Skip to main content

Adaptive Responses to Weight Loss

  • Chapter
  • First Online:
Book cover Treatment of the Obese Patient

Abstract

The recidivism rate following otherwise successful weight loss is over 75 %. Evolutionary pressures have likely favored the enrichment of human genomes for alleles favoring energy ingestion, storage, and conservation.

The predicted consequences of this allelic selection would be what almost anyone who has lost weight knows: “Weight loss is difficult, but it is even harder to keep it off.” Despite the biological pressure favoring the storage of excess calories as fat throughout most of human evolution, conventional wisdom on this point is that “behavioral” issues related to persistence of “bad habits” that provoked weight gain in the first place account for much or all of the overwhelmingly tendency toward weight regain. There is, however, a substantial body of evidence that there are strong biological forces—reflected in both energy expenditure and ingestive behaviors—that resist the maintenance of a reduced body weight.

Classical animal studies of energy homeostasis following hypothalamic lesions, weight perturbation, selective breeding, and during hibernation—plus more recent demonstrations of interactions between peripheral signals reflecting somatic energy stores with cellular–molecular substrates in the CNS regulating energy balance—all support the contention that body weight is regulated. Obese and non-obese humans maintaining a 10 % or greater reduced weight show a decline in energy expenditure (~300–400 kcal/day) beyond that predicted by body weight and composition changes. This disproportionate decline in energy expenditure is due primarily to increased skeletal muscle chemomechanical efficiency, as well as changes in autonomic function (decreased sympathetic and increased parasympathetic nervous system tone) and neuroendocrine function (decreased circulating concentrations of bioactive thyroid hormones and the adipocyte-derived hormone leptin). This decline in energy expenditure is accompanied by changes in energy intake (decreased satiety) that act coordinately to favor weight regain. These specific changes in energy homeostatic systems after weight loss are mediated by hypothalamic and higher CNS responses many of which involve the adipocyte-derived hormone leptin.

Delineation of this biology has multiple practical implications in the treatment of obesity. Dynamic weight loss (negative energy balance) and static reduced weight maintenance (energy balance) are physiologically distinct and will require different treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Diabetes Association. Economic costs of diabetes in the US in 2007. Diabetes Care. 2008;25:464–70.

    Google Scholar 

  2. Wang Y, Beydoun M, Liang L, Caballero B, Kumanyika S. Will all Americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic. Obesity. 2010;16:2323–30.

    Google Scholar 

  3. Phelan S, Wing R. Prevalence of successful weight loss. Arch Int Med. 2005;165:2430.

    Google Scholar 

  4. Wing R, Phelan S. Long-term weight maintenance. Am J Clin Nutr. 2005;82:222S–5S.

    CAS  PubMed  Google Scholar 

  5. McGuire W, Wing R, Hill J. The prevalence of weight loss maintenance among American adults. Int J Obes. 1999;23:1314–9.

    CAS  Google Scholar 

  6. Kraschnewski J, Boan J, Esposito J, et al. Long-term weight loss maintenance in the United States. Int J Obes. 2010;34:1644–54.

    CAS  Google Scholar 

  7. Brownell K, Puhl R, Schwartz M, Rudd L, editors. Weight bias: nature, consequences, and remedies. New York, NY: Guilford Press; 2005.

    Google Scholar 

  8. Schwartz M, Chambliss H, Brownell K, Blair S, Billington C. Weight bias among health professionals specializing in obesity. Obes Res. 2003;11:1033–9.

    PubMed  Google Scholar 

  9. Wang S, Brownell K, Wadden T. The influence of the stigma of obesity on overweight individuals. Int J Obes. 2004;28:1333–7.

    CAS  Google Scholar 

  10. Puhl R, Mass-Racusin C, Schwartz M, Brownell K. Weight stigmatization and bias reduction: perspectives of overweight and obese adults. Health Educ Res. 2008;23:347–58.

    PubMed  Google Scholar 

  11. Schwartz M, Woods S, Seeley R, Barsh G, Baskin D, Leibel R. Is the energy homeostasis system inherently biased toward weight gain? Diabetes. 2003;52:232–8.

    CAS  PubMed  Google Scholar 

  12. Bellisari A. Evolutionary origins of obesity. Obes Rev. 2008;9:165–80.

    CAS  PubMed  Google Scholar 

  13. Neel J. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet. 1962;14:353–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Prentice A, Hennig B, Fulford A. Evolutionary origins of the obesity epidemic: natural selection of thrifty genes or genetic drift following predation release? Int J Obes. 2008;32:1607–10.

