Skip to main content

Roquefortine C and Related Prenylated Indole Alkaloids

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Roquefortine C, glandicoline, meleagrin, neoxaline, and acetylaszonalenin are indole alkaloids prenylated at carbon 3 of the indole molecule, produced by several species of Penicillium, Aspergillus, and Neosartorya. These indole alkaloids are produced in molded grains and food products and are toxic to animals. These mycotoxins may contaminate blue-veined cheese.

Roquefortine C and related indole alkaloids derive from a molecule of l-tryptophan and a second amino acid (l-histidine or anthranilic acid among others) that are condensed by a cyclodipeptide synthetase to form a cyclodipeptide containing a diketopiperazine ring. The cyclodipeptide synthetases are dimodular non-ribosomal peptide synthetases with the domain structure ATCATC (A = Adenylation, T = Thiolation, C = Condensation domains). In the roquefortine C/meleagrin pathway the dipeptide cyclohistidine-tryptophan is either dehydrogenated to cyclodehydroHis-Trp or prenylated by the Rpt prenyltransferase to roquefortine D. When the dipeptide cyclodehydroHis-Trp is formed first, the subsequent prenylation reaction forms roquefortine C. Alternatively roquefortine D is dehydrogenated to roquefortine C by a P450 oxygenase that introduces a double bond in the histidine moiety resulting in a metabolic grid. In some fungi roquefortine C may be the final (or the mayoritary) product of the pathway. In others, roquefortine C is converted into glandicoline A by a rearrangement of its structure mediated by an MAK1-like oxidase. The N1 atom of the indole nucleus of glandicoline A is then oxidized to form glandicoline B and finally the N–OH group of glandicoline B is methylated by the Gmt methyltransferase to form meleagrin. In a few fungi meleagrin is methylated again at a hydroxyl group to form neoxaline.

RNAi-mediated silencing and gene disruption studies have confirmed that the roquefortine/meleagrin pathway is a linear pathway containing two alternative routes in the second and third step of the pathway (i.e., a grid). The first two steps (formation of the cyclodipeptide and prenylation) are similar to those in the formation of acetylaszonalenin in N. fischeri. The third step in the biosynthesis of acetylaszonalenin involves an N-acetylation of the indole N1 atom by a specific N-acetyltransferase. Related aszonalenin gene clusters have been found in Aspergillus terreus and other fungi. Detailed studies of the cyclodipeptide synthetases and the indole prenyltransferases have provided considerable insight into the molecular mechanisms of those biosynthetic enzymes.

An MFS-type transporter containing 12 transmembrane spanners is present in the roquefortine C/meleagrin gene cluster of Penicillium chrysogenum, but the contribution of this transporter to the secretion of these mycotoxins is still unclear.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tudzynsky P, Correia T, Keller U. Biotechnology and genetics of ergot alkaloids. Appl Microbiol Biotechnol. 2001;57:593–605.

    Article  Google Scholar 

  2. Li SM. Evolution of aromatic prenyltransferases in the biosynthesis of indole derivatives. Phytochemistry. 2009;70:1746–57.

    Article  CAS  PubMed  Google Scholar 

  3. Sumarah MW, Miller JD, Blackwell BA. Isolation and metabolite production by Penicillium roqueforti, P. paneum and P. crustosum isolated in Canada. Mycopathologia. 2005;159: 571–7.

    Article  CAS  PubMed  Google Scholar 

  4. García-Estrada C, Ullán RV, Albillos SM, Fernández-Bodega MÁ, Durek P, von Döhren H, Martín JF. A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum. Chem Biol. 2011;18:1499–512.

    Article  PubMed  Google Scholar 

  5. Overy DP, Frisvad JC, Steinmeier U, Thrane U. Clarification of the agents causing blue mold storage rot up on various flower and vegetable bulbs: implications for mycotoxin contamination. Postharvest Biol Technol. 2005;35:217–21.

