Skip to main content

G Protein Deactivation Mechanisms in Vertebrate Phototransduction

  • Chapter
  • First Online:
  • 936 Accesses

Part of the book series: Springer Series in Vision Research ((SSVR,volume 3))

Abstract

Heterotrimeric G proteins are widely used in nature to facilitate cellular responses to extracellular stimuli. In humans, these G proteins mediate vision and other senses, modulate neurotransmission, and are required for hormonal actions. The signaling system involves three groups of molecules, namely, the receptors with heptahelical transmembrane motifs, the trimeric G proteins themselves, and the effectors through which G proteins alter cellular homeostasis. Advances in genome sciences have revealed the full complement of this system in multiple species, and the current challenges are to elucidate which, when, where, and how each component is used. The field of phototransduction has historically provided unrivaled details in describing general principles of G-protein signaling. This chapter intends to cover the reactions that dominate the rate of phototransduction recovery in rod and cone photoreceptors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ames JB, Ikura M (2002) Structure and membrane-targeting mechanism of retinal Ca2+-binding proteins, recoverin and GCAP-2. Adv Exp Med Biol 514:333–348

    Article  CAS  PubMed  Google Scholar 

  2. Angleson JK, Wensel TG (1993) A GTPase-accelerating factor for transducin, distinct from its effector cGMP phosphodiesterase, in rod outer segment membranes. Neuron 11(5):939–949

    Article  CAS  PubMed  Google Scholar 

  3. Arshavsky V, Bownds MD (1992) Regulation of deactivation of photoreceptor G protein by its target enzyme and cGMP. Nature 357(6377):416–417

    Article  PubMed  Google Scholar 

  4. Baehr W, Frederick JM (2009) Naturally occurring animal models with outer retina phenotypes. Vision Res 49(22):2636–2252

    Article  PubMed Central  PubMed  Google Scholar 

  5. Baehr W, Devlin MJ, Applebury ML (1979) Isolation and characterization of cGMP phosphodiesterase from bovine rod outer segments. J Biol Chem 254(22):11669–11677

    CAS  PubMed  Google Scholar 

  6. Barren B, Gakhar L, Muradov H, Boyd KK, Ramaswamy S, Artemyev NO (2009) Structural basis of phosphodiesterase 6 inhibition by the C-terminal region of the gamma-subunit. EMBO J 28(22):3613–3622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Burns ME, Mendez A, Chen J, Baylor DA (2002) Dynamics of cyclic GMP synthesis in retinal rods. Neuron 36(1):81–91

    Article  CAS  PubMed  Google Scholar 

  8. Chen CK (2002) Recoverin and rhodopsin kinase. Adv Exp Med Biol 514:101–107

    Article  CAS  PubMed  Google Scholar 

  9. Chen CK (2005) The vertebrate phototransduction cascade: amplification and termination mechanisms. Rev Physiol Biochem Pharmacol 154:101–121

    CAS  PubMed  Google Scholar 

  10. Chen CK, Inglese J, Lefkowitz RJ, Hurley JB (1995a) Ca(2+)-dependent interaction of recoverin with rhodopsin kinase. J Biol Chem 270(30):18060–18066

    Article  CAS  Google Scholar 

  11. Chen J, Makino CL, Peachey NS, Baylor DA, Simon MI (1995b) Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant. Science 267(5196):374–377

    Article  CAS  Google Scholar 

  12. Chen CK, Wieland T, Simon MI (1996) RGS-r, a retinal specific RGS protein, binds an intermediate conformation of transducin and enhances recycling. Proc Natl Acad Sci U S A 93(23):12885–12889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Chen CK, Burns ME, Spencer M, Niemi GA, Chen J, Hurley JB et al (1999) Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. Proc Natl Acad Sci U S A 96(7):3718–3722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Chen CK, Burns ME, He W, Wensel TG, Baylor DA, Simon MI (2000) Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1. Nature 403(6769):557–560

    Article  CAS  PubMed  Google Scholar 

  15. Chen CK, Zhang K, Church-Kopish J, Huang W, Zhang H, Chen YJ et al (2001) Characterization of human GRK7 as a potential cone opsin kinase. Mol Vis 7:305–313

