atomic structures of the signaling molecules. Recent studies on light-dependent translocation of transducin in rods raise a possibility for noncanonical transducin signaling and partners in the photoreceptor synaptic terminal.

NOA research is supported by NIH grants EY10843 and EY12682

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chabre M, Deterre P (1989) Molecular mechanism of visual transduction. Eur J Biochem 179(2):255–266

    CAS  PubMed  Google Scholar 

  2. Pugh EN Jr, Lamb TD (1993) Amplification and kinetics of the activation steps in phototransduction. Biochim Biophys Acta 1141(2–3):111–149

    CAS  PubMed  Google Scholar 

  3. Arshavsky VY, Lamb TD, Pugh EN Jr (2002) G proteins and phototransduction. Annu Rev Physiol 64:153–187

    CAS  PubMed  Google Scholar 

  4. Arshavsky VY, Burns ME (2012) Photoreceptor signaling: supporting vision across a wide range of light intensities. J Biol Chem 287(3):1620–1626

    CAS  PubMed Central  PubMed  Google Scholar 

  5. He W, Cowan CW, Wensel TG (1998) RGS9, a GTPase accelerator for phototransduction. Neuron 20(1):95–102

    PubMed  Google Scholar 

  6. Makino ER, Handy JW, Li T, Arshavsky VY (1999) The GTPase activating factor for transducin in rod photoreceptors is the complex between RGS9 and type 5 G protein beta subunit. Proc Natl Acad Sci U S A 96(5):1947–1952

    CAS  PubMed Central  PubMed  Google Scholar 

  7. He W, Lu L, Zhang X, El-Hodiri HM, Chen CK, Slep KC, Simon MI, Jamrich M, Wensel TG (2000) Modules in the photoreceptor RGS9-1.Gbeta 5 L GTPase-accelerating protein complex control effector coupling, GTPase acceleration, protein folding, and stability. J Biol Chem 275(47):37093–37100

    CAS  PubMed  Google Scholar 

  8. Cowan CW, He W, Wensel TG (2001) RGS proteins: lessons from the RGS9 subfamily. Prog Nucleic Acid Res Mol Biol 65:341–359

    CAS  PubMed  Google Scholar 

  9. Martemyanov KA, Arshavsky VY (2009) Biology and functions of the RGS9 isoforms. Prog Mol Biol Transl Sci 86:205–227

    CAS  PubMed  Google Scholar 

  10. Arshavsky VY, Bownds MD (1992) Regulation of deactivation of photoreceptor G protein by its target enzyme and cGMP. Nature 357(6377):416–417

    PubMed  Google Scholar 

  11. Angleson JK, Wensel TG (1994) Enhancement of rod outer segment GTPase accelerating protein activity by the inhibitory subunit of cGMP phosphodiesterase. J Biol Chem 269(23):16290–16296

    CAS  PubMed  Google Scholar 

  12. Skiba NP, Hopp JA, Arshavsky VY (2000) The effector enzyme regulates the duration of G protein signaling in vertebrate photoreceptors by increasing the affinity between transducin and RGS protein. J Biol Chem 275(42):32716–32720

    CAS  PubMed  Google Scholar 

  13. Brann MR, Cohen LV (1987) Diurnal expression of transducin mRNA and translocation of transducin in rods of rat retina. Science 235(4788):585–587

    CAS  PubMed  Google Scholar 

  14. Philp NJ, Chang W, Long K (1987) Light-stimulated protein movement in rod photoreceptor cells of the rat retina. FEBS Lett 225(1-2):127–132

    CAS  PubMed  Google Scholar 

  15. Whelan JP, McGinnis JF (1988) Light-dependent subcellular movement of photoreceptor proteins. J Neurosci Res 20(2):263–270

    CAS  PubMed  Google Scholar 

  16. Sokolov M, Lyubarsky AL, Strissel KJ, Savchenko AB, Govardovskii VI, Pugh EN Jr, Arshavsky VY (2002) Massive light-driven translocation of transducin between the two major compartments of rod cells: a novel mechanism of light adaptation. Neuron 34(1):95–106

