Skip to main content

Introduction to Sol-Gel Nanocomposites

  • Chapter
  • First Online:

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

Sol-gel nanocomposites represent an important class of sol-gel materials due to the advantage in their preparation route to build up the inorganic moiety starting from molecular precursors. This leads to the opportunity of blending the inorganic and organic moiety on the smallest feasible length scale. The powerful possibilities of the sol-gel process, which are the mild reaction conditions, the good control over the structure and kinetics of the process, as well as the broad availability of different precursors, allows for a plethora of materials and properties. The general principles of the sol-gel process for the formation of nanocomposites are explained in this chapter. Particularly, the different strategies how the mixing of inorganic and organic components can lead to different materials are explored. Furthermore, the chapter explains how phase separation can be overcome if the precursors and reaction conditions are adjusted in the right way.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Blesa MA, Candal RJ (1991) Powder production from aqueous solutions for ceramics application. Key Eng Mater 58 (Cryst. Mater.: Growth Charact.):107–128. doi:10.4028/www.scientific.net/KEM.58.107

  2. Hirano S (1987) Hydrothermal processing of ceramics. Am Ceram Soc Bull 66(9):1342–1344

    Google Scholar 

  3. Somiya S, Roy R (2000) Hydrothermal synthesis of fine oxide powders. Bull Mater Sci 23(6):453–460. doi:10.1007/BF02903883

    Article  Google Scholar 

  4. Lakeman CDE, Payne DA (1994) Sol-gel processing of electrical and magnetic ceramics. Mater Chem Phys 38(4):305–324. doi:10.1016/0254-0584(94)90207-0

    Article  Google Scholar 

  5. Livage J, Beteille F, Roux C, Chatry M, Davidson P (1998) Sol-gel synthesis of oxide materials. Acta Mater 46(3):743–750. doi:10.1016/S1359-6454(97)00255-3

    Article  Google Scholar 

  6. Komarneni S, Abothu IR, Rao AVP (1999) Sol-gel processing of some electroceramic powders. J Sol-Gel Sci Technol 15(3):263–270

    Article  Google Scholar 

  7. Lee GR, Crayston JA (1993) Sol-gel processing of transition-metal alkoxides for electronics. Adv Mater (Weinheim, Fed Repub Ger) 5(6):434–442. doi:10.1002/adma.19930050604

  8. Sakka S (1996) Sol-gel coating films for optical and electronic application. Struct Bonding (Berlin) 85(Optical and electronic phenomena in sol-gel glasses and modern application):1–49

    Google Scholar 

  9. Levy D, Esquivias L (1995) Sol-gel processing of optical and electrooptical materials. Adv Mater (Weinheim, Ger) 7(2):120–129. doi:10.1002/adma.19950070204

  10. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Access online via Elsevier

    Google Scholar 

  11. Dimitriev Y, Ivanova Y, Iordanova R (2008) History of sol-gel science and technology (review). J Univ Chem Technol Metall 43 (Copyright (C) 2012 American Chemical Society (ACS). All rights reserved.):181–192

    Google Scholar 

  12. Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid State Chem 18(4):259–341. doi:10.1016/0079-6786(88)90005-2

    Article  Google Scholar 

  13. Nemeth S (2010) Processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. CRC Press, Boca Raton, pp 147–204

    Google Scholar 

  14. Glaubitt W, Loebmann P (2012) Antireflective coatings prepared by sol-gel processing: principles and applications. J Eur Ceram Soc 32(11):2995–2999. doi:10.1016/j.jeurceramsoc.2012.02.032

    Article  Google Scholar 

  15. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev (Washington, DC, U S) 104(9):3893–3946. doi:10.1021/cr030027b

  16. Niederberger M (2007) Nonaqueous sol-gel routes to metal oxide nanoparticles. Acc Chem Res 40(9):793–800. doi:10.1021/ar600035e

    Article  Google Scholar 

  17. Sanchez C, Rozes L, Ribot F, Laberty-Robert C, Grosso D, Sassoye C, Boissiere C, Nicole L (2010) “Chimie douce”: a land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials. C R Chim 13(1–2):3–39. doi:10.1016/j.crci.2009.06.001