    Article  Google Scholar 

  6. Finoli C, Vecchio A, Galli A, Dragoni I. Roquefortine C occurrence in blue cheese. J Food Prot. 2001;64:246–51.

    CAS  PubMed  Google Scholar 

  7. Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ, Crabtree J, Silva JC, Badger JH, Albarraq A, Angiuoli S, Bussey H, Bowyer P, Cotty PJ, Dyer PS, Egan A, Galens K, Fraser-Liggett CM, Haas BJ, Inman JM, Kent R, Lemieux S, Malavazi I, Orvis J, Roemer T, Ronning CM, Sundaram JP, Sutton G, Turner G, Venter JC, White OR, Whitty BR, Youngman P, Wolfe KH, Goldman GH, Wortman JR, Jiang B, Denning DW, Nierman WC. Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet. 2008;4(4):e1000046.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Rydholm C, Szakacs G, Lutzoni F. Low genetic variation and no detectable population structure in Aspergillus fumigatus compared to closely related Neosartorya species. Eukaryot Cell. 2006;5:650–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Kato N, Suzuki H, Takagi H, Asami Y, Kakeya H, Uramoto M, Usui T, Takahashi S, Sugimoto Y, Osada H. Identification of cytochrome P450s required for fumitremorgin biosynthesis in Aspergillus fumigatus. Chembiochem. 2009;10:920–8.

    Article  CAS  PubMed  Google Scholar 

  10. Kato N, Suzuki H, Okumura H, Takahashi S, Osada H. A point mutation in ftmD blocks the fumitremorgin biosynthetic pathway in Aspergillus fumigatus strain Af293. Biosci Biotechnol Biochem. 2013;77:1061–7.

    Article  CAS  PubMed  Google Scholar 

  11. Rohlfs M, Albert M, Keller NP, Kempken F. Secondary chemicals protect mould from fungivory. Biol Lett. 2007;3:523–5.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Wagener RE, Davis ND, Diener UL. Penitrem A and roquefortine production by Penicillium commune. Appl Environ Microbiol. 1980;39:882–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Ohmomo S. Indole alkaloids produced by Penicillium roqueforti. J Antibact Antifung Agents. 1982;10:253–64.

    CAS  Google Scholar 

  14. Scott PM, Kennedy PC. Analysis of blue cheese for roquefortine and other alkaloids from Penicillium roqueforti. J Agric Food Chem. 1976;24:865–8.

    Article  CAS  PubMed  Google Scholar 

  15. Häggblom P. Isolation of roquefortine C from feed grain. Appl Environ Microbiol. 1990;56: 2924–6.

    PubMed Central  PubMed  Google Scholar 

  16. Ohmomo S, Kitamoto HK, Nakajima T. Detection of roquefortines in Penicillium roqueforti isolated from moulded maize silage. J Sci Food Agric. 1994;64:211–5.

    Article  CAS  Google Scholar 

  17. Rundberget T, Skaar I, Flaoyen A. The presence of Penicillium and Penicillium mycotoxins in food wastes. Int J Food Microbiol. 2004;90:181–8.

    Article  CAS  PubMed  Google Scholar 

  18. Cole RJ, Dorner JW, Cox RH, Raymond LW. Two classes of alkaloid mycotoxins produced by Penicillium crustosum Thom isolated from contaminated beer. J Agric Food Chem. 1983;31: 655–7.

    Article  CAS  PubMed  Google Scholar 

  19. Möller T, Akerstrand K, Massoud T. Toxin-producing species of Penicillium and the development of mycotoxins in must and homemade wine. Nat Toxins. 1997;5:86–9.

    Article  PubMed  Google Scholar 

  20. García-Rico RO, Fierro F, Mauriz E, Gómez A, Fernández-Bodega MA, Martín JF. The heterotrimeric G alpha protein pga1 regulates biosynthesis of penicillin, chrysogenin and roquefortine in Penicillium chrysogenum. Microbiology. 2008;154:3567–78.

    Article  PubMed  Google Scholar 

  21. Overy DP, Frisvad JC. New Penicillium species associated with bulbs and root vegetables. Syst Appl Microbiol. 2003;26:631–9.

    Article  PubMed  Google Scholar 

  22. Kulakovskaya TV, Reshetilova TA, Kuvichkina TN, Vinokurova NG. Roquefortine excretion and up take by Penicillium crustosum Thom VKM F-1746. Process Biochem. 1997;32:29–33.

    Article  CAS  Google Scholar 

  23. Butler AR, Flint SA, Cundliffe E. Feedback control of polyketide metabolism during tylosin production. Microbiology. 2001;147:795–801.

