Skip to main content

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

This chapter describes astaxanthin and other xanthophylls, which are a class of carotenoids with oxygenated groups in their structure and characteristic vivid colors. Taking astaxanthin as a key example, the presented concepts focus on the functional aspects and applications of xanthophylls, such as their nutritional value, potential for protection against free radicals, benefits for human and animal health and economic importance. The metabolic pathway leading to the biosynthesis of astaxanthin is described in two steps: (1) the formation of β(beta)-carotene and (2) the formation of astaxanthin from β(beta)-carotene. In describing these steps, a comparative analysis is made of the intermediates, enzymes, and genes involved in several organisms. In addition, different strategies for genetic improvements that would enhance astaxanthin production in the basidiomycetous yeast Xanthophyllomyces dendrorhous are discussed. Finally, an overview of the complexity of the molecular mechanisms regulating the biosynthesis of astaxanthin in this yeast is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodwin TW. Carotenoid-protein complexes. The biochemistry of the carotenoids, vol. 2. Dordrecht: Springer; 1984. p. 1–21.

    Book  Google Scholar 

  2. Sourkes TL. The discovery and early history of carotene. Bull Hist Chem. 2009;34:33.

    Google Scholar 

  3. Takaichi S. Carotenoids in algae: distributions, biosynthesis and functions. Mar Drugs. 2011;9:1101–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Fraser PD, Bramley PM. The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res. 2004;43:228–65.

    Article  CAS  PubMed  Google Scholar 

  5. Britton G. Structure and properties of carotenoids in relation to function. FASEB J. 1995;9: 1551–8.

    CAS  PubMed  Google Scholar 

  6. Bhosale P, Bernstein PS. Microbial xanthophylls. Appl Microbiol Biotechnol. 2005;68: 445–55.

    Article  CAS  PubMed  Google Scholar 

  7. Strzałka K, Kostecka-Gugała A, Latowski D. Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. Russ J Plant Physiol. 2003;50:168–73.

    Article  Google Scholar 

  8. Zhang W, Zhang KY, Ding XM, Bai SP, Hernandez JM, Yao B, Zhu Q. Influence of canthaxanthin on broiler breeder reproduction, chick quality, and performance. Poult Sci. 2011;90:1516–22.

    Article  CAS  PubMed  Google Scholar 

  9. Perez-Vendrell AM, Hernandez JM, Llaurado L, Schierle J, Brufau J. Influence of source and ratio of xanthophyll pigments on broiler chicken pigmentation and performance. Poult Sci. 2001;80:320–6.

    Article  CAS  PubMed  Google Scholar 

  10. Baker R, Günther C. The role of carotenoids in consumer choice and the likely benefits from their inclusion into products for human consumption. Trends Food Sci Tech. 2004;15:484–8.

    Article  CAS  Google Scholar 

  11. Sieiro C, Poza M, de Miguel T, Villa TG. Genetic basis of microbial carotenogenesis. Int Microbiol. 2003;6:11–6.

    CAS  PubMed  Google Scholar 

  12. Vergari F, Tibuzzi A, Basile G. An overview of the functional food market: from marketing issues and commercial players to future demand from life in space. In: Maria Teresa Giardi, Giuseppina Rea and Bruno Berra (eds.). Bio-farms for nutraceuticals. New York: Springer; 2010:308–21.

    Google Scholar 

  13. Breithaupt DE. Modern application of xanthophylls in animal feeding—a review. Trends Food Sci Tech. 2007;18:501–6.

    Article  CAS  Google Scholar 

  14. Burdick EM. Extraction and utilization of carotenes and xanthophylls. Econ Bot. 1956;10: 267–79.

    Article  CAS  Google Scholar 

  15. Ukibe K, Hashida K, Yoshida N, Takagi H. Metabolic engineering of Saccharomyces cerevisiae for astaxanthin production and oxidative stress tolerance. Appl Environ Microbiol. 2009;75: 7205–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Shao Z, Zhao H, Zhao H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res. 2009;37:e16.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM. Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr. 2006;46:185–96.

    Article  CAS  PubMed  Google Scholar 

  18. Fassett RG, Coombes JS. Astaxanthin in cardiovascular health and disease. Molecules. 2012;17:2030–48.

    Article  CAS  PubMed  Google Scholar 

  19. Wang X, Willen R, Wadstrom T. Astaxanthin-rich algal meal and vitamin C inhibit Helicobacter pylori infection in BALB/cA mice. Antimicrob Agents Chemother. 2000;44: 2452–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Park JS, Chyun JH, Kim YK, Line LL, Chew BP. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr Metab. 2010;7:18.