    CAS  PubMed  Google Scholar 

  17. Fain GL (2006) Why photoreceptors die (and why they don’t). Bioessays 28(4):344–354

    CAS  PubMed  Google Scholar 

  18. Majumder A, Pahlberg J, Boyd KK, Kerov V, Kolandaivelu S, Ramamurthy V, Sampath AP, Artemyev NO (2013) Transducin translocation contributes to rod survival and enhances synaptic transmission from rods to rod bipolar cells. Proc Natl Acad Sci U S A 110:1268–1273

    Google Scholar 

  19. Francis SH, Turko IV, Corbin JD (2001) Cyclic nucleotide phosphodiesterases: relating structure and function. Prog Nucleic Acid Res Mol Biol 65:1–52

    CAS  PubMed  Google Scholar 

  20. Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58(3):488–520

    CAS  PubMed  Google Scholar 

  21. Baehr W, Devlin MJ, Applebury ML (1979) Isolation and characterization of cGMP phosphodiesterase from bovine rod outer segments. J Biol Chem 254(22):11669–11677

    CAS  PubMed  Google Scholar 

  22. Hurley JB, Stryer L (1982) Purification and characterization of the gamma regulatory subunit of the cyclic GMP phosphodiesterase from retinal rod outer segments. J Biol Chem 257(18):11094–11099

    CAS  PubMed  Google Scholar 

  23. Ovchinnikov Yu A, Lipkin VM, Kumarev VP, Gubanov VV, Khramtsov NV, Akhmedov NB, Zagranichny VE, Muradov KG (1986) Cyclic GMP phosphodiesterase from cattle retina. Amino acid sequence of the gamma-subunit and nucleotide sequence of the corresponding cDNA. FEBS Lett 204(2):288–292

    PubMed  Google Scholar 

  24. Ovchinnikov Yu A, Gubanov VV, Khramtsov NV, Ischenko KA, Zagranichny VE, Muradov KG, Shuvaeva TM, Lipkin VM (1987) Cyclic GMP phosphodiesterase from bovine retina. Amino acid sequence of the alpha-subunit and nucleotide sequence of the corresponding cDNA. FEBS Lett 223(1):169–173

    PubMed  Google Scholar 

  25. Deterre P, Bigay J, Forquet F, Robert M, Chabre M (1988) cGMP phosphodiesterase of retinal rods is regulated by two inhibitory subunits. Proc Natl Acad Sci U S A 85(8):2424–2428

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Fung BK, Young JH, Yamane HK, Griswold-Prenner I (1990) Subunit stoichiometry of retinal rod cGMP phosphodiesterase. Biochemistry 29(11):2657–2664

    CAS  PubMed  Google Scholar 

  27. Lipkin VM, Khramtsov NV, Vasilevskaya IA, Atabekova NV, Muradov KG, Gubanov VV, Li T, Johnston JP, Volpp KJ, Applebury ML (1990) Beta-subunit of bovine rod photoreceptor cGMP phosphodiesterase. Comparison with the phosphodiesterase family. J Biol Chem 265(22):12955–12959

    CAS  PubMed  Google Scholar 

  28. Li TS, Volpp K, Applebury ML (1990) Bovine cone photoreceptor cGMP phosphodiesterase structure deduced from a cDNA clone. Proc Natl Acad Sci U S A 87(1):293–297

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Hamilton SE, Hurley JB (1990) A phosphodiesterase inhibitor specific to a subset of bovine retinal cones. J Biol Chem 265(19):11259–11264

    CAS  PubMed  Google Scholar 

  30. Cote RH (2004) Characteristics of photoreceptor PDE (PDE6): similarities and differences to PDE5. Int J Impot Res 16(Suppl 1):S28–S33

    CAS  PubMed  Google Scholar 

  31. Muradov H, Boyd KK, Artemyev NO (2004) Structural determinants of the PDE6 GAF A domain for binding the inhibitory gamma-subunit and noncatalytic cGMP. Vision Res 44(21):2437–2444

    CAS  PubMed  Google Scholar 

  32. Martinez SE, Heikaus CC, Klevit RE, Beavo JA (2008) The structure of the GAF A domain from phosphodiesterase 6C reveals determinants of cGMP binding, a conserved binding surface, and a large cGMP-dependent conformational change. J Biol Chem 283(38):25913–25919