    CAS  PubMed  Google Scholar 

  16. Chen C, Nakatani K, Koutalos Y (2003a) Free magnesium concentration in salamander photoreceptor outer segments. J Physiol 553(Pt 1):125–135

    Article  CAS  Google Scholar 

  17. Chen CK, Eversole-Cire P, Zhang H, Mancino V, Chen YJ, He W et al (2003b) Instability of GGL domain-containing RGS proteins in mice lacking the G protein beta-subunit Gbeta5. Proc Natl Acad Sci U S A 100(11):6604–6609

    Article  CAS  Google Scholar 

  18. Chen CK, Woodruff ML, Chen FS, Chen D, Fain GL (2010) Background light produces a recoverin-dependent modulation of activated-rhodopsin lifetime in mouse rods. J Neurosci 30(4):1213–1220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Chen CK, Woodruff ML, Chen FS, Chen Y, Cilluffo MC, Tranchina D et al (2012) Modulation of mouse rod response decay by rhodopsin kinase and recoverin. J Neurosci 32(45):15998–16006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Cideciyan AV, Zhao X, Nielsen L, Khani SC, Jacobson SG, Palczewski K (1998) Null mutation in the rhodopsin kinase gene slows recovery kinetics of rod and cone phototransduction in man. Proc Natl Acad Sci U S A 95(1):328–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Cowan CW, Fariss RN, Sokal I, Palczewski K, Wensel TG (1998) High expression levels in cones of RGS9, the predominant GTPase accelerating protein of rods. Proc Natl Acad Sci U S A 95(9):5351–5356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Craft CM, Whitmore DH, Wiechmann AF (1994) Cone arrestin identified by targeting expression of a functional family. J Biol Chem 269(6):4613–4619

    CAS  PubMed  Google Scholar 

  23. Dizhoor AM, Ray S, Kumar S, Niemi G, Spencer M, Brolley D et al (1991) Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase. Science 251(4996):915–918

    Article  CAS  PubMed  Google Scholar 

  24. Dizhoor AM, Olshevskaya EV, Henzel WJ, Wong SC, Stults JT, Ankoudinova I et al (1995) Cloning, sequencing, and expression of a 24-kDa Ca(2+)-binding protein activating photoreceptor guanylyl cyclase. J Biol Chem 270(42):25200–25206

    Article  CAS  PubMed  Google Scholar 

  25. Dohlman HG, Apaniesk D, Chen Y, Song J, Nusskern D (1995) Inhibition of G-protein signaling by dominant gain-of-function mutations in Sst2p, a pheromone desensitization factor in Saccharomyces cerevisiae. Mol Cell Biol 15(7):3635–3643

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Erickson MA, Lagnado L, Zozulya S, Neubert TA, Stryer L, Baylor DA (1998) The effect of recombinant recoverin on the photoresponse of truncated rod photoreceptors. Proc Natl Acad Sci U S A 95(11):6474–6479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Faurobert E, Hurley JB (1997) The core domain of a new retina specific RGS protein stimulates the GTPase activity of transducin in vitro. Proc Natl Acad Sci U S A 94(7):2945–2950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Fuchs S, Nakazawa M, Maw M, Tamai M, Oguchi Y, Gal A (1995) A homozygous 1-base pair deletion in the arrestin gene is a frequent cause of Oguchi disease in Japanese. Nat Genet 10(3):360–362

    Article  CAS  PubMed  Google Scholar 

  29. Fung BK (1983) Characterization of transducin from bovine retinal rod outer segments. I. Separation and reconstitution of the subunits. J Biol Chem 258(17):10495–10502

    CAS  PubMed  Google Scholar 

  30. Fung BK, Hurley JB, Stryer L (1981) Flow of information in the light-triggered cyclic nucleotide cascade of vision. Proc Natl Acad Sci U S A 78(1):152–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Fung BK, Lieberman BS, Lee RH (1992) A third form of the G protein beta subunit. 2. Purification and biochemical properties. J Biol Chem 267(34):24782–24788