    Article  CAS  Google Scholar 

  21. Yasui Y, Hosokawa M, Mikami N, Miyashita K, Tanaka T. Dietary astaxanthin inhibits colitis and colitis-associated colon carcinogenesis in mice via modulation of the inflammatory cytokines. Chem Biol Interact. 2011;193:79–87.

    Article  CAS  PubMed  Google Scholar 

  22. Mortensen A. Supplements. In: Britton G, Liaaen-Jensen S and Pfander H (eds.). Carotenoids. New York: Springer; 2009:67–82.

    Google Scholar 

  23. Nishigaki M, Yamamoto T, Ichioka H, Honjo K, Yamamoto K, Oseko F, Kita M, Mazda O, Kanamura N. Beta-cryptoxanthin regulates bone resorption related-cytokine production in human periodontal ligament cells. Arch Oral Biol. 2013;58:880–6.

    Article  CAS  PubMed  Google Scholar 

  24. Irwig MS, El-Sohemy A, Baylin A, Rifai N, Campos H. Frequent intake of tropical fruits that are rich in β-cryptoxanthin is associated with higher plasma β-cryptoxanthin concentrations in Costa Rican adolescents. J Nutr. 2002;132:3161–7.

    CAS  PubMed  Google Scholar 

  25. Yamaguchi M. Role of carotenoid β-cryptoxanthin in bone homeostasis. J Biomed Sci. 2012;19:1–13.

    Article  CAS  Google Scholar 

  26. Lorenzo Y, Azqueta A, Luna L, Bonilla F, Dominguez G, Collins AR. The carotenoid beta-cryptoxanthin stimulates the repair of DNA oxidation damage in addition to acting as an antioxidant in human cells. Carcinogenesis. 2009;30:308–14.

    Article  CAS  PubMed  Google Scholar 

  27. Tanaka T, Tanaka T, Tanaka M, Kuno T. Cancer chemoprevention by citrus pulp and juices containing high amounts of beta-cryptoxanthin and hesperidin. J Biomed Biotechnol. 2012;2012:516981.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Khachik F, Liu Y, Showalter H. Process for the preparation of β-and α-cryptoxanthin. European Patent Application EP1678111 A1. 2012.

    Google Scholar 

  29. Louie MTM, Fuerst EJ. Biosynthesis of beta-cryptoxanthin in microbial hosts using an Arabidopsis thaliana beta-carotene hydroxylase gene. US Patent Application US20080124755 A1. 2006.

    Google Scholar 

  30. Guyomarc’h F, Binet A, Dufosse L. Production of carotenoids by Brevibacterium linens: variation among strains, kinetic aspects and HPLC profiles. J Ind Microbiol Biotechnol. 2000;24:64–70.

    Article  Google Scholar 

  31. Serrato‐Joya O, Jiménez‐Islas H, Botello‐Álvarez E, Rico‐Martínez R, Navarrete‐Bolaños JL. Production of β‐cryptoxanthin, a provitamin‐A precursor, by Flavobacterium lutescens. J Food Sci. 2006;71:E314–9.

    Article  CAS  Google Scholar 

  32. Gharibzahedi SMT, Razavi SH. Microbial canthaxanthin: perspectives on biochemistry and biotechnological production. Eng Life Sci. 2013;00:1–10.

    Google Scholar 

  33. Kadian SS, Garg M. Pharmacological effects of carotenoids: a review. Int J Pharm Sci Res. 2012;3:42–8.

    CAS  Google Scholar 

  34. Breithaupt DR. Xanthophylls in poultry feeding. In: Carotenoids. New York: Springer; 2008, pp. 255–64.

    Google Scholar 

  35. Aberoumand A. A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industry. World J Dairy Food Sci. 2011;6(1):71–8.

    Google Scholar 

  36. Krupa D, Nakkeeran E, Kumaresan N, Vijayalakshmi G, Subramanian R. Extraction, purification and concentration of partially saturated canthaxanthin from Aspergillus carbonarius. Bioresour Technol. 2010;101:7598–604.

    Article  CAS  PubMed  Google Scholar 

  37. Nasri Nasrabadi MR, Razavi SH. Use of response surface methodology in a fed-batch process for optimization of tricarboxylic acid cycle intermediates to achieve high levels of canthaxanthin from Dietzia natronolimnaea HS-1. J Biosci Bioeng. 2010;109:361–8.

    Article  PubMed  CAS  Google Scholar 

  38. Li H, Fan K, Chen F. Isolation and purification of canthaxanthin from the microalga Chlorella zofingiensis by high‐speed counter‐current chromatography. J Sep Sci. 2006;29(5):699–703.

    Article  CAS  Google Scholar 

  39. Pelah D, Sintov A, Cohen E. The effect of salt stress on the production of canthaxanthin and astaxanthin by Chlorella zofingiensis grown under limited light intensity. World J Microbiol Biotechnol. 2004;20:483–6.