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Sung BJ, Hwang KY, Jeon YH, Lee JI, Heo YS, Kim JH, Moon J, Yoon JM, Hyun YL, Kim E, Eum SJ, Park SY, Lee JO, Lee TG, Ro S, Cho JM (2003) Structure of the catalytic domain of human phosphodiesterase 5 with bound drug molecules. Nature 425(6953):98–102

    CAS  PubMed  Google Scholar 

  34. Huai Q, Liu Y, Francis SH, Corbin JD, Ke H (2004) Crystal structures of phosphodiesterases 4 and 5 in complex with inhibitor 3-isobutyl-1-methylxanthine suggest a conformation determinant of inhibitor selectivity. J Biol Chem 279(13):13095–13101

    CAS  PubMed  Google Scholar 

  35. Barren B, Gakhar L, Muradov H, Boyd KK, Ramaswamy S, Artemyev NO (2009) Structural basis of phosphodiesterase 6 inhibition by the C-terminal region of the gamma-subunit. EMBO J 28(22):3613–3622

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Artemyev NO, Hamm HE (1992) Two-site high-affinity interaction between inhibitory and catalytic subunits of rod cyclic GMP phosphodiesterase. Biochem J 283(Pt 1):273–279

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Skiba NP, Artemyev NO, Hamm HE (1995) The carboxyl terminus of the gamma-subunit of rod cGMP phosphodiesterase contains distinct sites of interaction with the enzyme catalytic subunits and the alpha-subunit of transducin. J Biol Chem 270(22):13210–13215

    CAS  PubMed  Google Scholar 

  38. Takemoto DJ, Hurt D, Oppert B, Cunnick J (1992) Domain mapping of the retinal cyclic GMP phosphodiesterase gamma-subunit. Function of the domains encoded by the three exons of the gamma-subunit gene. Biochem J 281(Pt 3):637–643

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Artemyev NO, Natochin M, Busman M, Schey KL, Hamm HE (1996) Mechanism of photoreceptor cGMP phosphodiesterase inhibition by its gamma-subunits. Proc Natl Acad Sci U S A 93(11):5407–5412

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Granovsky AE, Natochin M, Artemyev NO (1997) The gamma subunit of rod cGMP-phosphodiesterase blocks the enzyme catalytic site. J Biol Chem 272(18):11686–11689

    CAS  PubMed  Google Scholar 

  41. Mou H, Cote RH (2001) The catalytic and GAF domains of the rod cGMP phosphodiesterase (PDE6) heterodimer are regulated by distinct regions of its inhibitory gamma subunit. J Biol Chem 276(29):27527–27534

    CAS  PubMed  Google Scholar 

  42. Muradov KG, Granovsky AE, Schey KL, Artemyev NO (2002) Direct interaction of the inhibitory gamma-subunit of Rod cGMP phosphodiesterase (PDE6) with the PDE6 GAFa domains. Biochemistry 41(12):3884–3390

    CAS  PubMed  Google Scholar 

  43. Guo LW, Muradov H, Hajipour AR, Sievert MK, Artemyev NO, Ruoho AE (2006) The inhibitory gamma subunit of the rod cGMP phosphodiesterase binds the catalytic subunits in an extended linear structure. J Biol Chem 281(22):15412–15422

    CAS  PubMed  Google Scholar 

  44. Song J, Guo LW, Muradov H, Artemyev NO, Ruoho AE, Markley JL (2008) Intrinsically disordered gamma-subunit of cGMP phosphodiesterase encodes functionally relevant transient secondary and tertiary structure. Proc Natl Acad Sci U S A 105(5):1505–1510

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Kameni Tcheudji JF, Lebeau L, Virmaux N, Maftei CG, Cote RH, Lugnier C, Schultz P (2001) Molecular organization of bovine rod cGMP-phosphodiesterase 6. J Mol Biol 310(4):781–791

    CAS  PubMed  Google Scholar 

  46. Zhang X, Cote RH (2005) cGMP signaling in vertebrate retinal photoreceptor cells. Front Biosci 10:1191–1204

    CAS  PubMed  Google Scholar 

  47. Granovsky AE, Artemyev NO (2000) Identification of the gamma subunit-interacting residues on photoreceptor cGMP phosphodiesterase, PDE6alpha ’. J Biol Chem 275(52):41258–41262