    CAS  PubMed  Google Scholar 

  32. Gorczyca WA, Polans AS, Surgucheva IG, Subbaraya I, Baehr W, Palczewski K (1995) Guanylyl cyclase activating protein. A calcium-sensitive regulator of phototransduction. J Biol Chem 270(37):22029–22036

    Article  CAS  PubMed  Google Scholar 

  33. Gray-Keller MP, Detwiler PB (1994) The calcium feedback signal in the phototransduction cascade of vertebrate rods. Neuron 13(4):849–861

    Article  CAS  PubMed  Google Scholar 

  34. Gray-Keller MP, Polans AS, Palczewski K, Detwiler PB (1993) The effect of recoverin-like calcium-binding proteins on the photoresponse of retinal rods. Neuron 10(3):523–531

    Article  CAS  PubMed  Google Scholar 

  35. Greene NM, Williams DS, Newton AC (1995) Kinetics and localization of the phosphorylation of rhodopsin by protein kinase C. J Biol Chem 270(12):6710–6717

    Article  CAS  PubMed  Google Scholar 

  36. Greene NM, Williams DS, Newton AC (1997) Identification of protein kinase C phosphorylation sites on bovine rhodopsin. J Biol Chem 272(16):10341–10344

    Article  CAS  PubMed  Google Scholar 

  37. He W, Cowan CW, Wensel TG (1998) RGS9, a GTPase accelerator for phototransduction. Neuron 20(1):95–102

    Article  PubMed  Google Scholar 

  38. Hecht S, Shlaer S, Pirenne MH (1941) Energy at the threshold of vision. Science 93(2425):585–587

    Article  CAS  PubMed  Google Scholar 

  39. Hirsch JA, Schubert C, Gurevich VV, Sigler PB (1999) A model for Arrestin’s regulation: the 2.8 Å crystal structure of visual Arrestin. Cell 97(2):257–269

    Article  CAS  PubMed  Google Scholar 

  40. Ho YK, Hingorani VN, Navon SE, Fung BK (1989) Transducin: a signaling switch regulated by guanine nucleotides. Curr Top Cell Regul 30:171–202

    Article  CAS  PubMed  Google Scholar 

  41. Hu G, Wensel TG (2002) R9AP, a membrane anchor for the photoreceptor GTPase accelerating protein, RGS9-1. Proc Natl Acad Sci U S A 99(15):9755–9760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Hurley JB, Stryer L (1982) Purification and characterization of the gamma regulatory subunit of the cyclic GMP phosphodiesterase from retinal rod outer segments. J Biol Chem 257(18):11094–11099

    CAS  PubMed  Google Scholar 

  43. Hurwitz RL, Bunt-Milam AH, Chang ML, Beavo JA (1985) cGMP phosphodiesterase in rod and cone outer segments of the retina. J Biol Chem 260(1):568–573

    CAS  PubMed  Google Scholar 

  44. Inglese J, Koch WJ, Caron MG, Lefkowitz RJ (1992) Isoprenylation in regulation of signal transduction by G-protein-coupled receptor kinases. Nature 359(6391):147–150

    Article  CAS  PubMed  Google Scholar 

  45. Kawamura S (1992) Light-sensitivity modulating protein in frog rods. Photochem Photobiol 56(6):1173–1180

    Article  CAS  PubMed  Google Scholar 

  46. Kawamura S (1993) Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin. Nature 362(6423):855–857

    Article  CAS  PubMed  Google Scholar 

  47. Kennedy MJ, Sowa ME, Wensel TG, Hurley JB (2003) Acceleration of key reactions as a strategy to elucidate the rate-limiting chemistry underlying phototransduction inactivation. Invest Ophthalmol Vis Sci 44(3):1016–1022

    Article  PubMed  Google Scholar 

  48. Keresztes G, Martemyanov KA, Krispel CM, Mutai H, Yoo PJ, Maison SF et al (2004) Absence of the RGS9.Gbeta5 GTPase-activating complex in photoreceptors of the R9AP knockout mouse. J Biol Chem 279(3):1581–1584