    Article  CAS  Google Scholar 

  40. Jeknić Z, Morré JT, Jeknić S, Jevremović S, Subotić A, Chen THH. Cloning and functional characterization of a gene for capsanthin-capsorubin synthase from tiger lily (Lilium lancifolium thunb. ‘Splendens’). Plant Cell Physiol. 2012;53:1899–912.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Maeda H, Saito S, Nakamura N, Maoka T. Paprika pigments attenuate obesity-induced inflammation in 3T3-L1 adipocytes. ISRN Inflamm. 2013;2013:1–9.

    Article  CAS  Google Scholar 

  42. Kim S, Ha TY, Hwang IK. Analysis, bioavailability, and potential healthy effects of capsanthin, natural red pigment from Capsicum spp. Food Rev Int. 2009;25:198–213.

    Article  CAS  Google Scholar 

  43. Miyashita K, Nishikawa S, Beppu F, Tsukui T, Abe M, Hosokawa M. The allenic carotenoid fucoxanthin, a novel marine nutraceutical from brown seaweeds. J Sci Food Agric. 2011;91:1166–74.

    Article  CAS  PubMed  Google Scholar 

  44. Li Y, Li L. Method for producing fucoxanthin. US Patent Application US20100152286 A1. 2009.

    Google Scholar 

  45. Wang J, Chen S, Xu S, Yu X, Ma D, Hu X, Cao X. In vivo induction of apoptosis by fucoxanthin, a marine carotenoid, associated with down-regulating STAT3/EGFR signaling in sarcoma 180 (S180) xenografts-bearing mice. Mar Drugs. 2012;10:2055–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Kijlstra A, Tian Y, Kelly ER, Berendschot TT. Lutein: more than just a filter for blue light. Prog Retin Eye Res. 2012;31:303–15.

    Article  CAS  PubMed  Google Scholar 

  47. Calvo MM. Lutein: a valuable ingredient of fruit and vegetables. Crit Rev Food Sci Nutr. 2005;45:671–96.

    Article  CAS  PubMed  Google Scholar 

  48. Shegokar R, Mitri K. Carotenoid lutein: a promising candidate for pharmaceutical and nutraceutical applications. J Diet Suppl. 2012;9:183–210.

    Article  CAS  PubMed  Google Scholar 

  49. Lo HM, Chen CL, Yang CM, Wu PH, Tsou CJ, Chiang KW, Wu WB. The carotenoid lutein enhances matrix metalloproteinase-9 production and phagocytosis through intracellular ROS generation and ERK1/2, p38 MAPK, and RAR beta activation in murine macrophages. J Leukoc Biol. 2013;93:723–35.

    Article  CAS  PubMed  Google Scholar 

  50. Puzio P, Blau A, Plesch G, Kamlage B, Looser R, Schmitz O, Wendel B. Process for the production of lutein. European Patent Application EP2096177 A2. 2009.

    Google Scholar 

  51. Fernandez-Sevilla JM, Acien Fernandez FG, Molina GE. Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol. 2010;86:27–40.

    Article  CAS  PubMed  Google Scholar 

  52. Bowen PE, Herbst-Espinosa SM, Hussain EA, Stacewicz-Sapuntzakis M. Esterification does not impair lutein bioavailability in humans. J Nutr. 2002;132:3668–73.

    CAS  PubMed  Google Scholar 

  53. Yonekura L, Nagao A. Intestinal absorption of dietary carotenoids. Mol Nutr Food Res. 2007;51:107–15.

    Article  CAS  PubMed  Google Scholar 

  54. Lakshminarayana R, Raju M, Krishnakantha TP, Baskaran V. Enhanced lutein bioavailability by lyso-phosphatidylcholine in rats. Mol Cell Biochem. 2006;281:103–10.

    Article  CAS  PubMed  Google Scholar 

  55. Arunkumar R, Harish P, Veerappa K, Baskaran V. Promising interaction between nanoencapsulated lutein with low molecular weight chitosan: characterization and bioavailability of lutein in vitro and in vivo. Food Chem. 2013;141:327–37.

    Article  CAS  PubMed  Google Scholar 

  56. Sivathanu B, Palaniswamy S. Purification and characterization of carotenoids from green algae Chlorococcum humicola by HPLC-NMR and LC-MS-APCI. Biomed Prev Nutr. 2012;2:276–82.

    Article  Google Scholar 

  57. Casal C, Cuaresma M, Vega JM, Vilchez C. Enhanced productivity of a lutein-enriched novel acidophile microalga grown on urea. Mar Drugs. 2011;9:29–42.