    CAS  Google Scholar 

  15. Speakman J. Thrifty genes for obesity, an attractive but flawed idea, and an alternative perspective: the ‘thrifty gene’ hypothesis. Int J Obes. 2008;32:1611–7.

    CAS  Google Scholar 

  16. Speakman J. A nonadaptive scenario explaining the genetic predisposition to obesity: the “predation release” hypothesis. Cell Metab. 2007;6:5–12.

    CAS  PubMed  Google Scholar 

  17. Wells J. The evolution of human fatness and susceptibility to obesity: an ethological approach. Biol Rev Camb Philos Soc. 2006;81:183–205.

    PubMed  Google Scholar 

  18. Haworth C, Carnell S, Meaburn E, Davis O, Plomin R, Wardle J. Increasing heritability of BMI and stronger associations with the FTO gene over childhood. Obesity. 2008;16:2663–8.

    PubMed  Google Scholar 

  19. Castro J. Heritability of hunger relationships with food intake in free-living humans. Physiol Behav. 1999;67:249–58.

    PubMed  Google Scholar 

  20. Allison DB, Kaprio J, Korkeila M, Koskenvuo M, Neale MC, Hayakawa K. The heritability of body mass index among an international sample of monozygotic twins reared apart. Int J Obes. 1996;20:501–6.

    CAS  Google Scholar 

  21. Katzmarzyk P, Malina R, Perusse L, et al. Familial resemblance in fatness and fat distribution. Am J Hum Biol. 2000;12:395–404.

    PubMed  Google Scholar 

  22. Rankinen T, Bouchard C. Genetics of food intake and eating behavior phenotypes in humans. Annu Rev Nutr. 2006;26:413–34.

    CAS  PubMed  Google Scholar 

  23. Rossum C, Hoebee B, Seidell J, et al. Genetic factors as predictors of weight gain in young adult Dutch men and women. Int J Obes. 2002;26:517–28.

    Google Scholar 

  24. Perusse L, Bouchard C. Role of genetic factors in childhood obesity and in susceptibility dietary variations. Ann Med. 1999;31 Suppl 1:19–25.

    PubMed  Google Scholar 

  25. Zaitlen N, Kraft P. Heritability in the genome-wide association era. Hum Genet. 2012;131:1655–64.

    PubMed Central  PubMed  Google Scholar 

  26. Vogler G, Sorensen T, Stunkard A, Srinivasan M, Rao D. Influences of genes and shared family environment on adult body mass index assessed in an adoption study by a comprehensive path model. Int J Obes. 1995;19:40–5.

    CAS  Google Scholar 

  27. Stunkard AJ, Sorensen TI, Hanis C, et al. An adoption study of human obesity. N Engl J Med. 1986;314:193–8.

    CAS  PubMed  Google Scholar 

  28. Stunkard A, Harris J, Pedersen N, McClean G. The body mass index of twins who have been reared apart. N Engl J Med. 1990;322:1483–7.

    CAS  PubMed  Google Scholar 

  29. Stunkard A, Foch T, Hrubec Z. A twin study of human obesity. JAMA. 1986;256:51–4.

    CAS  PubMed  Google Scholar 

  30. Price RA, Cadoret RJ, Stunkard AJ, Troughton E. Genetic contributions to human fatness: an adoption study. Am J Psychiatry. 1987;144:1003–8.

    CAS  PubMed  Google Scholar 

  31. Bouchard C, Tremblay A, Despres JP, et al. The response to long-term overfeeding in identical twins. N Engl J Med. 1990;322:1477–82.

    CAS  PubMed  Google Scholar 

  32. Bouchard C, Tremblay A, Despres J, et al. Overfeeding in identical twins: 5-year postoverfeeding results. Metabolism. 1996;45:1042–50.

    CAS  PubMed  Google Scholar 

  33. Bouchard C, Tremblay A. Genetic influences on the response of body fat and fat distribution to positive and negative energy balances in human identical twins. J Nutr. 1997;127:943S–7S.

    CAS  PubMed  Google Scholar 

  34. Lewis C, Jacobs D, McCreath H, et al. Weight gain continues in the 1990s: 10-year trends in weight and overweight from the CARDIA study. Coronary artery risk development in young adults. Am J Epidemiol. 2000;151:1172–81.

    CAS  PubMed  Google Scholar 

  35. Du H, Van der ADL, Ginder V, et al. Dietary energy density in relation to subsequent changes of weight and waist circumference in European men and women. PLoS One. 2009;4:e5339.