    Article  CAS  PubMed  Google Scholar 

  49. Klenchin VA, Calvert PD, Bownds MD (1995) Inhibition of rhodopsin kinase by recoverin. Further evidence for a negative feedback system in phototransduction. J Biol Chem 270(27):16147–16152

    Article  CAS  PubMed  Google Scholar 

  50. Koch KW, Stryer L (1988) Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature 334(6177):64–66

    Article  CAS  PubMed  Google Scholar 

  51. Koelle MR, Horvitz HR (1996) EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell 84(1):115–125

    Article  CAS  PubMed  Google Scholar 

  52. Koike C, Obara T, Uriu Y, Numata T, Sanuki R, Miyata K et al (2010) TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade. Proc Natl Acad Sci U S A 107(1):332–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Krispel CM, Chen CK, Simon MI, Burns ME (2003) Prolonged photoresponses and defective adaptation in rods of Gbeta5-/- mice. J Neurosci 23(18):6965–6971

    CAS  PubMed  Google Scholar 

  54. Krispel CM, Chen D, Melling N, Chen YJ, Martemyanov KA, Quillinan N et al (2006) RGS expression rate-limits recovery of rod photoresponses. Neuron 51(4):409–416

    Article  CAS  PubMed  Google Scholar 

  55. Kuhn H, Wilden U (1987) Deactivation of photoactivated rhodopsin by rhodopsin-kinase and arrestin. J Recept Res 7(1–4):283–298

    Google Scholar 

  56. Lamb TD, Pugh EN Jr (1992) A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J Physiol 449:719–758

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Lee RH, Lieberman BS, Lolley RN (1987) A novel complex from bovine visual cells of a 33,000-dalton phosphoprotein with beta- and gamma-transducin: purification and subunit structure. BioChemistry 26(13):3983–3990

    Article  CAS  PubMed  Google Scholar 

  58. Lem J, Makino CL (1996) Phototransduction in transgenic mice. Curr Opin Neurobiol 6(4):453–458

    Article  CAS  PubMed  Google Scholar 

  59. Leskov IB, Klenchin VA, Handy JW, Whitlock GG, Govardovskii VI, Bownds MD et al (2000) The gain of rod phototransduction: reconciliation of biochemical and electrophysiological measurements. Neuron 27(3):525–537

    Article  CAS  PubMed  Google Scholar 

  60. Liebman PA, Pugh EN (1980) Jr. ATP mediates rapid reversal of cyclic GMP phosphodiesterase activation in visual receptor membranes. Nature 287(5784):734–736

    Article  CAS  PubMed  Google Scholar 

  61. Lorenz W, Inglese J, Palczewski K, Onorato JJ, Caron MG, Lefkowitz RJ (1991) The receptor kinase family: primary structure of rhodopsin kinase reveals similarities to the beta-adrenergic receptor kinase. Proc Natl Acad Sci U S A 88(19):8715–8719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Lyubarsky A, Nikonov S, Pugh EN Jr (1996) The kinetics of inactivation of the rod phototransduction cascade with constant Ca2 + i. J Gen Physiol 107(1):19–34

    Article  CAS  PubMed  Google Scholar 

  63. Lyubarsky AL, Chen C, Simon MI, Pugh EN Jr (2000) Mice lacking G-protein receptor kinase 1 have profoundly slowed recovery of cone-driven retinal responses. J Neurosci 20(6):2209–2217

    CAS  PubMed  Google Scholar 

  64. Lyubarsky AL, Naarendorp F, Zhang X, Wensel T, Simon MI, Pugh EN Jr (2001) RGS9-1 is required for normal inactivation of mouse cone phototransduction. Mol Vis 7:71–78