    Article  PubMed Central  CAS  Google Scholar 

  58. Del Campo JA, Rodriguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol. 2004;64:848–54.

    Article  PubMed  CAS  Google Scholar 

  59. Garcia-Gonzalez M, Moreno J, Manzano JC, Florencio FJ, Guerrero MG. Production of Dunaliella salina biomass rich in 9-cis-beta-carotene and lutein in a closed tubular photobioreactor. J Biotechnol. 2005;115:81–90.

    Article  CAS  PubMed  Google Scholar 

  60. Campenni L, Nobre BP, Santos CA, Oliveira AC, Aires-Barros MR, Palavra AMF, Gouveia L. Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions. Appl Microbiol Biotechnol. 2013;97:1383–93.

    Article  CAS  PubMed  Google Scholar 

  61. Hartung W. The evolution of abscisic acid (ABA) and ABA function in lower plants, fungi and lichen. Funct Plant Biol. 2010;37:806–12.

    Article  CAS  Google Scholar 

  62. Garcia-Herrera P, Sanchez-Mata MC, Camara M, Tardio J, Olmedilla-Alonso B. Carotenoid content of wild edible young shoots traditionally consumed in Spain (Asparagus acutifolius L. Humulus lupulus L. Bryonia dioica Jacq. and Tamus communis L.). J Sci Food Agric. 2013;93:1692–8.

    Google Scholar 

  63. Kotake-Nara E, Kushiro M, Zhang H, Sugawara T, Miyashita K, Nagao A. Carotenoids affect proliferation of human prostate cancer cells. J Nutr. 2001;131:3303–6.

    CAS  PubMed  Google Scholar 

  64. Kotake-Nara E, Asai A, Nagao A. Neoxanthin and fucoxanthin induce apoptosis in PC-3 human prostate cancer cells. Cancer Lett. 2005;220:75–84.

    Article  CAS  PubMed  Google Scholar 

  65. Meléndez-Martínez AJ, Vicario IM, Heredia FJ. Geometrical isomers of violaxanthin in orange juice. Food Chem. 2007;104:169–75.

    Article  CAS  Google Scholar 

  66. Guedes A, Gião MS, Seabra R, Ferreira AC. Evaluation of the antioxidant activity of cell extracts from microalgae. Mar Drugs. 2013;11(4):1256–70.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Abdel-Aal E-SM, Akhtar H, Zaheer K, Ali R. Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients. 2013;5:1169–85.

    Article  PubMed Central  CAS  Google Scholar 

  68. SanGiovanni JP, Neuringer M. The putative role of lutein and zeaxanthin as protective agents against age-related macular degeneration: promise of molecular genetics for guiding mechanistic and translational research in the field. Am J Clin Nutr. 2012;96:1223S–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Wu NL, Chiang YC, Huang CC, Fang JY, Chen DF, Hung CF. Zeaxanthin inhibits PDGF-BB-induced migration in human dermal fibroblasts. Exp Dermatol. 2010;19:e173–81.

    Article  PubMed  Google Scholar 

  70. Firdous AP, Sindhu ER, Ramnath V, Kuttan R. Anti-mutagenic and anti-carcinogenic potential of the carotenoid meso-zeaxanthin. Asian Pac J Cancer Prev. 2010;11:1795–800.

    PubMed  Google Scholar 

  71. Khachik F. Process for extraction and purification of lutein, zeaxanthin and rare carotenoids from marigold flowers and plants. US Patent Application US6262284 B1. 2007.

    Google Scholar 

  72. Zuorro A, Lavecchia R. New functional food products containing lutein and zeaxanthin from marigold (Tagetes erecta L.) flowers. J Biotechnol. 2010;150:296.

    Article  Google Scholar 

  73. Yu B, Wang J, Suter PM, Russell RM, Grusak MA, Wang Y, Wang Z, Yin S, Tang G. Spirulina is an effective dietary source of zeaxanthin to humans. Br J Nutr. 2012;108:611.

    Article  CAS  PubMed  Google Scholar 

  74. Issouf M, Mearns SA, Fraser K, Hodgson R. Biological production of zeaxanthin and carotenoid biosynthesis control. World Intellectual Property Organization (WIPO) Patent Application WO2006120400 A1. 2012.

    Google Scholar 

  75. Chavez-Parga M, Munguia-Franco A, Aguilar-Torres M, Escamilla-Silva EM. Optimization of Zeaxanthin production by immobilized Flavobacterium sp. cells in fluidized bed bioreactor. Adv Microbiol. 2012;2:598–604.

    Google Scholar 

  76. Asker D, Awad TS, Beppu T, Ueda K. Novel zeaxanthin-producing bacteria isolated from a radioactive hot spring water. Methods Mol Biol. 2012;892:99–131.