    CAS  PubMed  Google Scholar 

  48. Granovsky AE, Artemyev NO (2001) Partial reconstitution of photoreceptor cGMP phosphodiesterase characteristics in cGMP phosphodiesterase-5. J Biol Chem 276(24):21698–21703

    CAS  PubMed  Google Scholar 

  49. Granovsky AE, Artemyev NO (2001) A conformational switch in the inhibitory gamma-subunit of PDE6 upon enzyme activation by transducin. Biochemistry 40(44):13209–13215

    CAS  PubMed  Google Scholar 

  50. Neubert TA, Johnson RS, Hurley JB, Walsh KA (1992) The rod transducin alpha subunit amino terminus is heterogeneously fatty acylated. J Biol Chem 267(26):18274–18277

    CAS  PubMed  Google Scholar 

  51. Bigay J, Faurobert E, Franco M, Chabre M (1994) Roles of lipid modifications of transducin subunits in their GDP-dependent association and membrane binding. Biochemistry 33(47):14081–14090

    CAS  PubMed  Google Scholar 

  52. Kerov V, Artemyev NO (2011) Diffusion and light-dependent compartmentalization of transducin. Mol Cell Neurosci 46(1):340–346

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Catty P, Pfister C, Bruckert F, Deterre P (1992) The cGMP phosphodiesterase-transducin complex of retinal rods. Membrane binding and subunits interactions. J Biol Chem 267(27):19489–19493

    CAS  PubMed  Google Scholar 

  54. Clerc A, Bennett N (1992) Activated cGMP phosphodiesterase of retinal rods. A complex with transducin alpha subunit. J Biol Chem 267(10):6620–6627

    CAS  PubMed  Google Scholar 

  55. Anant JS, Ong OC, Xie HY, Clarke S, O’Brien PJ, Fung BK (1992) In vivo differential prenylation of retinal cyclic GMP phosphodiesterase catalytic subunits. J Biol Chem 267(2):687–690

    CAS  PubMed  Google Scholar 

  56. Faurobert E, Otto-Bruc A, Chardin P, Chabre M (1993) Tryptophan W207 in transducin T alpha is the fluorescence sensor of the G protein activation switch and is involved in the effector binding. EMBO J 12(11):4191–4198

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Skiba NP, Bae H, Hamm HE (1996) Mapping of effector binding sites of transducin alpha-subunit using G alpha t/G alpha i1 chimeras. J Biol Chem 271(1):413–424

    CAS  PubMed  Google Scholar 

  58. Natochin M, Granovsky AE, Artemyev NO (1998) Identification of effector residues on photoreceptor G protein, transducin. J Biol Chem 273(34):21808–21815

    CAS  PubMed  Google Scholar 

  59. Slep KC, Kercher MA, He W, Cowan CW, Wensel TG, Sigler PB (2001) Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 A. Nature 409(6823):1071–1077

    CAS  PubMed  Google Scholar 

  60. Hingorani VN, Tobias DT, Henderson JT, Ho YK (1988) Chemical cross-linking of bovine retinal transducin and cGMP phosphodiesterase. J Biol Chem 263(14):6916–6926

    CAS  PubMed  Google Scholar 

  61. Clerc A, Catty P, Bennett N (1992) Interaction between cGMP-phosphodiesterase and transducin alpha-subunit in retinal rods. A cross-linking study. J Biol Chem 267(28):19948–19953

    CAS  PubMed  Google Scholar 

  62. Leskov IB, Klenchin VA, Handy JW, Whitlock GG, Govardovskii VI, Bownds MD, Lamb TD, Pugh EN Jr, Arshavsky VY (2000) The gain of rod phototransduction: reconciliation of biochemical and electrophysiological measurements. Neuron 27(3):525–537

    CAS  PubMed  Google Scholar 

  63. Bruckert F, Catty P, Deterre P, Pfister C (1994) Activation of phosphodiesterase by transducin in bovine rod outer segments: characteristics of the successive binding of two transducins. Biochemistry 33(42):12625–12634