    CAS  PubMed  Google Scholar 

  65. Makino ER, Handy JW, Li T, Arshavsky VY (1999) The GTPase activating factor for transducin in rod photoreceptors is the complex between RGS9 and type 5 G protein beta subunit. Proc Natl Acad Sci U S A 96(5):1947–1952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Makino CL, Dodd RL, Chen J, Burns ME, Roca A, Simon MI et al (2004) Recoverin regulates light-dependent phosphodiesterase activity in retinal rods. J Gen Physiol 123(6):729–741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Matthews HR, Sampath AP (2010) Photopigment quenching is Ca2+ dependent and controls response duration in salamander L-cone photoreceptors. J Gen Physiol 135(4):355–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Morrow EM, Furukawa T, Cepko CL (1998) Vertebrate photoreceptor cell development and disease. Trends Cell Biol 8(9):353–358

    Article  CAS  PubMed  Google Scholar 

  69. Natochin M, Granovsky AE, Artemyev NO (1997) Regulation of transducin GTPase activity by human retinal RGS. J Biol Chem 272(28):17444–17449

    Article  CAS  PubMed  Google Scholar 

  70. Nekrasova ER, Berman DM, Rustandi RR, Hamm HE, Gilman AG, Arshavsky VY (1997) Activation of transducin guanosine triphosphatase by two proteins of the RGS family. BioChemistry 36(25):7638–7643

    Article  CAS  PubMed  Google Scholar 

  71. Nikonov SS, Brown BM, Davis JA, Zuniga FI, Bragin A, Pugh EN Jr (2008) et al. Mouse cones require an arrestin for normal inactivation of phototransduction. Neuron 59(3):462–474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Osawa S, Jo R, Weiss ER (2008) Phosphorylation of GRK7 by PKA in cone photoreceptor cells is regulated by light. J Neurochem 107(5):1314–1324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Osawa S, Jo R, Xiong Y, Reidel B, Tserentsoodol N, Arshavsky VY et al (2011) Phosphorylation of G protein-coupled receptor kinase 1 (GRK1) is regulated by light but independent of phototransduction in rod photoreceptors. J Biol Chem 286(23):20923–20929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289(5480):739–745

    Article  CAS  PubMed  Google Scholar 

  75. Papermaster DS (1982) Preparation of retinal rod outer segments. Methods Enzymol 81:48–52

    Article  CAS  PubMed  Google Scholar 

  76. Pearring JN, Bojang P Jr, Shen Y, Koike C, Furukawa T, Nawy S et al (2011) A role for nyctalopin, a small leucine-rich repeat protein, in localizing the TRP melastatin 1 channel to retinal depolarizing bipolar cell dendrites. J Neurosci 31(27):10060–10066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Pennesi ME, Howes KA, Baehr W, Wu SM (2003) Guanylate cyclase-activating protein (GCAP) 1 rescues cone recovery kinetics in GCAP1/GCAP2 knockout mice. Proc Natl Acad Sci U S A 100(11):6783–6788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Ridge KD, Abdulaev NG, Sousa M, Palczewski K (2003) Phototransduction: crystal clear. Trends Biochem Sci 28(9):479–487

    Article  CAS  PubMed  Google Scholar 

  79. Rieke F, Baylor DA (1998) Origin of reproducibility in the responses of retinal rods to single photons. Biophys J 75(4):1836–1857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Rinner O, Makhankov YV, Biehlmaier O, Neuhauss SC (2005) Knockdown of cone-specific kinase GRK7 in larval zebrafish leads to impaired cone response recovery and delayed dark adaptation. Neuron 47(2):231–242

    Article  CAS  PubMed  Google Scholar 

  81. Sagoo MS, Lagnado L (1997) G-protein deactivation is rate-limiting for shut-off of the phototransduction cascade. Nature 389(6649):392–395

    Article  CAS  PubMed  Google Scholar 

  82. Sakurai K, Young JE, Kefalov VJ, Khani SC (2011) Variation in rhodopsin kinase expression alters the dim flash response shut off and the light adaptation in rod photoreceptors. Invest Ophthalmol Vis Sci 52(9):6793–6800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Sampath AP, Matthews HR, Cornwall MC, Fain GL (1998) Bleached pigment produces a maintained decrease in outer segment Ca2+ in salamander rods. J Gen Physiol 111(1):53–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Sampath AP, Matthews HR, Cornwall MC, Bandarchi J, Fain GL (1999) Light-dependent changes in outer segment free-Ca2 + concentration in salamander cone photoreceptors. J Gen Physiol 113(2):267–277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Sampath AP, Strissel KJ, Elias R, Arshavsky VY, McGinnis JF, Chen J et al (2005) Recoverin improves rod-mediated vision by enhancing signal transmission in the mouse retina. Neuron 46(3):413–420