    PubMed Central  PubMed  Google Scholar 

  36. Forouhi N, Sharp S, Du H, et al. Dietary fat intake and subsequent weight change in adults: results from the European Prospective Investigation in Cancer and Nutrition cohorts. Am J Clin Nutr. 2009;90:1632–41.

    CAS  PubMed  Google Scholar 

  37. Pietrobelli A, Allison D, Heshka S, et al. Sexual dimorphism in energy content of weight change. Int J Obes Relat Metab Disord. 2002;26:1339–48.

    CAS  PubMed  Google Scholar 

  38. Wing R, Jeffrey R. Outpatient treatment of obesity. A comparison of methodology and clinical results. Int J Obes. 1979;3:261–79.

    CAS  PubMed  Google Scholar 

  39. Wing R, Hill J. Successful weight loss maintenance. Annu Rev Nutr. 2001;21:323–41.

    CAS  PubMed  Google Scholar 

  40. Klem M, Wing R, McGuire M, Seagle H, Hill J. A descriptive study of individuals successful at long term maintenance of substantial weight loss. Am J Clin Nutr. 1998;66:239–46.

    Google Scholar 

  41. Klem M, Wing R, Lang W, McGuire M, Hill J. Does weight loss maintenance become easier over time. Obes Res. 2000;8:438–44.

    CAS  PubMed  Google Scholar 

  42. Ogden L, Stroebele N, Wyatt H, et al. Cluster analysis of the National Weight Control Registry to identify distinct subgroups maintaining successful weight loss. Obesity. 2012;20:2039–47.

    PubMed  Google Scholar 

  43. Catenacci V, Grunwald G, Ingebrigsten J, et al. Physical activity patterns using accelerometry in the National Weight Control Registry. Obesity. 2011;19:1163–70.

    PubMed  Google Scholar 

  44. Shick S, Wing R, Klem M, McGuire M, Hill J, Seagle H. Persons successful at long-term weight loss and maintenance continue to consume a low-energy low-fat diet. J Am Diet Assoc. 1998;98:408–13.

    CAS  PubMed  Google Scholar 

  45. Leibel R, Rosenbaum M, Hirsch J. Changes in energy expenditure resulting from altered body weight. N Engl J Med. 1995;332:621–8.

    CAS  PubMed  Google Scholar 

  46. Rosenbaum M, Hirsch J, Murphy E, Leibel R. The effects of changes in body weight on carbohydrate metabolism, catecholamine excretion, and thyroid function. Am J Clin Nutr. 2000;71:1421–32.

    CAS  PubMed  Google Scholar 

  47. Rosenbaum M, Nicolson M, Hirsch J, Murphy E, Chu F, Leibel R. Effects of weight change on plasma leptin concentrations and energy expenditure. J Clin Endocrinol Metab. 1997;82:3647–54.

    CAS  PubMed  Google Scholar 

  48. Aronne L, Mackintosh R, Rosenbaum M, Leibel R, Hirsch J. Autonomic nervous system activity in weight gain and weight loss. Am J Physiol. 1995;38:R222–225.

    Google Scholar 

  49. Ravussin Y, Gutman R, Diano S, et al. Effects of chronic weight perturbation on energy homeostasis and brain structure in mice. Am J Physiol. 2011;300:R1352–1362.

    CAS  Google Scholar 

  50. McGuire M, Wing R, Klem M, Hill J. Behavioral strategies of individuals who have maintained long-term weight losses. Obes Res. 1999;7:334–41.

    CAS  PubMed  Google Scholar 

  51. Sumithran P, Prendergast L, Delbridge E, et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med. 2011;365:1597–604.

    CAS  PubMed  Google Scholar 

  52. Goldsmith R, Joanisse D, Gallagher D, et al. Effects of experimental weight perturbation on skeletal muscle work efficiency, fuel utilization, and biochemistry in human subjects. Am J Physiol. 2010;298:R79–88.

    CAS  Google Scholar 

  53. Baldwin K, Joanisse D, Haddad F, et al. Effects of weight loss and leptin on skeletal muscle in human subjects. Am J Physiol. 2011;301:R1259–1266.