    Article  CAS  PubMed  Google Scholar 

  77. Singh D, Puri M, Wilkins S, Mathur AS, Tuli DK, Barrow CJ. Characterization of a new zeaxanthin producing strain of Chlorella saccharophila isolated from New Zealand marine waters. Bioresour Technol. 2013;143:308–14.

    Article  CAS  PubMed  Google Scholar 

  78. Liang P-H, Ko T-P, Wang AH-J. Structure, mechanism and function of prenyltransferases. Eur J Biochem. 2002;269:3339–54.

    Article  CAS  PubMed  Google Scholar 

  79. Lee PC, Schmidt-Dannert C. Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Microbiol Biotechnol. 2002;60:1–11.

    Article  CAS  PubMed  Google Scholar 

  80. Misawa N. Pathway engineering for functional isoprenoids. Curr Opin Biotechnol. 2011;22: 627–33.

    Article  CAS  PubMed  Google Scholar 

  81. Britton G. Overview of carotenoid biosynthesis. Carotenoids. 1998;3:13–147.

    Google Scholar 

  82. Ajikumar PK, Tyo K, Carlsen S, Mucha O, Phon TH, Stephanopoulos G. Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol Pharm. 2008;5:167–90.

    Article  CAS  PubMed  Google Scholar 

  83. Krubasik P, Sandmann G. Molecular evolution of lycopene cyclases involved in the formation of carotenoids with ionone end groups. Biochem Soc Trans. 2000;28:806–9.

    Article  CAS  PubMed  Google Scholar 

  84. Schmidhauser TJ, Lauter F-R, Schumacher M, Zhou W, Russo VE, Yanofsky C. Characterization of al-2, the phytoene synthase gene of Neurospora crassa. Cloning, sequence analysis, and photoregulation. J Biol Chem. 1994;269:12060–6.

    CAS  PubMed  Google Scholar 

  85. Velayos A, Eslava AP, Iturriaga EA. A bifunctional enzyme with lycopene cyclase and phytoene synthase activities is encoded by the carRP gene of Mucor circinelloides. Eur J Biochem. 2000;267:5509–19.

    Article  CAS  PubMed  Google Scholar 

  86. Arrach N, Fernández-Martín R, Cerdá-Olmedo E, Avalos J. A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces. Proc Natl Acad Sci. 2001;98:1687–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Verdoes JC, Krubasik KP, Sandmann G, van Ooyen AJ. Isolation and functional characterisation of a novel type of carotenoid biosynthetic gene from Xanthophyllomyces dendrorhous. Mol Gen Genet. 1999;262:453–61.

    Article  CAS  PubMed  Google Scholar 

  88. Cheng Q. Structural diversity and functional novelty of new carotenoid biosynthesis genes. J Ind Microbiol Biotechnol. 2006;33:552–9.

    Article  CAS  PubMed  Google Scholar 

  89. Mochimaru M, Masukawa H, Maoka T, Mohamed HE, Vermaas WF, Takaichi S. Substrate specificities and availability of fucosyltransferase and beta-carotene hydroxylase for myxol 2′-fucoside synthesis in Anabaena sp. strain PCC 7120 compared with Synechocystis sp. strain PCC 6803. J Bacteriol. 2008;190:6726–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Golubev WI. Perfect state of Rhodomyces dendrorhous (Phaffia rhodozyma). Yeast. 1995;11:101–10.

    Article  CAS  PubMed  Google Scholar 

  91. Johnson EA. Phaffia rhodozyma: colorful odyssey. Int Microbiol. 2003;6:169–74.

    Article  CAS  PubMed  Google Scholar 

  92. Andrewes AG, Starr MP. (3R, 3′R)-astaxanthin from the yeast Phaffia rhodozyma. Phytochemistry. 1976;15:1009–11.

    Article  CAS  Google Scholar 

  93. Lemoine Y, Schoefs B. Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res. 2010;106:155–77.

    Article  CAS  PubMed  Google Scholar 

  94. Lee JH, Kim YT. Cloning and characterization of the astaxanthin biosynthesis gene cluster from the marine bacterium Paracoccus haeundaensis. Gene. 2006;370:86–95.

    Article  CAS  PubMed  Google Scholar 

  95. Yokoyama A, Miki W. Composition and presumed biosynthetic pathway of carotenoids in the astaxanthin‐producing bacterium Agrobacterium aurantiacum. FEMS Microbiol Lett. 1995;128:139–44.

    Article  CAS  Google Scholar 

  96. Renstrøm B, Berger H, Liaaen-Jensen S. Esterified, optical pure (3S, 3′S)-astaxanthin from flowers of Adonis annua. Biochem Syst Ecol. 1981;9:249–50.

    Article  Google Scholar 

  97. Misawa N, Satomi Y, Kondo K, Yokoyama A, Kajiwara S, Saito T, Ohtani T, Miki W. Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J Bacteriol. 1995;177:6575–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Vidhyavathi R, Venkatachalam L, Sarada R, Ravishankar GA. Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. J Exp Bot. 2008;59:1409–18.