    Article  CAS  PubMed  Google Scholar 

  86. Sampson TR, Weiss DS (2014) Exploiting CRISPR/Cas systems for biotechnology. Bioessays 36(1):34–38

    Article  CAS  PubMed  Google Scholar 

  87. Shen Y, Rampino MA, Carroll RC, Nawy S (2012) G-protein-mediated inhibition of the Trp channel TRPM1 requires the Gbetagamma dimer. Proc Natl Acad Sci U S A 109(22):8752–8757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Singh P, Wang B, Maeda T, Palczewski K, Tesmer JJ (2008) Structures of rhodopsin kinase in different ligand states reveal key elements involved in G protein-coupled receptor kinase activation. J Biol Chem 283(20):14053–14062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Sitaramayya A, Liebman PA (1983) Phosphorylation of rhodopsin and quenching of cyclic GMP phosphodiesterase activation by ATP at weak bleaches. J Biol Chem 258(20):12106–12109

    CAS  PubMed  Google Scholar 

  90. Slep KC, Kercher MA, He W, Cowan CW, Wensel TG, Sigler PB (2001) Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 Å. Nature 409(6823):1071–1077

    Article  CAS  PubMed  Google Scholar 

  91. Smith JJ, Putta S, Walker JA, Kump DK, Samuels AK, Monaghan JR et al (2005) Sal-site: integrating new and existing ambystomatid salamander research and informational resources. BMC Genomics 6:181

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Sondek J, Lambright DG, Noel JP, Hamm HE, Sigler PB (1994) GTPase mechanism of Gproteins from the 1.7-A crystal structure of transducin alpha-GDP-AIF-4. Nature 372(6503):276–279

    Article  CAS  PubMed  Google Scholar 

  93. Standfuss J, Edwards PC, D’Antona A, Fransen M, Xie G, Oprian DD et al (2011) The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 471(7340):656–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Strissel KJ, Lishko PV, Trieu LH, Kennedy MJ, Hurley JB, Arshavsky VY (2005) Recoverin undergoes light-dependent intracellular translocation in rod photoreceptors. J Biol Chem 280(32):29250–29255

    Article  CAS  PubMed  Google Scholar 

  95. Tachibanaki S, Arinobu D, Shimauchi-Matsukawa Y, Tsushima S, Kawamura S (2005) Highly effective phosphorylation by G protein-coupled receptor kinase 7 of light-activated visual pigment in cones. Proc Natl Acad Sci U S A 102(26):9329–9334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Tsang SH, Burns ME, Calvert PD, Gouras P, Baylor DA, Goff SP (1998) et al. Role for the target enzyme in deactivation of photoreceptor G protein in vivo. Science 282(5386):117–121

    Article  CAS  PubMed  Google Scholar 

  97. Tsang SH, Woodruff ML, Janisch KM, Cilluffo MC, Farber DB, Fain GL (2007) Removal of phosphorylation sites of gamma subunit of phosphodiesterase 6 alters rod light response. J Physiol 579(Pt 2):303–312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Watson AJ, Aragay AM, Slepak VZ, Simon MI (1996) A novel form of the G protein beta subunit Gbeta5 is specifically expressed in the vertebrate retina. J Biol Chem 271(45):28154–28160

    Article  CAS  PubMed  Google Scholar 

  99. Weiss ER, Ducceschi MH, Horner TJ, Li A, Craft CM, Osawa S (2001) Species-specific differences in expression of G-protein-coupled receptor kinase (GRK) 7 and GRK1 in mammalian cone photoreceptor cells: implications for cone cell phototransduction. J Neurosci 21(23):9175–9184

    CAS  PubMed  Google Scholar 

  100. Weiss ER, Raman D, Shirakawa S, Ducceschi MH, Bertram PT, Wong F et al (1998) The cloning of GRK7, a candidate cone opsin kinase, from cone- and rod-dominant mammalian retinas. Mol Vis 4:27