    CAS  Google Scholar 

  54. Kissileff H, Thornton M, Torres M, Pavlovich K, Leibel R, Rosenbaum M. Maintenance of reduced body weight in humans is associated with leptin-reversible declines in satiation. Am J Clin Nutr. 2012;95:309–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Rosenbaum M, Sy M, Pavlovich K, Leibel R, Hirsch J. Leptin reverses weight loss–induced changes in regional neural activity responses to visual food stimuli. J Clin Invest. 2008;118:2583–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Rosenbaum M, Goldsmith R, Bloomfield D, et al. Low dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J Clin Invest. 2005;115:3579–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Rosenbaum M, Kissileff H, Mayer L, Hirsch J, Leibel R. Energy intake in weight-reduced humans. Brain Res. 2010;1350:95–102.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Rosenbaum M, Leibel R. Adaptive thermogenesis in humans. Int J Obes. 2010;34:S47–55.

    Google Scholar 

  59. Rosenbaum M, Ravussin E, Matthews D, et al. A comparative study of different means of assessing long-term energy expenditure in humans. Am J Physiol. 1996;270:R496–504.

    CAS  PubMed  Google Scholar 

  60. Rosenbaum M, Hirsch J, Gallagher D, Leibel R. Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am J Clin Nutr. 2008;88:906–12.

    CAS  PubMed  Google Scholar 

  61. Weigle D, Sande K, Iverius P, Monsen E, Brunzell J. Weight loss leads to a marked decrease in nonresting energy expenditure in ambulatory human subjects. Metabolism. 1988;37:930–6.

    CAS  PubMed  Google Scholar 

  62. Hall K. Computational model of in vivo human energy metabolism during semistarvation and refeeding. Am J Physiol. 2006;291:E23–37.

    CAS  Google Scholar 

  63. Weyer C, Walford R, Harper I, et al. Energy metabolism after 2 y of energy restriction: the biosphere 2 experiment. Am J Clin Nutr. 2000;72:946–53.

    CAS  PubMed  Google Scholar 

  64. Leibel R, Hirsch J. Diminished energy requirements in reduced-obese patients. Metabolism. 1984;33:164–70.

    CAS  PubMed  Google Scholar 

  65. van Gemert W, Westerterp K, van Acker B, et al. Energy, substrate and protein metabolism in morbid obesity before, during and after massive weight loss. Int J Obes. 2000;24:711–8.

    Google Scholar 

  66. Lesari S, le Roux C, De Gaetano A, Manco M, Nanni G, Mingrone G. Twenty-four hour energy expenditure and skeletal muscle gene expression changes after bariatric surgery. J Clin Endocrinol Metab. 2013;98:E321–327.

    Google Scholar 

  67. Bueter M, Lowenstein C, Olbers T, et al. Gastric bypass increase energy expenditure in rats. Gastroenterology. 2010;138:1845–53.

    PubMed  Google Scholar 

  68. Stylopoulos N, Hoppin A, Kaplan L. Roux-en0Y gastric bypass enhances energy expenditure and extends lifespan in diet-induced obese rats. Obesity. 2009;17:1839–47.

    PubMed  Google Scholar 

  69. Bueter M, le Roux C. Gastrointestinal hormones, energy balance, and bariatric surgery. Int J Obes. 2011;35:S35–39.

    CAS  Google Scholar 

  70. dePeuter R, Withers R, Brinkman M, Tomas F, Clark D. No differences in rates of energy expenditure between post-obese women and their matched, lean controls. Int J Obes. 1992;16:801–8.

    CAS  Google Scholar 

  71. Amatruda J, Statt M, Welle S. Total and resting energy expenditure in obese women reduced to ideal body weight. J Clin Invest. 1993;92:1236–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Weinsier R, Hunter G, Zuckerman P, et al. Energy expenditure and free-living physical activity in black and white women: comparison before and after weight loss. Am J Clin Nutr. 2000;71:1138–46.

    CAS  PubMed  Google Scholar 

  73. Astrup A, Gotzsche P, Werken K, et al. Meta-analysis of resting metabolic rate in formerly obese subjects. Am J Clin Nutr. 1999;69:1117–22.

    CAS  PubMed  Google Scholar 

  74. Major G, Doucet E, Trayhurn P, Astrup A, Tremblay A. Clinical significance of adaptive thermogenesis. Int J Obes. 2007;31:204–12.

    CAS  Google Scholar 

  75. Johannsen D, Knuth N, Hulzenga R, Rood J, Ravussin E, Hall K. Metabolic slowing with massive weight loss despite preservation of fat-free mass. J Clin Endocrinol Metab. 2012;97:2489–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Martin C, Das S, Lindblad L, et al. Effect of calorie restriction on the free-living physical activity levels of nonobese humans: results of three randomized trials. J Appl Physiol. 2011;110:956–63.