    CAS  PubMed  Google Scholar 

  64. Melia TJ, Malinski JA, He F, Wensel TG (2000) Enhancement of phototransduction protein interactions by lipid surfaces. J Biol Chem 275(5):3535–3542

    CAS  PubMed  Google Scholar 

  65. Norton AW, D’Amours MR, Grazio HJ, Hebert TL, Cote RH (2000) Mechanism of transducin activation of frog rod photoreceptor phosphodiesterase. Allosteric interactiona between the inhibitory gamma subunit and the noncatalytic cGMP-binding sites. J Biol Chem 275(49):38611–38619

    CAS  PubMed  Google Scholar 

  66. Berger AL, Cerione RA, Erickson JW (1999) Delineation of two functionally distinct gammaPDE binding sites on the bovine retinal cGMP phosphodiesterase by a mutant gammaPDE subunit. Biochemistry 38(4):1293–1299

    CAS  PubMed  Google Scholar 

  67. Muradov H, Boyd KK, Artemyev NO (2010) Rod phosphodiesterase-6 PDE6A and PDE6B subunits are enzymatically equivalent. J Biol Chem 285(51):39828–39834

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Hu G, Wensel TG (2002) R9AP, a membrane anchor for the photoreceptor GTPase accelerating protein, RGS9-1. Proc Natl Acad Sci U S A 99(15):9755–9760

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Lishko PV, Martemyanov KA, Hopp JA, Arshavsky VY (2002) Specific binding of RGS9-Gbeta 5 L to protein anchor in photoreceptor membranes greatly enhances its catalytic activity. J Biol Chem 277(27):24376–24381

    CAS  PubMed  Google Scholar 

  70. Hu G, Zhang Z, Wensel TG (2003) Activation of RGS9-1GTPase acceleration by its membrane anchor, R9AP. J Biol Chem 278(16):14550–14554

    CAS  PubMed  Google Scholar 

  71. Wensel TG (2008) Signal transducing membrane complexes of photoreceptor outer segments. Vision Res 48(20):2052–2061

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Noel JP, Hamm HE, Sigler PB (1993) The 2.2 A crystal structure of transducin-alpha complexed with GTP gamma S. Nature 366(6456):654–663

    CAS  PubMed  Google Scholar 

  73. Lambright DG, Noel JP, Hamm HE, Sigler PB (1994) Structural determinants for activation of the alpha-subunit of a heterotrimeric G protein. Nature 369(6482):621–628

    CAS  PubMed  Google Scholar 

  74. Otto-Bruc A, Antonny B, Vuong TM, Chardin P, Chabre M (1993) Interaction between the retinal cyclic GMP phosphodiesterase inhibitor and transducin. Kinetics and affinity studies. Biochemistry 32(33):8636–8645

    CAS  PubMed  Google Scholar 

  75. Artemyev NO, Mills JS, Thornburg KR, Knapp DR, Schey KL, Hamm HE (1993) A site on transducin alpha-subunit of interaction with the polycationic region of cGMP phosphodiesterase inhibitory subunit. J Biol Chem 268(31):23611–23615

    CAS  PubMed  Google Scholar 

  76. Artemyev NO, Rarick HM, Mills JS, Skiba NP, Hamm HE (1992) Sites of interaction between rod G-protein alpha-subunit and cGMP-phosphodiesterase gamma-subunit. Implications for the phosphodiesterase activation mechanism. J Biol Chem 267(35):25067–25072

    CAS  PubMed  Google Scholar 

  77. Guo LW, Hajipour AR, Ruoho AE (2010) Complementary interactions of the rod PDE6 inhibitory subunit with the catalytic subunits and transducin. J Biol Chem 285(20):15209–15219

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Guo LW, Ruoho AE (2008) The retinal cGMP phosphodiesterase gamma-subunit - a chameleon. Curr Protein Pept Sci 9(6):611–625

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Farber DB, Lolley RN (1947) Cyclic guanosine monophosphate: elevation in degenerating photoreceptor cells of the C3H mouse retina. Science 186(4162):449–451