    Article  Google Scholar 

  18. Kickelbick G (2007) Hybrid materials. Wiley.com

  19. Hay JN, Raval HM (2001) Synthesis of organic-inorganic hybrids via the nonhydrolytic sol-gel process. Chem Mater 13(10):3396–3403. doi:10.1021/cm011024n

    Article  Google Scholar 

  20. Loy DA, Shea KJ (1995) Bridged polysilsesquioxanes. Highly porous hybrid organic-inorganic materials. Chem Rev (Washington, D C) 95(5):1431–1442. doi:10.1021/cr00037a013

  21. Sanchez C, Livage J (1990) Sol-gel chemistry from metal alkoxide precursors. New J Chem 14(6–7):513–521

    Google Scholar 

  22. Schubert U, Huesing N, Lorenz A (1995) Hybrid inorganic-organic materials by sol-gel processing of organofunctional metal alkoxides. Chem Mater 7(11):2010–2027. doi:10.1021/cm00059a007

    Article  Google Scholar 

  23. Bauer M, Gastl C, Koeppl C, Kickelbick G, Bertagnolli H (2006) EXAFS spectroscopy of the alkoxide precursor Zr(OnBu)4 and its modification in solution. Monatsh Chem 137(5):567–581. doi:10.1007/s00706-006-0450-z

    Article  Google Scholar 

  24. Peter D, Ertel TS, Bertagnolli H (1994) EXAFS study of zirconium alkoxides as precursor in the sol-gel process: I. Structure investigation of the pure alkoxides. J Sol-Gel Sci Technol 3(2):91–99. doi:10.1007/BF00486715

    Article  Google Scholar 

  25. Husing N, Schubert U (1998) Aerogels–airy materials: chemistry, structure, and properties. Angew Chem Int Ed 37(1/2):22–45. doi:10.1002/(SICI)1521-3773(19980202)37:1/2<22:AID-ANIE22>3.0.CO;2-I

    Article  Google Scholar 

  26. Kickelbick G (2002) Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog Polym Sci 28(1):83–114. doi:10.1016/S0079-6700(02)00019-9

    Article  Google Scholar 

  27. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205. doi:10.1021/ma060733p

    Article  Google Scholar 

  28. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641. doi:10.1016/j.progpolymsci.2003.08.002

    Article  Google Scholar 

  29. Sanchez C, Julian B, Belleville P, Popall M (2005) Applications of hybrid organic-inorganic nanocomposites. J Mater Chem 15(35–36):3559–3592. doi:10.1039/b509097k

    Article  Google Scholar 

  30. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science (Washington, DC, U S) 314(5802):1107–1110. doi:10.1126/science.1130557

  31. Pomogailo AD (2005) Polymer sol-gel Synthesis of Hybrid Nanocomposites. Colloid J 67 (Copyright (C) 2012 American Chemical Society (ACS). All rights reserved.):658–677. doi:10.1007/s10595-005-0148-7

  32. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401. doi:10.1016/j.progpolymsci.2009.09.003

    Article  Google Scholar 

  33. Crosby AJ, Lee JY (2007) Polymer nanocomposites: The “nano” effect on mechanical properties. Polym Rev 47(2):217–229. doi:10.1080/15583720701271278

    Article  Google Scholar 

  34. Leszczynska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonite nanocomposites with improved thermal properties Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453(2):75–96. doi:10.1016/j.tca.2006.11.002

    Article  Google Scholar 

  35. Novak BM (1993) Hybrid nanocomposite materials—between inorganic glasses and organic polymers. Adv Mater (Weinheim, Fed Repub Ger) 5(Copyright (C) 2012 American Chemical Society (ACS). All rights reserved.):422–433. doi:10.1002/adma.19930050603

  36. Spange S, Grund S (2009) Nanostructured organic-inorganic composite materials by twin polymerization of hybrid monomers. Adv Mater (Weinheim, Ger) 21(20):2111–2116. doi:10.1002/adma.200802797

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Kickelbick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kickelbick, G. (2014). Introduction to Sol-Gel Nanocomposites. In: Guglielmi, M., Kickelbick, G., Martucci, A. (eds) Sol-Gel Nanocomposites. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1209-4_1

Download citation

Publish with us

Policies and ethics