    Article  CAS  PubMed  Google Scholar 

  24. Reshetilova TA, Kulakovskaya TV, Kuvichkina TN, Kozlovsky AG. Transport of alkaloid roquefortine into cells of the fungus Penicillium farinosum. Microbiology. 1994;63:230–2.

    Google Scholar 

  25. García-Estrada C, Vaca I, Lamas-Maceiras M, Martín JF. In vivo transport of the intermediates of the penicillin biosynthetic pathway in tailored strains of Penicillium chrysogenum. Appl Microbiol Biotechnol. 2007;76:169–82.

    Article  PubMed  Google Scholar 

  26. Overy DP, Nielsen KF, Smedsgaard J. Roquefortine/oxaline biosynthesis pathway metabolites in Penicillium ser. Corymbifera: in planta production and implications for competitive fitness. J Chem Ecol. 2005;31:2373–90.

    Article  CAS  PubMed  Google Scholar 

  27. Kopp-Holtwiesche B, Rehm HJ. Antimicrobial action of roquefortine. J Environ Pathol Toxicol Oncol. 1990;10:41–4.

    CAS  PubMed  Google Scholar 

  28. Ohmomo S, Oguma K, Ohashi T, Abe M. Isolation of a new indole alkaloid, roquefortine D, from the cultures of Penicillium roqueforti. Agric Biol Chem. 1978;42:2387–9.

    Article  CAS  Google Scholar 

  29. Kozlovsky AG, Vinokurova NG, Solovyeva TF, Buzilova IG. Microfungal nitrogen-containing secondary metabolites. Appl Biochem Microbiol. 1996;32:39Y48.

    Google Scholar 

  30. Kozlovsky AG, Solovieva TF, Reshetilova TA, Skryabin GK. Biosynthesis of roquefortine and 3,12-dihydroroquefortine by the culture Penicillium farinosum. Cell Mol Life Sci. 1981;37:472–3.

    Article  Google Scholar 

  31. Kozlovsky AG, Vinokurova NG, Reshetilova TA, Sakharovsky VG, Baskunov BP, Seleznev SG. New metabolites of Penicillium glandicola var. glandicola: glandicoline A and glandicoline B. Appl Biochem Microbiol. 1994;30:334Y337.

    Google Scholar 

  32. Kawai K, Nozawa K, Nakajima S, Iitaka Y. Studies of fungal products. VII The structures of meleagrin and 9-O-p-bromobenzoylmeleagrin. Chem Pharm Bull. 1984;32:94Y98.

    Google Scholar 

  33. Nagel DW, Pachler KGR, Steyn PS. The chemistry and C NMR assignments of oxaline, a novel alkaloid from Penicillium oxalicum. Tetrahedron. 1976;32:2625Y2631.

    Article  Google Scholar 

  34. Reshetilova TA, Vinokurova NG, Khmelenina VN, Kozlovsky AG. The role of roquefortine in the synthesis of alkaloids meleagrin, glandicolines A and B, and oxaline in fungi Penicillium glandicola and P. atramentosum. Microbiology. 1995;64:27–9.

    Google Scholar 

  35. Ali H, Ries MI, Nijland JG, Lankhorst PP, Hankemeier T, Bovenberg R, Vreeken RJ, Driesen AJM. A branched biosynthetic pathway is involved in production of roquefortine and related compounds in Penicillium chrysogenum. PloS One. 2013;8:e65328.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Barrow KD, Colley PW, Tribe DE. Biosynthesis of the neurotoxin alkaloid roquefortine. J Chem Soc Chem Commun. 1979;1979:225–6.

    Article  Google Scholar 

  37. Gorst-Allman CP, Steyn PS, Vleggaar R. The biosynthesis of roquefortine: an investigation of acetate and mevalonate incorporation using field NMR spectroscopy. J Chem Soc Chem Commun. 1982;1982:652–3.

    Article  Google Scholar 

  38. Kanoh K, Kohno S, Katada J, Takahashi J, Uno I. (-)-Phenylahistin arrests cells in mitosis by inhibiting tubulin polymerization. J Antibiot. 1999;52:134–41.

    Article  CAS  PubMed  Google Scholar 

  39. Williams RM, Stocking EM, Sanz-Cervera JF. Biosynthesis of prenylated alkaloids derived from tryptophan. Top Curr Chem. 2000;209:97–173. doi:10.1007/3-540-48146-X_3.