    Google Scholar 

  80. Rieke F, Baylor DA (1996) Molecular origin of continuous dark noise in rod photoreceptors. Biophys J 71(5):2553–2572

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Tsang SH, Burns ME, Calvert PD, Gouras P, Baylor DA, Goff SP, Arshavsky VY (1998) Role for the target enzyme in deactivation of photoreceptor G protein in vivo. Science 282(5386):117–121

    CAS  PubMed  Google Scholar 

  82. Zhang XJ, Gao XZ, Yao W, Cote RH (2012) Functional mapping of interacting regions of the photoreceptor phosphodiesterase (PDE6) gamma-subunit with PDE6 catalytic dimer, transducin, and regulator of G-protein signaling9-1 (RGS9-1). J Biol Chem 287(31):26312–26320

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Calvert PD, Strissel KJ, Schiesser WE, Pugh EN Jr, Arshavsky VY (2006) Light-driven translocation of signaling proteins in vertebrate photoreceptors. Trends Cell Biol 16(11):560–568

    CAS  PubMed  Google Scholar 

  84. Artemyev NO (2008) Light-dependent compartmentalization of transducin in rod photoreceptors. Mol Neurobiol 37(1):44–51

    CAS  PubMed  Google Scholar 

  85. Slepak VZ, Hurley JB (2008) Mechanism of light-induced translocation of arrestin and transducin in photoreceptors: interaction-restricted diffusion. IUBMB Life 60(1):2–9

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Mendez A, Lem J, Simon M, Chen J (2003) Light-dependent translocation of arrestin in the absence of rhodopsin phosphorylation and transducin signaling. J Neurosci 23(8):3124–3129

    CAS  PubMed  Google Scholar 

  87. Nair KS, Hanson SM, Mendez A, Gurevich EV, Kennedy MJ, Shestopalov VI, Vishnivetskiy SA, Chen J, Hurley JB, Gurevich VV, Slepak VZ (2005) Light-dependent redistribution of arrestin in vertebrate rods is an energy-independent process governed by protein-protein interactions. Neuron 46(4):555–567

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Rosenzweig DH, Nair KS, Wei J, Wang Q, Garwin G, Saari JC, Chen CK, Smrcka AV, Swaroop A, Lem J, Hurley JB, Slepak VZ (2007) Subunit dissociation and diffusion determine the subcellular localization of rod and cone transducins. J Neurosci 27(20):5484–5494

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Herrmann R, Lobanova ES, Hammond T, Kessler C, Burns ME, Frishman LJ, Arshavsky VY (2010) Phosducin regulates transmission at the photoreceptor-to-ON-bipolar cell synapse. J Neurosci 30(9):3239–3253

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Kerov V, Chen D, Moussaif M, Chen YJ, Chen CK, Artemyev NO (2005) Transducin activation state controls its light-dependent translocation in rod photoreceptors. J Biol Chem 280(49):41069–41076

    CAS  PubMed  Google Scholar 

  91. Lobanova ES, Finkelstein S, Song H, Tsang SH, Chen CK, Sokolov M, Skiba NP, Arshavsky VY (2007) Transducin translocation in rods is triggered by saturation of the GTPase-activating complex. J Neurosci 27(5):1151–1160

    CAS  PubMed  Google Scholar 

  92. Maduro M, Pilgrim D (1995) Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. Genetics 141(3):977–988

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Higashide T, Murakami A, McLaren MJ, Inana G (1996) Cloning of the cDNA for a novel photoreceptor protein. J Biol Chem 271(3):1797–1804

    CAS  PubMed  Google Scholar 

  94. Zhang H, Constantine R, Vorobiev S, Chen Y, Seetharaman J, Huang YJ, Xiao R, Montelione GT, Gerstner CD, Davis MW, Inana G, Whitby FG, Jorgensen EM, Hill CP, Tong L, Baehr W (2011) UNC119 is required for G protein trafficking in sensory neurons. Nat Neurosci 14(7):874–880

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Gopalakrishna KN, Doddapuneni K, Boyd KK, Masuho I, Martemyanov KA, Artemyev NO (2011) Interaction of transducin with uncoordinated 119 protein (UNC119): implications for the model of transducin trafficking in rod photoreceptors. J Biol Chem 286(33):28954–28962