    CAS  PubMed  Google Scholar 

  101. Wieland T, Chen CK (1999) Regulators of G-protein signalling: a novel protein family involved in timely deactivation and desensitization of signalling via heterotrimeric G proteins. Naunyn Schmiedebergs Arch Pharmacol 360(1):14–26

    Article  CAS  PubMed  Google Scholar 

  102. Wieland T, Chen CK, Simon MI (1997) The retinal specific protein RGS-r competes with the gamma subunit of cGMP phosphodiesterase for the alpha subunit of transducin and facilitates signal termination. J Biol Chem 272(14):8853–8856

    Article  CAS  PubMed  Google Scholar 

  103. Wilden U, Wust E, Weyand I, Kuhn H (1986) Rapid affinity purification of retinal arrestin (48 kDa protein) via its light-dependent binding to phosphorylated rhodopsin. FEBS Lett 207(2):292–295

    Article  CAS  PubMed  Google Scholar 

  104. Woodruff ML, Sampath AP, Matthews HR, Krasnoperova NV, Lem J, Fain GL (2002) Measurement of cytoplasmic calcium concentration in the rods of wild-type and transducin knock-out mice. J Physiol 542(Pt 3):843–854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Woodruff ML, Janisch KM, Peshenko IV, Dizhoor AM, Tsang SH, Fain GL (2008) Modulation of phosphodiesterase6 turnoff during background illumination in mouse rod photoreceptors. J Neurosci 28(9):2064–2074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Xu J, Dodd RL, Makino CL, Simon MI, Baylor DA, Chen J (1997) Prolonged photoresponses in transgenic mouse rods lacking arrestin. Nature 389(6650):505–509

    Article  CAS  PubMed  Google Scholar 

  107. Xue T, Do MT, Riccio A, Jiang Z, Hsieh J, Wang HC et al (2011) Melanopsin signalling in mammalian iris and retina. Nature 479(7371):67–73

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Yamamoto S, Sippel KC, Berson EL, Dryja TP (1997) Defects in the rhodopsin kinase gene in the Oguchi form of stationary night blindness. Nat Genet 15(2):175–178

    Article  CAS  PubMed  Google Scholar 

  109. Yau KW (1994) Phototransduction mechanism in retinal rods and cones. The Friedenwald lecture. Invest Ophthalmol Vis Sci 35(1):9–32

    CAS  PubMed  Google Scholar 

  110. Yau KW, Nakatani K (1984) Cation selectivity of light-sensitive conductance in retinal rods. Nature 309(5966):352–354

    Article  CAS  PubMed  Google Scholar 

  111. Yau KW, Matthews G, Baylor DA (1979) Thermal activation of the visual transduction mechanism in retinal rods. Nature 279(5716):806–807

    Article  CAS  PubMed  Google Scholar 

  112. Zang J, Matthews HR (2012) Origin and control of the dominant time constant of salamander cone photoreceptors. J Gen Physiol 140(2):219–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Zhang K, Howes KA, He W, Bronson JD, Pettenati MJ, Chen C et al (1999) Structure, alternative splicing, and expression of the human RGS9 gene. Gene 240(1):23–34

    Article  CAS  PubMed  Google Scholar 

  114. Zhang X, Wensel TG, Kraft TW (2003) GTPase regulators and photoresponses in cones of the eastern chipmunk. J Neurosci 23(4):1287–1297

    CAS  PubMed  Google Scholar 

  115. Zhao X, Huang J, Khani SC, Palczewski K (1998) Molecular forms of human rhodopsin kinase (GRK1). J Biol Chem 273(9):5124–5131

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Kang Chen PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chen, CK., Tu, HY. (2014). G Protein Deactivation Mechanisms in Vertebrate Phototransduction. In: Martemyanov, K., Sampath, A. (eds) G Protein Signaling Mechanisms in the Retina. Springer Series in Vision Research, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1218-6_2

Download citation

Publish with us

Policies and ethics