    PubMed Central  PubMed  Google Scholar 

  77. Redman L, Heilbronn L, Martin C, et al. Metabolic and behavioral compensations in response to caloric restriction: implications for the maintenance of weight loss. PLoS One. 2009;4:e4377.

    PubMed Central  PubMed  Google Scholar 

  78. Martin C, Heilbronn L, de Jonge L, et al. Effect of calorie restriction on resting metabolic rate and spontaneous physical activity. Obesity. 2007;15:2594–73.

    Google Scholar 

  79. Abraham R, Wynn V. Reduction in resting energy expenditure in relation to lean tissue loss in obese subjects during prolonged dieting. Ann Nutr Metab. 1987;31:99–108.

    CAS  PubMed  Google Scholar 

  80. Rosenbaum M, Vandenborne K, Goldsmith R, et al. Effects of experimental weight perturbation on skeletal muscle work efficiency in human subjects. Am J Physiol. 2003;285:R183–192.

    CAS  Google Scholar 

  81. Larrouy D, Barbe P, Valle C, et al. Gene expression profiling of human skeletal muscle in response to stabilized weight loss. Am J Clin Nutr. 2008;86:125–32.

    Google Scholar 

  82. Newcomer B, Larson-Meyer D, Hunter G, Weinsier R. Skeletal muscle metabolism in overweight and post-overweight women: an isometric exercise study using (31)P magnetic resonance spectroscopy. Int J Obes. 2001;25:1309–15.

    CAS  Google Scholar 

  83. Pirke K, Briicjs A, Wilckens T, Marquard R, Schweiger U. Starvation induced hyperactivity in the rat: the role of endocrine and neurotransmitter changes. Neurosci Biobehav Rev. 1993;17:287–94.

    CAS  PubMed  Google Scholar 

  84. Freyschuss U, Melcher A. Exercise energy expenditure in extreme obesity: influence of ergometry type and weight loss. Scand J Clin Lab Invest. 1978;38:753–9.

    CAS  PubMed  Google Scholar 

  85. Church T, Blair S, Cochreham S, et al. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: a randomized controlled trial. JAMA. 2010;304:2253–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Adams G, Hather B, Baldwin K, Dudley G. Skeletal muscle myosin heavy chain composition and resistance training. J Appl Physiol. 1993;74:911–5.

    CAS  PubMed  Google Scholar 

  87. Schwartz M, Woods S, Porte D, Seeley R, Baskin D. Central nervous system control of food intake. Nature. 2000;404:661–70.

    CAS  PubMed  Google Scholar 

  88. Leibel R, Chua S, Rosenbaum M. Chapter 157. Obesity. In: Scriver C, Beaudet A, Sly W, Valle D, editors. The metabolic and molecular bases of inherited disease, vol. III. 8th ed. New York: McGraw-Hill; 2001. p. 3965–4028.

    Google Scholar 

  89. Cowley M, Smart J, Rubinstein M, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001;411:480–4.

    CAS  PubMed  Google Scholar 

  90. Breen T, Cromwell I, Wardlaw S. Effects of fasting, leptin, and insulin on AGRP and POMC peptide release in the hypothalamus. Brain Res. 2005;1032:141–8.

    CAS  PubMed  Google Scholar 

  91. Shimomura Y, Bray GA, Lee M. Adrenalectomy and steroid treatment in obese (ob/ob) and diabetic (db/db) mice. Horm Metab Res. 1987;19:295–9.

    CAS  PubMed  Google Scholar 

  92. Kennedy S, Brown G, McVrey G, Garfinkel P. Pineal and adrenal function before and after refeeding in anorexia nervosa. Biol Psychiatry. 1991;30:216–24.

    CAS  PubMed  Google Scholar 

  93. Guldstrand M, Ahren B, Wredling R, Backman L, Linus P, Adamson U. Alteration of the counterregulatory responses to insulin-induced hypoglycemia and of cognitive function after massive weight reduction in severely obese subjects. Metabolism. 2003;52:900–7.

    CAS  PubMed  Google Scholar 

  94. Yanovski J, Yanovski S, Gold P, Chorousos G. Differences in corticotropin-releasing hormone-stimulated adrenocorticotropin and cortisol before and after weight loss. J Clin Endocrinol Metab. 1997;82:1874–8.

    CAS  PubMed  Google Scholar 

  95. Jakubiec-Puka A, Ciechomska I, Mackiewicz U, Langford J, Chomontowska H. Effect of thyroid hormone on the myosin heavy chain isoforms in slow and fast muscles of the rat. Acta Biochim Pol. 1999;46:823–35.