    Article  CAS  Google Scholar 

  40. Bhat B, Harrison DM, Lamont HM. The biosynthesis of the tryptophan-derived mould metabolites roquefortine and aszonalenin. J Chem Soc Chem Commun. 1990;1990:1518–9.

    Article  Google Scholar 

  41. Bhat B, Harrison DM, Lamont HM. The biosynthesis of the mold metabolites roquefortine and aszonalenin from L-[2,4,5,6,7-H-5(2)] tryptophan. Tetrahedron. 1993;49:10663–8.

    Article  CAS  Google Scholar 

  42. Yin WB, Cheng J, Li SM. Stereospecific synthesis of aszonalenins by using two recombinant prenyltransferases. Org Biomol Chem. 2009;7:2202–7.

    Article  CAS  PubMed  Google Scholar 

  43. Von Döhren H. A survey of nonribosomal peptide synthetase (NRPS) genes in Aspergillus nidulans. Fungal Genet Biol. 2009;46:545–52.

    Google Scholar 

  44. Martín JF. α-Aminoadipyl-cysteinyl-valine synthetases in β-lactam producing organisms. From Abraham’s discoveries to novel concepts of non-ribosomal peptide synthesis. J Antibiot. 2000;53:1008–21.

    Article  PubMed  Google Scholar 

  45. Wu X, García-Estrada C, Vaca I, Martín JF. Motifs in the C-terminal region of the Penicillium chrysogenum ACV synthetase are essential for valine epimerization and processivity of tripeptide formation. Biochimie. 2012;94:354–64.

    Article  CAS  PubMed  Google Scholar 

  46. Rausch C, Weber T, Kohlbacher O, Wohlleben W, Huson DH. Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res. 2005;33:5799–808.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Schwecke T, Göttling K, Durek P, Dueñas I, Käufer NF, Zock-Emmenthal S, Staub E, Neuhof T, Dieckmann R, von Döhren H. Nonribosomal peptide synthesis in Schizosaccharomyces pombe and the architectures of ferrichrome-type siderophore synthetases in fungi. Chembiochem. 2006;7:612–22.

    Article  CAS  PubMed  Google Scholar 

  48. Arai K, Kimura K, Mushiroda T, Yamamoto Y. Structures of Fructigenines A and B, new alkaloids isolated from Penicillium fructigenum TAKEUCHI. Chem Pharm Bull. 1989;37:2937–9.

    Article  CAS  Google Scholar 

  49. Metzger U, Schall C, Zocher G, Unsöld I, Stec E, Li SM, Heide L, Stehle T. The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria. Proc Natl Acad Sci USA. 2009;106:14309–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Yin WB, Grundmann A, Cheng J, Li SM. Acetylaszonalenin biosynthesis in Neosartorya fischeri. Identification of the biosynthetic gene cluster by genomic mining and functional proof of the genes by biochemical investigation. J Biol Chem. 2009;284:100–9.

    Article  CAS  PubMed  Google Scholar 

  51. Grundmann A, Li SM. Overproduction, purification and characterization of FtmPT1, a brevianamide F prenyltransferase from Aspergillus fumigatus. Microbiology. 2005;151:2199–207.

    Article  CAS  PubMed  Google Scholar 

  52. Richard DJ, Schiavi B, Joullié MM. Synthetic studies of roquefortine C: synthesis of isoroquefortine C and a heterocycle. Proc Natl Acad Sci USA. 2004;101:11971–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Ries MI, Ali H, Lankhorst PP, Hankemeier T, Bovenberg RA, Driessen AJ, Vreeken RJ. Novel key metabolites reveal further branching of the roquefortine/meleagrin biosynthetic pathway. J Biol Chem. 2013;288:37289–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Callahan TM, Rose MS, Meade MJ, Ehrenshaft M, Upchurch RG. CFP, the putative cercosporin transporter of Cercospora kikuchii, is required for wild type cercosporin production, resistance, and virulence on soybean. Mol Plant Microbe Interact. 1999;12:901–10.

    Article  CAS  PubMed  Google Scholar 

  55. Martín JF, Casqueiro J, Liras P. Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Curr Opin Microbiol. 2005;8:282–93.