    Article  CAS  PubMed  Google Scholar 

  99. Cunningham FXJ, Gantt E. Elucidation of the pathway to astaxanthin in the flowers of Adonis aestivalis. Plant Cell. 2011;23:3055–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Martín J, Gudiña E, Barredo J. Conversion of β-carotene into astaxanthin: two separate enzymes or a bifunctional hydroxylase-ketolase protein? Microb Cell Fact. 2008;7:3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Tian L, DellaPenna D. Progress in understanding the origin and functions of carotenoid hydroxylases in plants. Arch Biochem Biophys. 2004;430:22–9.

    Article  CAS  PubMed  Google Scholar 

  102. Blasco F, Kauffmann I, Schmid RD. CYP175A1 from Thermus thermophilus HB27, the first beta-carotene hydroxylase of the P450 superfamily. Appl Microbiol Biotechnol. 2004;64: 671–4.

    Article  CAS  PubMed  Google Scholar 

  103. Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y, Nakamura K, Harashima K. Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol. 1990;172:6704–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  104. McLean KJ, Sabri M, Marshall KR, Lawson RJ, Lewis DG, Clift D, Balding PR, Dunford AJ, Warman AJ, McVey JP. Biodiversity of cytochrome P450 redox systems. Biochem Soc Trans. 2005;33:796.

    Article  CAS  PubMed  Google Scholar 

  105. Zhang H, Im SC, Waskell L. Cytochrome b5 increases the rate of product formation by cytochrome P450 2B4 and competes with cytochrome P450 reductase for a binding site on cytochrome P450 2B4. J Biol Chem. 2007;282:29766–76.

    Article  CAS  PubMed  Google Scholar 

  106. Degtyarenko KN, Archakov AI. Molecular evolution of P450 superfamily and P450-containing monooxygenase systems. FEBS Lett. 1993;332:1–8.

    Article  CAS  PubMed  Google Scholar 

  107. Bernhardt R. Cytochromes P450 as versatile biocatalysts. J Biotechnol. 2006;124:128–45.

    Article  CAS  PubMed  Google Scholar 

  108. Estabrook RW. A passion for P450s (remembrances of the early history of research on cytochrome P450). Drug Metab Dispos. 2003;31:1461–73.

    Article  CAS  PubMed  Google Scholar 

  109. Porter TD, Coon MJ. Cytochrome P-450. Multiplicity of isoforms, substrates, and catalytic and regulatory mechanisms. J Biol Chem. 1991;266:13469–72.

    CAS  PubMed  Google Scholar 

  110. van den Brink H, van Gorcom RFM, van den Hondel CAMJJ, Punt PJ. Cytochrome P450 enzyme systems in fungi. Fungal Genet Biol. 1998;23:1–17.

    Article  PubMed  Google Scholar 

  111. Sevrioukova IF, Li H, Zhang H, Peterson JA, Poulos TL. Structure of a cytochrome P450—redox partner electron-transfer complex. Proc Natl Acad Sci U S A. 1999;96:1863–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Munro AW, Girvan HM, McLean KJ. Cytochrome P450—redox partner fusion enzymes. Biochim Biophys Acta. 2007;1770:345–59.

    Article  CAS  PubMed  Google Scholar 

  113. Lah L, Krasevec N, Trontelj P, Komel R. High diversity and complex evolution of fungal cytochrome P450 reductase: cytochrome P450 systems. Fungal Genet Biol. 2008;45: 446–58.

    Article  CAS  PubMed  Google Scholar 

  114. Ojima K, Breitenbach J, Visser H, Setoguchi Y, Tabata K, Hoshino T, van den Berg J, Sandmann G. Cloning of the astaxanthin synthase gene from Xanthophyllomyces dendrorhous (Phaffia rhodozyma) and its assignment as a beta-carotene 3-hydroxylase/4-ketolase. Mol Genet Genomics. 2006;275:148–58.

    Article  CAS  PubMed  Google Scholar 

  115. Alvarez V, Rodriguez-Saiz M, de la Fuente JL, Gudina EJ, Godio RP, Martin JF, Barredo JL. The crtS gene of Xanthophyllomyces dendrorhous encodes a novel cytochrome-P450 hydroxylase involved in the conversion of beta-carotene into astaxanthin and other xanthophylls. Fungal Genet Biol. 2006;43:261–72.