    CAS  PubMed  Google Scholar 

  96. Danforth E, Burger A. The role of thyroid hormones in the control of energy expenditure. Clin Endocrinol Metab. 1984;13:581–96.

    CAS  PubMed  Google Scholar 

  97. al-Adsani H, Hoffer L, Silva J. Resting energy expenditure is sensitive to small dose changes in patients on chronic thyroid hormone replacement. J Clin Endocrinol Metab. 1997;82:1118–25.

    CAS  PubMed  Google Scholar 

  98. Goodwin G, Fairburn C, Keenan J, Cowen P. The effects of dieting and weight loss upon the stimulation of thyrotropin (TSH) by thyrotropin-releasing hormone (TRH) and suppression of cortisol secretion by dexamethasone in men and women. J Affect Dis. 1988;14:137–44.

    CAS  PubMed  Google Scholar 

  99. Guzzaloni G, Grugni G, Moro D, et al. Thyroid-stimulating hormone and prolactin responses to thyrotropin-releasing hormone in juvenile obesity before and after hypocaloric diet. J Encodrinol Invest. 1995;18:621–9.

    CAS  Google Scholar 

  100. Fekete C, Legradi G, Mihaly E, et al. alpha-Melanocyte-stimulating hormone is contained in nerve terminals innervating thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and prevents fasting-induced suppression of prothyrotropin-releasing hormone gene expression. J Neurosci. 2000;20:1550–8.

    CAS  PubMed  Google Scholar 

  101. Harris M, Aschkenasi C, Elias C, et al. Transcriptional regulation of the thyrotropin-releasing hormone gene by leptin and melanocortin signaling. J Clin Invest. 2001;107:111–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Bellocchio L, Soria-Gomez E, Quarta C, et al. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB1 receptor blockade. Proc Nat Acad Sci USA. 2013;110:4786–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Quarta C, Bellocchio L, Mancini G, et al. CB(1) signaling in forebrain and sympathetic neurons is a key determinant of endocannabinoid action on energy balance. Cell Metab. 2010;11:273–85.

    CAS  PubMed  Google Scholar 

  104. Lang C, Rayos G, Chomsky D, Wood A, Wilson J. Effect of sympathoinhibition on exercise performance in patients with heart failure. Circulation. 1997;96:238–45.

    CAS  PubMed  Google Scholar 

  105. Aronne L, Mackintosh R, Rosenbaum M, Leibel R, Hirsch J. Cardiac autonomic nervous system activity in obese and never-obese young men. Obes Res. 1997;5:354–9.

    Google Scholar 

  106. Kim M, Small C, Stanley S, et al. The central melanocortin system affects the hypothalamo-pituitary thyroid axis and may mediate the effect of leptin. J Clin Invest. 2000;105:1005–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Flier J, Harris M, Hollenberg A. Leptin, nutrition, and the thyroid: the why, the wherefore, and the wiring. J Clin Invest. 2000;105:859–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84:277–359.

    CAS  PubMed  Google Scholar 

  109. Nedergaard J, Connolly E, Cannon B. Brown adipose tissue in the mammalian neonate. In: Trayhurn P, Nicholls D, editors. Brown adipose tissue. Baltimore, MD: Edward Arnold; 1986. p. 152–213.

    Google Scholar 

  110. Alkemade A. Central and peripheral effects of thyroid hormone signalling in the control of energy metabolism. J Neuroendocrinol. 2010;22:56–63.

    CAS  PubMed  Google Scholar 

  111. Chemogubova E, Hurchinson D, Nedergaard J, Bengtsson T. Alpha1- and beta1-adrenoceptor signaling fully compensates for beta3-adrenoceptor deficiency in brown adipocyte norepinephrine-stimulated glucose uptake. Endocrinology. 2005;146:2271–84.

    Google Scholar 

  112. Seale P, Lazar M. Brown fat in humans: turning up the heat on obesity. Diabetes. 2009;68:1482–4.

    Google Scholar 

  113. Fischer J, Koch L, Emmerling C, et al. Inactivation of the Fto gene protects from obesity. Nature. 2009;454:894–88.

    Google Scholar 

  114. Holsen L, Zarcone J, Chambers R, et al. Genetic subtype differences in neural circuitry of food motivation in Prader-Willi syndrome. Int J Obes. 2009;33:273–83.