    Article  PubMed  Google Scholar 

  56. Martín JF, García-Estrada C, Ullan RV. Transport of substrates into peroxisomes. The paradigm of β-lactam biosynthetic intermediates. Biomol Concepts. 2013;4(2):197–203.

    Google Scholar 

  57. Kimura Y, Hamasaki T, Nakajima H, Isogai A. Structure of aszonalenin, a new metabolite of Aspergillus zonatus. Tetrahedron Lett. 1982;23:225–8.

    Article  CAS  Google Scholar 

  58. Hayashi A, Fujioka S, Nukina M, Kawano T, Shimada A, Kimura Y. Fumiquinones A and B, nematicidal quinones produced by Aspergillus fumigatus. Biosci Biotechnol Biochem. 2007;71:1697–702.

    Article  CAS  PubMed  Google Scholar 

  59. Capon RJ, Skene C, Stewart M, Ford J, O_Hair RAJ, Williams L, Lacey E, Gill JH, Heiland K, Friedel T. Aspergillicins A-E: five novel depsipeptides from the marine-derived fungus Aspergillus carneus. Org Biomol Chem. 2003;1:1856–62.

    Article  CAS  PubMed  Google Scholar 

  60. Wakana D, Hosoe T, Itabashi T, Nozawa K, Okada K, de Campos Takaki GM, Yaguchi T, Fukushima K, Kawai KI. Isolation of isoterrein from Neosartorya fischeri. Mycotoxins. 2006;56:3–6.

    Article  CAS  Google Scholar 

  61. Liras P, Martín JF. Gene clusters for β-lactam antibiotics and control of their expression: why have clusters been formed and where do they come from? Int Microbiol. 2006;9:9–19.

    CAS  PubMed  Google Scholar 

  62. Díez B, Gutiérrez S, Barredo JL, van Solingen P, van der Voort LH, Martín JF. The cluster of penicillin biosynthetic genes. Identification and characterization of the pcbAB gene encoding the alpha-aminoadipyl-cysteinyl-valine synthetase and linkage to the pcbC and penDE genes. J Biol Chem. 1990;265:16358–65.

    PubMed  Google Scholar 

  63. Kosalková K, Marcos AT, Fierro F, Hernando-Rico V, Gutiérrez S, Martín JF. A novel heptameric sequence (TTAGTAA) is the binding site for a protein required for high level expression of pcbAB, the first gene of the penicillin biosynthesis in Penicillium chrysogenum. J Biol Chem. 2000;275:2423–30.

    Article  PubMed  Google Scholar 

  64. Brakhage AA. Molecular regulation of beta-lactam biosynthesis in filamentous fungi. Microbiol Mol Biol Rev. 1998;62:547–85.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Martín JF. Molecular control of expression of penicillin biosynthesis genes in fungi: regulatory proteins interact with a bidirectional promoter region. J Bacteriol. 2004;182:2355–62.

    Article  Google Scholar 

  66. Maiya S, Grundmann A, Li SM, Turner G. The fumitremorgin gene cluster of Aspergillus fumigatus: identification of a gene encoding brevianamide F synthetase. Chembiochem. 2006;7:1062–9.

    Article  CAS  PubMed  Google Scholar 

  67. Maiya S, Grundmann A, Li SM, Turner G. Improved tryprostatin B production by heterologous gene expression in Aspergillus nidulans. Fungal Genet Biol. 2009;46:436–40.

    Article  CAS  PubMed  Google Scholar 

  68. Takase S, Iwami M, Ando T, Okamoto M, Yoshida K, Horiai H, Kohsaka M, Aoki H, Imanaka H. Amauromine, a new vasodilator. Taxonomy, isolation and characterization. J Antibiot (Tokyo). 1984;37:1320–3.

    Article  CAS  Google Scholar 

  69. Hodge RP, Harris CM, Harris TM. Verrucofortine, a major metabolite of Penicillium verrucosum var. cyclopium, the fungus that produces the mycotoxin verrucosidin. J Nat Prod. 1988;51: 66–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan-Francisco Martín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martín, JF., Liras, P., García-Estrada, C. (2014). Roquefortine C and Related Prenylated Indole Alkaloids. In: Martín, JF., García-Estrada, C., Zeilinger, S. (eds) Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1191-2_6

Download citation

Publish with us

Policies and ethics