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Lambright DG, Sondek J, Bohm A, Skiba NP, Hamm HE, Sigler PB (1996) The 2.0 Å crystal structure of a heterotrimeric G protein. Nature 379(6563):311–319

    CAS  PubMed  Google Scholar 

  97. Sinha S, Majumder A, Belcastro M, Sokolov M, Artemyev NO (2013) Expression and subcellular distribution of UNC119a, a protein partner of transducin alpha subunit in rod photoreceptors. Cell Signal 25(1):341–348

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Wright KJ, Baye LM, Olivier-Mason A, Mukhopadhyay S, Sang L, Kwong M, Wang W, Pretorius PR, Sheffield VC, Sengupta P, Slusarski DC, Jackson PK (2011) An ARL3-UNC119-RP2 GTPase cycle targets myristoylated NPHP3 to the primary cilium. Genes Dev 25(22):2347–2360

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Kobayashi A, Kubota S, Mori N, McLaren MJ, Inana G (2003) Photoreceptor synaptic protein HRG4 (UNC119) interacts with ARL2 via a putative conserved domain. FEBS Lett 534(1-3):26–32

    CAS  PubMed  Google Scholar 

  100. Veltel S, Kravchenko A, Ismail S, Wittinghofer A (2008) Specificity of Arl2/Arl3 signaling is mediated by a ternary Arl3-effector-GAP complex. FEBS Lett 582(17):2501–2507

    CAS  PubMed  Google Scholar 

  101. Kahn RA, Volpicelli-Daley L, Bowzard B, Shrivastava-Ranjan P, Li Y, Zhou C, Cunningham L (2005) Arf family GTPases: roles in membrane traffic and microtubule dynamics. Biochem Soc Trans 33(Pt 6):1269–1272

    CAS  PubMed  Google Scholar 

  102. Schrick JJ, Vogel P, Abuin A, Hampton B, Rice DS (2006) ADP-ribosylation factor-like 3 is involved in kidney and photoreceptor development. Am J Pathol 168(4):1288–1298

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Ismail SA, Chen YX, Miertzschke M, Vetter IR, Koerner C, Wittinghofer A (2012) Structural basis for Arl3-specific release of myristoylated ciliary cargo from UNC119. EMBO J 31(20):4085–4094

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Haeseleer F (2008) Interaction and colocalization of CaBP4 and Unc119 (MRG4) in photoreceptors. Invest Ophthalmol Vis Sci 49(6):2366–2375

    PubMed Central  PubMed  Google Scholar 

  105. Haeseleer F, Imanishi Y, Maeda T, Possin DE, Maeda A, Lee A, Rieke F, Palczewski K (2004) Essential role of Ca2 + -binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function. Nat Neurosci 7(10):1079–1087

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Alpadi K, Magupalli VG, Kappel S, Koblitz L, Schwarz K, Seigel GM, Sung CH, Schmitz F (2008) RIBEYE recruits Munc119, a mammalian ortholog of the Caenorhabditis elegans protein unc119, to synaptic ribbons of photoreceptor synapses. J Biol Chem 283(39):26461–26467

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Betke KM, Wells CA, Hamm HE (2012) GPCR mediated regulation of synaptic transmission. Prog Neurobiol 96(3):304–321

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Yoon EJ, Gerachshenko T, Spiegelberg BD, Alford S, Hamm HE (2007) Gbetagamma interferes with Ca2+-dependent binding of synaptotagmin to the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. Mol Pharmacol 72(5):1210–1219

    CAS  PubMed  Google Scholar 

  109. Cheever ML, Snyder JT, Gershburg S, Siderovski DP, Harden TK, Sondek J (2008) Crystal structure of the multifunctional Gbeta5-RGS9 complex. Nat Struct Mol Biol 15(2):155–162

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai O. Artemyev PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Artemyev, N. (2014). G-Protein–Effector Coupling in the Vertebrate Phototransduction Cascade. In: Martemyanov, K., Sampath, A. (eds) G Protein Signaling Mechanisms in the Retina. Springer Series in Vision Research, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1218-6_4

Download citation

Publish with us

Policies and ethics