    CAS  Google Scholar 

  115. Davenport J, Watts A, Roper V, Croyle M. Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset kidney disease. Curr Biol. 2007;17:1586–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Astrup A, Bulow J, Madsen J, Christensen N. Contribution of BAT and skeletal muscle to thermogenesis induced by ephedrine in man. Am J Physiol. 1985;248:E507–515.

    CAS  PubMed  Google Scholar 

  117. Ricquier D. Fundamental mechanisms of thermogenesis. C R Biol. 2006;329:578–86.

    CAS  PubMed  Google Scholar 

  118. Ouellet V, Labbe S, Blondin D, et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest. 2012;122:545–52.

    PubMed Central  PubMed  Google Scholar 

  119. Elobeid M, Allison D. Putative environmental-endocrine disruptors and obesity: a review. Curr Opin Endocrinol Diabetes Obes. 2008;15:403–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Qiang L, Wang L, Kon N, et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell. 2012;150:620–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Moore M. Interactions between physical activity and diet in the regulation of body weight. Proc Nutr Soc. 2000;59:193–8.

    CAS  PubMed  Google Scholar 

  122. Doucet E, Cameron J. Appetite control after weight loss: what is the role of bloodborne peptides? Am J Physiol Nutr Metab. 2007;32:523–32.

    CAS  Google Scholar 

  123. Leibel R, Rosenbaum M. Metabolic response to weight perturbation. In: Clément K, editor. Novel insights into adipose cell functions, research and perspectives in endocrine interactions. Heidelberg: Springer; 2010. p. 121–33.

    Google Scholar 

  124. McCaffrey J, Haley A, Sweet L, et al. Differential functional magnetic resonance imaging response to food pictures in successful weight-loss maintainers relative to normal-weight and obese controls. Am J Clin Nutr. 2009;90:928–34.

    Google Scholar 

  125. DelParigi A, Chen K, Salbe A, et al. Successful dieters have increased neural activity in cortical areas involved in the control of behavior. Int J Obes. 2007;31:440–8.

    CAS  Google Scholar 

  126. Rosenbaum M, Nicolson M, Hirsch J, et al. Effects of gender, body composition, and menopause on plasma concentrations of leptin. J Clin Endocrinol Metab. 1996;81:3424–7.

    CAS  PubMed  Google Scholar 

  127. Leibel R. The role of leptin in the control of body weight. Nutr Rev. 2002;60:S15–19.

    PubMed  Google Scholar 

  128. Ollmann M, Wilson B, Yang Y, Kerns J, Chen Y, Barsh G. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science. 1997;278:135–8.

    CAS  PubMed  Google Scholar 

  129. Wardlaw S. Clinical review 127: Obesity as a neuroendocrine disease: lessons to be learned from proopiomelanocortin and melanocortin receptor mutations in mice and men. J Clin Endocrinol Metab. 2001;86:1442–6.

    CAS  PubMed  Google Scholar 

  130. Korner J, Chua S, Williams J, Leibel R, Wardlaw S. Regulation of hypothalamic pro-opiomalanocortin by lean and obese rats. Neuroendocrinology. 1999;70:377–83.

    CAS  PubMed  Google Scholar 

  131. Farooqi I, Keogh J, Yeo G, Lank E, Ceetham T, O’Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med. 2003;348:1085–95.

    CAS  PubMed  Google Scholar 

  132. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe early-onset obesity, adrenal insufficiency, and red hair pigmentation caused by POMC mutations in humans. Nat Genet. 1998;19:155–7.

    CAS  PubMed  Google Scholar 

  133. Yaswen L, Diehl N, Brennan M, Hochgeswender U. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med. 1999;5:1066–70.

    CAS  PubMed  Google Scholar 

  134. Naggert JK, Fricker LD, Varlamov O, et al. Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nat Genet. 1995;10(2):135–42.

    CAS  PubMed  Google Scholar 

  135. Jackson RS, Creemers JWM, Ohagi S, et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet. 1997;16:303.

    CAS  PubMed  Google Scholar 

  136. Korner J, Wardlaw S, Liu S, Conwell I, Leibel R, Chua S. Effects of leptin receptor mutation on Agrp gene expression in fed and fasted lean and obese (LA/N-faf) rats. Endocrinology. 2000;141:2465–71.

    CAS  PubMed  Google Scholar 

  137. Luquet S, Phillips C, Palmiter R. NPY/AgRP neurons are not essential for feeding responses to glucoprivation. Peptides. 2007;28:214–25.