    Article  CAS  PubMed  Google Scholar 

  116. Alcaino J, Barahona S, Carmona M, Lozano C, Marcoleta A, Niklitschek M, Sepulveda D, Baeza M, Cifuentes V. Cloning of the cytochrome p450 reductase (crtR) gene and its involvement in the astaxanthin biosynthesis of Xanthophyllomyces dendrorhous. BMC Microbiol. 2008;8:169.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  117. Calo P, Gonzalez T. The yeast Phaffia rhodozyma as an industrial source of astaxanthin. Microbiologia. 1995;11:386–8.

    CAS  PubMed  Google Scholar 

  118. Rodriguez-Saiz M, de la Fuente JL, Barredo JL. Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Appl Microbiol Biotechnol. 2010;88:645–58.

    Article  CAS  PubMed  Google Scholar 

  119. Yamane Y, Higashida K, Nakashimada Y, Kakizono T, Nishio N. Influence of oxygen and glucose on primary metabolism and astaxanthin production by Phaffia rhodozyma in batch and fed-batch cultures: kinetic and stoichiometric analysis. Appl Environ Microbiol. 1997;63: 4471–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Flores-Cotera LB, Martín R, Sánchez S. Citrate, a possible precursor of astaxanthin in Phaffia rhodozyma: influence of varying levels of ammonium, phosphate and citrate in a chemically defined medium. Appl Microbiol Biotechnol. 2001;55:341–7.

    Article  CAS  PubMed  Google Scholar 

  121. Liu YS, Wu JY. Hydrogen peroxide-induced astaxanthin biosynthesis and catalase activity in Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol. 2006;73:663–8.

    Article  CAS  PubMed  Google Scholar 

  122. Hu Z-C, Zheng Y-G, Wang Z, Shen Y-C. pH control strategy in astaxanthin fermentation bioprocess by Xanthophyllomyces dendrorhous. Enzyme Microb Technol. 2006;39:586–90.

    Article  CAS  Google Scholar 

  123. An G-H, Johnson EA. Influence of light on growth and pigmentation of the yeast Phaffia rhodozyma. Antonie Van Leeuwenhoek. 1990;57:191–203.

    Article  CAS  PubMed  Google Scholar 

  124. An G-H, Schuman DB, Johnson EA. Isolation of Phaffia rhodozyma mutants with increased astaxanthin content. Appl Environ Microbiol. 1989;55:116–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Retamales P, León RUBEN, Martinez C, Hermosilla G, Pincheira G, Cifuentes V. Complementation analysis with new genetic markers in Phaffia rhodozyma. Antonie Van Leeuwenhoek. 1998;73:229–36.

    Article  CAS  PubMed  Google Scholar 

  126. Ukibe K, Katsuragi T, Tani Y, Takagi H. Efficient screening for astaxanthin-overproducing mutants of the yeast Xanthophyllomyces dendrorhous by flow cytometry. FEMS Microbiol Lett. 2008;286:241–8.

    Article  CAS  PubMed  Google Scholar 

  127. Verdoes JC, Sandmann G, Visser H, Diaz M, van Mossel M, van Ooyen AJJ. Metabolic engineering of the carotenoid biosynthetic pathway in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Appl Environ Microbiol. 2003;69:3728–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Visser H, Sandmann G, Verdoes JC. Xanthophylls in fungi. In: Microbial processes and products. Edited by José Luis Barredo. New York: Springer; 2005, pp. 257–72.

    Google Scholar 

  129. Breitenbach J, Visser H, Verdoes JC, van Ooyen AJ, Sandmann G. Engineering of geranylgeranyl pyrophosphate synthase levels and physiological conditions for enhanced carotenoid and astaxanthin synthesis in Xanthophyllomyces dendrorhous. Biotechnol Lett. 2011;33:755–61.

    Article  CAS  PubMed  Google Scholar 

  130. Gassel S, Schewe H, Schmidt I, Schrader J, Sandmann G. Multiple improvement of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous by a combination of conventional mutagenesis and metabolic pathway engineering. Biotechnol Lett. 2013;35:565–9.

    Article  CAS  PubMed  Google Scholar 

  131. Miziorko HM. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys. 2011;505:131–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Shimada H, Kondo K, Fraser PD, Miura Y, Saito T, Misawa N. Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl Environ Microbiol. 1998;64:2676–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Wang G. Amplification of HMG-CoA reductase production enhances carotenoid accumulation in Neurospora crassa. Metab Eng. 2002;4:193–201.

    Article  CAS  PubMed  Google Scholar 

  134. Miao L, Chi S, Tang Y, Su Z, Yin T, Guan G, Li Y. Astaxanthin biosynthesis is enhanced by high carotenogenic gene expression and decrease of fatty acids and ergosterol in a Phaffia rhodozyma mutant strain. FEMS Yeast Res. 2011;11:192–201.

    Article  CAS  PubMed  Google Scholar 

  135. Loto I, Gutiérrez MS, Barahona S, Sepúlveda D, Martínez-Moya P, Baeza M, Cifuentes V, Alcaíno J. Enhancement of carotenoid production by disrupting the C22-sterol desaturase gene (CYP61) in Xanthophyllomyces dendrorhous. BMC Microbiol. 2012;12:235.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Lodato P, Alcaino J, Barahona S, Niklitschek M, Carmona M, Wozniak A, Baeza M, Jimenez A, Cifuentes V. Expression of the carotenoid biosynthesis genes in Xanthophyllomyces dendrorhous. Biol Res. 2007;40:73–84.

    Article  CAS  PubMed  Google Scholar 

  137. Wozniak A, Lozano C, Barahona S, Niklitschek M, Marcoleta A, Alcaino J, Sepulveda D, Baeza M, Cifuentes V. Differential carotenoid production and gene expression in Xanthophyllomyces dendrorhous grown in a nonfermentable carbon source. FEMS Yeast Res. 2011;11:252–62.

    Article  CAS  PubMed  Google Scholar 

  138. Marcoleta A, Niklitschek M, Wozniak A, Lozano C, Alcaíno J, Baeza M, Cifuentes V. Glucose and ethanol-dependent transcriptional regulation of the astaxanthin biosynthesis pathway in Xanthophyllomyces dendrorhous. BMC Microbiol. 2011;11:1–11.

    Article  CAS  Google Scholar 

  139. Lodato P, Alcaino J, Barahona S, Retamales P, Cifuentes V. Alternative splicing of transcripts from crtI and crtYB genes of Xanthophyllomyces dendrorhous. Appl Environ Microbiol. 2003;69:4676–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. Dragoş N, Bercea V, Bica A, Drugă B, Nicoară A, Coman C. Astaxanthin production from a new strain of Haematococcus pluvialis grown in batch culture. Ann Rom Soc Cell Biol. 2010;15:353–61.

    Google Scholar 

  141. Gharibzahedi SMT, Razavi SH, Mousavi SM, Moayedi V. High efficiency canthaxanthin production by a novel mutant isolated from Dietzia natronolimnaea HS-1 using central composite design analysis. Ind Crop Prod. 2012;40:345–54.

    Article  CAS  Google Scholar 

  142. Papp T, Csernetics Á, Nagy G, Bencsik O, Iturriaga EA, Eslava AP, Vágvölgyi C. Canthaxanthin production with modified Mucor circinelloides strains. Appl Microbiol Biotechnol. 2013;97:4937–50.

    Google Scholar 

  143. Cordero BF, Obraztsova I, Couso I, Leon R, Vargas MA, Rodriguez H. Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Mar Drugs. 2011;9:1607–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Sánchez JF, Fernández JM, Acién FG, Rueda A, Pérez-Parra J, Molina E. Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem. 2008;43:398–405.

    Article  CAS  Google Scholar 

  145. Blanco AM, Moreno J, Del Campo JA, Rivas J, Guerrero MG. Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl Microbiol Biotechnol. 2007;73:1259–66.

    Article  CAS  PubMed  Google Scholar 

  146. Scoma A, Krawietz D, Faraloni C, Giannelli L, Happe T, Torzillo G. Sustained H2 production in a Chlamydomonas reinhardtii D1 protein mutant. J Biotechnol. 2012;157:613–9.

    Article  CAS  PubMed  Google Scholar 

  147. Lohr M, Wilhelm C. Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc Natl Acad Sci U S A. 1999;96:8784–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  148. Dharmapuri S, Giuliano G. Plant metabolic engineering: requirements for success. Br Food J. 2001;103:764–9.

    Article  Google Scholar 

  149. Huang J, Zhong Y, Sandmann G, Liu J, Chen F. Cloning and selection of carotenoid ketolase genes for the engineering of high-yield astaxanthin in plants. Planta. 2012;236:691–9.

    Article  CAS  PubMed  Google Scholar 

  150. Tao L, Wilczek J, Odom JM, Cheng Q. Engineering a β-carotene ketolase for astaxanthin production. Metab Eng. 2006;8:523–31.

    Article  CAS  PubMed  Google Scholar 

  151. Britton G, Liaaen-Jensen S, Pfander H (ed.). Carotenoids. Handbook. – Birkhäuser Verlag, Basel – Boston – Berlin; 2004.

    Google Scholar 

Download references

Acknowledgements

This work was supported by projects: Fondecyt 11121200 and INACH RG_07-12 to JA, Fondecyt 1130333 to MB and Fondecyt 1100324 to VC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Cifuentes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alcaino, J., Baeza, M., Cifuentes, V. (2014). Astaxanthin and Related Xanthophylls. In: Martín, JF., García-Estrada, C., Zeilinger, S. (eds) Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1191-2_9

Download citation

Publish with us

Policies and ethics