    CAS  PubMed  Google Scholar 

  138. Chiba T, Komatsu T, Nakayama M, et al. Similar metabolic response to calorie restriction in lean and obese Zucker rats. Mol Cell Endocrinol. 2009;309:17–25.

    CAS  PubMed  Google Scholar 

  139. Solinas G, Summermatter S, Mainieri D, et al. The direct effect of leptin on skeletal muscle thermogenesis is mediated by substrate cycling between de novo lipogenesis and lipid oxidation. FEBS J. 2004;577:539–44.

    CAS  Google Scholar 

  140. Satoh N, Ogawa Y, Katsuura G, et al. Sympathetic activation of leptin via the ventromedial hypothalamus: leptin-induced increase in catecholamine secretion. Diabetes. 1999;48:1787–93.

    CAS  PubMed  Google Scholar 

  141. Farooqi I, Jebb S, Langmack G, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med. 1999;341:879–84.

    CAS  PubMed  Google Scholar 

  142. Heymsfield SB, Greenberg AS, Fujioka K, et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA. 1999;292:1568–75.

    Google Scholar 

  143. Campfield L, Smith F, Guisez Y, Devos R, Burn P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science. 1995;269:546–8.

    CAS  PubMed  Google Scholar 

  144. Ravussin E, Smith S, Mitchell J, et al. Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy. Obesity. 2009;17:1736–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Butryn M, Webb V, Wadden T. Behavioral treatment of obesity. Psychiatr Clin N Am. 2011;34:841–59.

    Google Scholar 

  146. Sjostrom L. Review of the key results from the Swedish Obese Subjects (SOS) trial - a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273:219–34.

    CAS  PubMed  Google Scholar 

  147. Foster G, Wyatt H, Hill J, et al. Weight and metabolic outcomes after 2 years on a low-carbohydrate versus low-fat diet: a randomized trial. Ann Intern Med. 2010;153:147–57.

    PubMed Central  PubMed  Google Scholar 

  148. Wadden T, Berkowitz R, Womble L, et al. Randomized trial of lifestyle modification and pharmacotherapy for obesity. N Engl J Med. 2005;353:2111–20.

    CAS  PubMed  Google Scholar 

  149. Sacks F, Bray G, Carey V, et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med. 2009;360:859–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Ling H, Lenz T, Burns T, Hilleman D. Reducing the risk of obesity: defining the role of weight loss drugs. Pharmacotherapy. 2013. doi:10.1002/phar.1277.

    PubMed  Google Scholar 

  151. Rodgers R, Tschop M, Wilding J. Anti-obesity drugs: past, present, and future. Dis Model Mech. 2012;5:621–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Tsai A, Wadden T. Systematic review: An evaluation of major commercial weight loss programs in the United States. Ann Intern Med. 2005;142:56–66.

    PubMed  Google Scholar 

  153. Fagard R, Bielen E, Amery A. Heritability of aerobic power and anaerobic energy generation during exercise. J Appl Physiol. 1991;70:357–63.

    CAS  PubMed  Google Scholar 

  154. Scholtz S, Miras A, Chhina N, et al. Obese patients after bariatric surgery have lower brain-hedonic responses to food than after gastric banding. Gut. 2013. doi:10.1136/gutjnl-2013-305008.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

A large number of indispensable collaborators have contributed significantly to the work presented in this chapter. These collaborators include Drs. Jules Hirsch, Louis Aronne and Karen Segal, and the nursing and nutritional staffs at Rockefeller University Hospital, and the Irving Center for Clinical and Translational Research at Columbia University Medical Center; Drs. Krista Vandenborne, Marty Eastlack, and Jack Leigh at the University of Pennsylvania Medical Center; and Drs. Daniel Bloomfield, Dympna Gallagher, Rochelle Goldsmith, Steven Heymsfield, Joy Hirsch, Anthony Magnano, Laurel Mayer, Louis Weimer, and Richard Smiley at Columbia University Medical Center. Recombinant human leptin for our studies has been provided by Amgen, Inc. (Thousand Oaks California) and Amylin Pharmaceuticals Inc. (San Diego, CA). These studies were supported in part by NIH Grants # DK30583, DK26687, DK37948, DK64773, DKP30 26687, RR00102, RR00645, RR024156, and UL1 TR00040 and the Russell Berrie Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rosenbaum M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rosenbaum, M., Leibel, R.L. (2014). Adaptive Responses to Weight Loss. In: Kushner, R., Bessesen, D. (eds) Treatment of the Obese Patient. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1203-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1203-2_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1202-5

  • Online ISBN: 978-1-4939-1203-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics