Skip to main content

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Cephalosporin C is a β-lactam antibiotic with antibacterial activity against both Gram-positive and Gram-negative bacteria. This pharmaceutically important drug is produced by the filamentous fungus Acremonium chrysogenum, which is used in industrial applications worldwide. Here we summarize the fungal biosynthetic pathway that leads to the production of the secondary metabolite cephalosporin C and its intermediates. Chemical derivatives of intermediates of this pathway show elevated antibiotic activity, and are used in medical applications. A. chrysogenum exhibits a rather slow growth rate and peculiar hyphal morphology, which hamper its manipulation by genetic engineering. We present a concise overview of the recently developed novel molecular tools for use with A. chrysogenum, and we describe methods for increasing efficiencies of targeted strain improvements. Genetic analyses have identified several transcription factors, transporters, and other regulators that are involved in both cephalosporin C biosynthesis and fungal morphology. Despite strong progress, our understanding of the regulatory mechanisms controlling cephalosporin C biosynthesis remains incomplete. Future work must therefore focus on the application of advanced genetic techniques. Together with the awaited genome sequence data, such studies will elucidate the molecular mechanisms underlying A. chrysogenum physiology and morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    D. Löper and U. Kück, unpublished.

References

  1. Abraham EP, Newton GGF, Olson BH, Schuurmans DM, Schenck JR, Hargie MP, Fisher MW, Fusari SA. Identity of cephalosporin N and synnematin B. Nature. 1955;176(4481):551.

    Article  CAS  PubMed  Google Scholar 

  2. Newton GGF, Abraham EP. Cephalosporin C, a new antibiotic containing sulphur and D-α-aminoadipic acid. Nature. 1955;175(4456):548.

    Article  CAS  PubMed  Google Scholar 

  3. Demain AL, Elander RP. The beta-lactam antibiotics: past, present, and future. Antonie Van Leeuwenhoek. 1999;75(1–2):5–19.

    Article  CAS  PubMed  Google Scholar 

  4. Brakhage AA, Spröte P, Al-Abdallah Q, Gehrke A, Plattner H, Tüncher A. Regulation of penicillin biosynthesis in filamentous fungi. Adv Biochem Eng Biotechnol. 2004;88:45–90.

    CAS  PubMed  Google Scholar 

  5. Elander RP. Industrial production of β-lactam antibiotics. Appl Microbiol Biotechnol. 2003;61(5–6):385–92.

    Article  CAS  PubMed  Google Scholar 

  6. Demain AL. Antibiotics: natural products essential to human health. Med Res Rev. 2009;29(6):821–42.

    Article  CAS  PubMed  Google Scholar 

  7. Schmitt EK, Hoff B, Kück U. Regulation of cephalosporin biosynthesis. Adv Biochem Eng Biotechnol. 2004;88:1–43.

    CAS  PubMed  Google Scholar 

  8. Ozcengiz G, Demain AL. Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation. Biotechnol Adv. 2013;31(2):287–311.

    Article  CAS  PubMed  Google Scholar 

  9. Díez B, Gutiérrez S, Barredo JL, van Solingen P, van der Voort LH, Martín JF. The cluster of penicillin biosynthetic genes. Identification and characterization of the pcbAB gene encoding the alpha-aminoadipyl-cysteinyl-valine synthetase and linkage to the pcbC and penDE genes. J Biol Chem. 1990;265(27):16358–65.

    PubMed  Google Scholar 

  10. Liras P, Martín JF. Gene clusters for beta-lactam antibiotics and control of their expression: why have clusters evolved, and from where did they originate? Int Microbiol. 2006;9(1):9–19.

    CAS  PubMed  Google Scholar 

  11. Gutiérrez S, Fierro F, Casqueiro J, Martín JF. Gene organization and plasticity of the beta-lactam genes in different filamentous fungi. Antonie Van Leeuwenhoek. 1999;75(1–2):81–94.

    Article  PubMed  Google Scholar 

  12. Skatrud PL, Queener SW. An electrophoretic molecular karyotype for an industrial strain of Cephalosporium acremonium. Gene. 1989;78(2):331–8.

    Article  CAS  PubMed  Google Scholar 

  13. Smith AW, Collis K, Ramsden M, Fox HM, Peberdy JF. Chromosome rearrangements in improved cephalosporin C-producing strains of Acremonium chrysogenum. Curr Genet. 1991;19(3):235–7.

    Article  PubMed  Google Scholar 

  14. Byford MF, Baldwin JE, Shiau CY, Schofield CJ. The mechanism of ACV synthetase. Chem Rev. 1997;97(7):2631–50.

    Article  PubMed  Google Scholar 

  15. Aharonowitz Y, Bergmeyer J, Cantoral JM, Cohen G, Demain AL, Fink U, Kinghorn J, Kleinkauf H, MacCabe A, Palissa H, Pfeifer E, Schwecke T, van Liempt H, van Döhren H, Wolfe S, Zhang J. Delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase, the multienzyme integrating the four primary reactions in beta-lactam biosynthesis, as a model peptide synthetase. Nat Biotechnol. 1993;11(7):807–10.

    Article  CAS  Google Scholar 

  16. Gutiérrez S, Diéz B, Montenegro E, Martín JF. Characterization of the Cephalosporium acremonium pcbAB gene encoding alpha-aminoadipyl-cysteinyl-valine synthetase, a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin biosynthetic genes and evidence of multiple functional domains. J Bacteriol. 1991;173(7):2354–65.

    PubMed Central  PubMed  Google Scholar 

  17. Wu X, García-Estrada C, Vaca I, Martín JF. Motifs in the C-terminal region of the Penicillium chrysogenum ACV synthetase are essential for valine epimerization and processivity of tripeptide formation. Biochimie. 2012;94(2):354–64.

    Article  CAS  PubMed  Google Scholar 

  18. Samson SM, Belagaje R, Blankenship DT, Chapman JL, Perry D, Skatrud PL, VanFrank RM, Abraham EP, Baldwin JE, Queener SW, Ingolia TD. Isolation, sequence determination and expression in Escherichia coli of the isopenicillin N synthetase gene from Cephalosporium acremonium. Nature. 1985;318(6042):191–4.

    Article  CAS  PubMed  Google Scholar 

  19. Aharonowitz Y, Cohen G, Martín JF. Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. Annu Rev Microbiol. 1992;46:461–95.

    Article  CAS  PubMed  Google Scholar 

  20. van der Lende TR, van de Kamp M, van den Berg M, Sjollema K, Bovenberg RAL, Veenhuis M, Konings WN, Driessen AJM. δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase, that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme. Fungal Genet Biol. 2002;37(1):49–55.

    Article  PubMed  CAS  Google Scholar 

  21. Ullán RV, Casqueiro J, Bañuelos O, Fernandez FJ, Gutiérrez S, Martín JF. A novel epimerization system in fungal secondary metabolism involved in the conversion of isopenicillin N into penicillin N in Acremonium chrysogenum. J Biol Chem. 2002;277(48):46216–25.

    Article  PubMed  CAS  Google Scholar 

  22. Kovacevic S, Tobin MB, Miller JR. The beta-lactam biosynthesis genes for isopenicillin N epimerase and deacetoxycephalosporin C synthetase are expressed from a single transcript in Streptomyces clavuligerus. J Bacteriol. 1990;172(7):3952–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Martín JF, Ullán RV, García-Estrada C. Regulation and compartmentalization of beta-lactam biosynthesis. Microb Biotechnol. 2010;3(3):285–99.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Rottensteiner H, Kramer A, Lorenzen S, Stein K, Landgraf C, Volkmer-Engert R, Erdmann R. Peroxisomal membrane proteins contain common Pex19p-binding sites that are an integral part of their targeting signals. Mol Biol Cell. 2004;15(7):3406–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Ullán RV, Teijeira F, Guerra SM, Vaca I, Martín JF. Characterization of a novel peroxisome membrane protein essential for conversion of isopenicillin N into cephalosporin C. Biochem J. 2010;432(2):227–36.

    Article  PubMed  CAS  Google Scholar 

  26. Teijeira F, Ullán RV, Guerra SM, García-Estrada C, Vaca I, Martín JF. The transporter CefM involved in translocation of biosynthetic intermediates is essential for cephalosporin production. Biochem J. 2009;418(1):113–24.

    Article  CAS  PubMed  Google Scholar 

  27. Samson SM, Dotzlaf JE, Slisz ML, Becker GW, Van Frank RM, Veal LE, Yeh WK, Miller JR, Queener SW, Ingolia TD. Cloning and expression of the fungal expandase/hydroxylase gene involved in cephalosporin biosynthesis. Nat Biotechnol. 1987;5(11):1207–14.

    Article  CAS  Google Scholar 

  28. Mathison L, Soliday C, Stepan T, Aldrich T, Rambosek J. Cloning, characterization, and use in strain improvement of the Cephalosporium acremonium gene cefG encoding acetyl transferase. Curr Genet. 1993;23(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  29. Velasco J, Gutiérrez S, Campoy S, Martín JF. Molecular characterization of the Acremonium chrysogenum cefG gene product: the native deacetylcephalosporin C acetyltransferase is not processed into subunits. Biochem J. 1999;337:379–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Abraham EP, Newton GG. The structure of cephalosporin C. Biochem J. 1961;79:377–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Morin RB, Roeske RW, Flynn EH, Jackson BG. Chemistry of cephalosporin antibiotics I. 7-aminocephalosporanic acid from cephalosporin C. J Am Chem Soc. 1962;84(17):3400–1.

    Article  CAS  Google Scholar 

  32. Barber MS, Giesecke U, Reichert A, Minas W. Industrial enzymatic production of cephalosporin-based β-lactams. Adv Biochem Eng Biotechnol. 2004;88:179–215.

    CAS  PubMed  Google Scholar 

  33. Sonawane VC. Enzymatic modifications of cephalosporins by cephalosporin acylase and other enzymes. Crit Rev Biotechnol. 2006;26(2):95–120.

    Article  CAS  PubMed  Google Scholar 

  34. Noel GJ, Bush K, Bagchi P, Ianus J, Strauss RS. A randomized, double-blind trial comparing ceftobiprole medocaril with vancomycin plus ceftazidime for the treatment of patients with complicated skin and skin-structure infections. Clin Infect Dis. 2008;46(5):647–55.

    Article  PubMed  Google Scholar 

  35. Noel GJ, Strauss RS, Amsler K, Heep M, Pypstra R, Solomkin JS. Results of a double-blind, randomized trial of ceftobiprole treatment of complicated skin and skin structure infections caused by gram-positive bacteria. Antimicrob Agents Chemother. 2008;52(1):37–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Onions AHS, Brady BL. Taxonomy of Penicillium and Acremonium. In: Peberdy JF, editor. Penicillium and Acremonium. New York: Plenum; 1987. p. 1–36.

    Chapter  Google Scholar 

  37. Gams W. Cephalosporium-artige Schimmelpilze (Hyphomycetes). Stuttgart: Gustav Fischer Verlag; 1971. German.

    Google Scholar 

  38. Glenn AE, Bacon CW, Price R, Hanlin RT. Molecular phylogeny of Acremonium and its taxonomic implications. Mycologia. 1996;88(3):369–83.

    Article  CAS  Google Scholar 

  39. Hoff B, Schmitt EK, Kück U. CPCR1, but not its interacting transcription factor AcFKH1, controls fungal arthrospore formation in Acremonium chrysogenum. Mol Microbiol. 2005; 56(5):1220–33.

    Article  CAS  PubMed  Google Scholar 

  40. Nash CH, Huber FM. Antibiotic synthesis and morphological differentiation of Cephalosporium acremonium. Appl Microbiol. 1971;22(1):6–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Böhm J, Hoff B, O’Gorman CM, Wolfers S, Klix V, Binger D, Zadra I, Kürnsteiner H, Pöggeler S, Dyer PS, Kück U. Sexual reproduction and mating-type-mediated strain development in the penicillin-producing fungus Penicillium chrysogenum. Proc Natl Acad Sci U S A. 2013;110(4):1476–81.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Seidl V, Seibel C, Kubicek CP, Schmoll M. Sexual development in the industrial workhorse Trichoderma reesei. Proc Natl Acad Sci U S A. 2009;106(33):13909–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Pöggeler S, Hoff B, Kück U. Asexual cephalosporin C producer Acremonium chrysogenum carries a functional mating type locus. Appl Environ Microbiol. 2008;74(19):6006–16.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Pöggeler S. Mating-type genes for classical strain improvements of ascomycetes. Appl Microbiol Biotechnol. 2001;56(5–6):589–601.

    PubMed  Google Scholar 

  45. Queener SW, Ellis LF. Differentiation of mutants of Cephalosporium acremonium in complex medium: the formation of unicellular arthrospores and their germination. Can J Microbiol. 1975;21(12):1981–96.

    Article  CAS  PubMed  Google Scholar 

  46. Bartoshevich YE, Zaslavskaya PL, Novak MJ, Yudina OD. Acremonium chrysogenum differentiation and biosynthesis of cephalosporin. J Basic Microb. 1990;30(5):313–20.

    Article  CAS  Google Scholar 

  47. Caltrider PG, Niss HF. Role of methionine in cephalosporin synthesis. Appl Microbiol. 1966;14(5):746–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Drew SW, Winstanley DJ, Demain AL. Effect of norleucine on mycelial fragmentation in Cephalosporium acremonium. Appl Environ Microbiol. 1976;31(1):143–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Karaffa L, Sándor E, Kozma J, Szentirmai A. Methionine enhances sugar consumption, fragmentation, vacuolation and cephalosporin C production in Acremonium chrysogenum. Process Biochem. 1997;32(6):495–9.

    Article  CAS  Google Scholar 

  50. Sándor E, Szentirmai A, Paul GC, Thomas CR, Pócsi I, Karaffa L. Analysis of the relationship between growth, cephalosporin C production, and fragmentation in Acremonium chrysogenum. Can J Microbiol. 2001;47(9):801–6.

    Article  PubMed  Google Scholar 

  51. Tollnick C, Seidel G, Beyer M, Schügerl K. Investigations of the production of cephalosporin C by Acremonium chrysogenum. Adv Biochem Eng Biotechnol. 2004;86:1–45.

    CAS  PubMed  Google Scholar 

  52. Smith B, Warren SC, Newton GG, Abraham EP. Biosynthesis of penicillin N and cephalosporin C. Antibiotic production and other features of the metabolism of Cephalosporium sp. Biochem J. 1967;103(3):877–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Long LK, Wang Y, Yang J, Xu X, Liu G. A septation related gene AcsepH in Acremonium chrysogenum is involved in the cellular differentiation and cephalosporin production. Fungal Genet Biol. 2013;50:11–20.

    Article  CAS  PubMed  Google Scholar 

  54. Demain AL, Newkirk JF. Biosynthesis of cephalosporin C. Appl Microbiol. 1962;10(4): 321–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Velasco J, Gutiérrez S, Fernández FJ, Marcos AT, Arenós C, Martín JF. Exogenous methionine increases levels of mRNAs transcribed from pcbAB, pcbC, and cefEF genes, encoding enzymes of the cephalosporin biosynthetic pathway, in Acremonium chrysogenum. J Bacteriol. 1994;176(4):985–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Nüesch J, Treichler HJ, Liersch M. The biosynthesis of cephalosporin C. In: Vanek Z, Hostalek Z, Cudlin J, editors. Genetics of industrial microorganisms. Prague: Academia; 1973. p. 309–34.

    Google Scholar 

  57. Drew SW, Demain AL. Production of cephalosporin C by single and double sulfur auxotrophic mutants of Cephalosporium acremonium. Antimicrob Agents Chemother. 1975;8(1):5–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Drew SW, Demain AL. Methionine control of cephalosporin C formation. Biotechnol Bioeng. 1973;15(4):743–54.

    Article  CAS  PubMed  Google Scholar 

  59. Sawada Y, Konomi T, Solomon NA, Demain AL. Increase in activity of β-lactam synthetases after growth of Cephalosporium acremonium with methionine or norleucine. FEMS Microbiol Lett. 1980;9(4):281–4.

    CAS  Google Scholar 

  60. Zhang JY, Banko G, Wolfe S, Demain AL. Methionine induction of ACV synthetase in Cephalosporium acremonium. J Ind Microbiol. 1987;2(4):251–5.

    Article  CAS  Google Scholar 

  61. Treichler HJ, Liersch M, Nüesch J, Döbeli H. Role of sulfur metabolism in cephalosporin C and penicillin biosynthesis. In: Sebek OK, Laskin AI, editors. Genetics of industrial microorganisms. Washington: American Society for Microbiology; 1979. p. 79–104.

    Google Scholar 

  62. Liu G, Casqueiro J, Bañuelos O, Cardoza RE, Gutiérrez S, Martín JF. Targeted inactivation of the mecB gene, encoding cystathionine-γ-lyase, shows that the reverse transsulfuration pathway is required for high-level cephalosporin biosynthesis in Acremonium chrysogenum C10 but not for methionine induction of the cephalosporin genes. J Bacteriol. 2001;183(5): 1765–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Martín JF, Demain AL. Unraveling the methionine-cephalosporin puzzle in Acremonium chrysogenum. Trends Biotechnol. 2002;20(12):502–7.

    Article  PubMed  Google Scholar 

  64. Walz M, Kück U. Polymorphic karyotypes in related Acremonium strains. Curr Genet. 1991;19(2):73–6.

    Article  CAS  PubMed  Google Scholar 

  65. Skatrud PL, Queener SW, Carr LG, Fisher DL. Efficient integrative transformation of Cephalosporium acremonium. Curr Genet. 1987;12(5):337–48.

    Article  CAS  PubMed  Google Scholar 

  66. Queener SW, Ingolia TD, Skatrud PL, Chapman JL, Kaster KR. A system for genetic transformation of Cephalosporium acremonium. In: Leive L, editor. Microbiology-1985. Washington: American Society for Microbiology; 1985. p. 468–72.

    Google Scholar 

  67. Kück U, Walz M, Mohr G, Mracek M. The 5′-sequence of the isopenicillin N-synthetase gene (pcbC) from Cephalosporium acremonium directs the expression of the prokaryotic hygromycin B phosphotransferase gene (hph) in Aspergillus niger. Appl Microbiol Biotechnol. 1989;31(4):358–65.

    Google Scholar 

  68. Takita Y, Takahara M, Nogami S, Anraku Y, Ohya Y. Applications of the long and accurate polymerase chain reaction method in yeast molecular biology: direct sequencing of the amplified DNA and its introduction into yeast. Yeast. 1997;13(8):763–8.

    Article  CAS  PubMed  Google Scholar 

  69. Wach A, Brachat A, Pohlmann R, Philippsen P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast. 1994;10(13):1793–808.

    Article  CAS  PubMed  Google Scholar 

  70. Schmitt EK, Bunse A, Janus D, Hoff B, Friedlin E, Kürnsteiner H, Kück U. Winged helix transcription factor CPCR1 is involved in regulation of β-lactam biosynthesis in the fungus Acremonium chrysogenum. Eukaryot Cell. 2004;3(1):121–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Dreyer J, Eichhorn H, Friedlin E, Kürnsteiner H, Kück U. A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum. Appl Environ Microbiol. 2007;73(10):3412–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Walz M, Kück U. Targeted integration into the Acremonium chrysogenum genome: disruption of the pcbC gene. Curr Genet. 1993;24(5):421–7.

    Article  CAS  PubMed  Google Scholar 

  73. Kück U, Hoff B. New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol. 2010;86(1):51–62.

    Article  PubMed  CAS  Google Scholar 

  74. Krappmann S. Gene targeting in filamentous fungi: the benefits of impaired repair. Fungal Biol Rev. 2007;21(1):25–9.

    Article  Google Scholar 

  75. Bloemendal S, Löper D, Terfehr D, Kopke K, Kluge J, Teichert I, Kück U. Tools for advanced and targeted genetic manipulation of the β-lactam antibiotic producer Acremonium chrysogenum. J Biotechnol. 2014;69:51–62.

    Google Scholar 

  76. Fairhead C, Llorente B, Denis F, Soler M, Dujon B. New vectors for combinatorial deletions in yeast chromosomes and for gap-repair cloning using ‘split-marker’ recombination. Yeast. 1996;12(14):1439–57.

    Article  CAS  PubMed  Google Scholar 

  77. Jeong JS, Mitchell TK, Dean RA. The Magnaporthe grisea snodprot1 homolog, MSP1, is required for virulence. FEMS Microbiol Lett. 2007;273(2):157–65.

    Article  CAS  PubMed  Google Scholar 

  78. Nowak C, Kück U. Development of an homologous transformation system for Acremonium chrysogenum based on the β-tubulin gene. Curr Genet. 1994;25(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  79. Nowak C, Radzio R, Kück U. DNA-mediated transformation of a fungus employing a vector devoid of bacterial DNA sequences. Appl Microbiol Biotechnol. 1995;43(6):1077–81.

    Article  CAS  PubMed  Google Scholar 

  80. Gsaller F, Blatzer M, Abt B, Schrettl M, Lindner H, Haas H. The first promoter for conditional gene expression in Acremonium chrysogenum: iron starvation-inducible mir1 P. J Biotechnol. 2013;163(1):77–80.

    Article  CAS  PubMed  Google Scholar 

  81. Janus D, Hoff B, Hofmann E, Kück U. An efficient fungal RNA-silencing system using the DsRed reporter gene. Appl Environ Microbiol. 2007;73(3):962–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Ullán RV, Godio RP, Teijeira F, Vaca I, García-Estrada C, Feltrer R, Kosalkova K, Martín JF. RNA-silencing in Penicillium chrysogenum and Acremonium chrysogenum: validation studies using β-lactam genes expression. J Microbiol Methods. 2008;75(2):209–18.

    Article  PubMed  CAS  Google Scholar 

  83. Schmitt EK, Kück U. The fungal CPCR1 protein, which binds specifically to beta-lactam biosynthesis genes, is related to human regulatory factor X transcription factors. J Biol Chem. 2000;275(13):9348–57.

    Article  CAS  PubMed  Google Scholar 

  84. Schmitt EK, Hoff B, Kück U. AcFKH1, a novel member of the forkhead family, associates with the RFX transcription factor CPCR1 in the cephalosporin C-producing fungus Acremonium chrysogenum. Gene. 2004;342(2):269–81.

    Article  CAS  PubMed  Google Scholar 

  85. Hoff B, Kück U. Use of bimolecular fluorescence complementation to demonstrate transcription factor interaction in nuclei of living cells from the filamentous fungus Acremonium chrysogenum. Curr Genet. 2005;47(2):132–8.

    Article  CAS  PubMed  Google Scholar 

  86. Menne S, Walz M, Kück U. Expression studies with the bidirectional pcbAB-pcbC promoter region from Acremonium chrysogenum using reporter gene fusions. Appl Microbiol Biotechnol. 1994;42(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  87. Radzio R, Kück U. Efficient synthesis of the blood-coagulation inhibitor hirudin in the filamentous fungus Acremonium chrysogenum. Appl Microbiol Biotechnol. 1997;48(1):58–65.

    Article  CAS  PubMed  Google Scholar 

  88. Schmitt EK, Kempken R, Kück U. Functional analysis of promoter sequences of cephalosporin C biosynthesis genes from Acremonium chrysogenum: specific DNA-protein interactions and characterization of the transcription factor PACC. Mol Genet Genomics. 2001;265(3): 508–18.

    Article  CAS  PubMed  Google Scholar 

  89. Shah AJ, Tilburn J, Adlard MW, Arst Jr HN. pH regulation of penicillin production in Aspergillus nidulans. FEMS Microbiol Lett. 1991;61(2–3):209–12.

    Article  CAS  PubMed  Google Scholar 

  90. Suárez T, Peñalva MA. Characterization of a Penicillium chrysogenum gene encoding a PacC transcription factor and its binding sites in the divergent pcbAB-pcbC promoter of the penicillin biosynthetic cluster. Mol Microbiol. 1996;20(3):529–40.

    Article  PubMed  Google Scholar 

  91. Jekosch K, Kück U. Glucose dependent transcriptional expression of the cre1 gene in Acremonium chrysogenum strains showing different levels of cephalosporin C production. Curr Genet. 2000;37(6):388–95.

    Article  CAS  PubMed  Google Scholar 

  92. Jekosch K, Kück U. Loss of glucose repression in an Acremonium chrysogenum beta-lactam producer strain and its restoration by multiple copies of the cre1 gene. Appl Microbiol Biotechnol. 2000;54(4):556–63.

    Article  CAS  PubMed  Google Scholar 

  93. Jain S, Keller N. Insights to fungal biology through LaeA sleuthing. Fungal Biol Rev. 2013;27(2):51–9.

    Article  Google Scholar 

  94. Bayram Ö, Braus GH. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. Fems Microbiol Rev. 2012;36(1):1–24.

    Article  CAS  PubMed  Google Scholar 

  95. Ni M, Yu JH. A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS One. 2007;2(10):e970.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  96. Bayram Ö, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science. 2008;320(5882):1504–6.

    Article  CAS  PubMed  Google Scholar 

  97. Stinnett SM, Espeso EA, Cobeno L, Araújo-Bazán L, Calvo AM. Aspergillus nidulans VeA subcellular localization is dependent on the importin α carrier and on light. Mol Microbiol. 2007;63(1):242–55.

    Article  CAS  PubMed  Google Scholar 

  98. Kopke K, Hoff B, Bloemendal S, Katschorowski A, Kamerewerd J, Kück U. Members of the Penicillium chrysogenum velvet complex play functionally opposing roles in the regulation of penicillin biosynthesis and conidiation. Eukaryot Cell. 2013;12(2):299–310.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Teijeira F, Ullán RV, Fernández-Aguado M, Martín JF. CefR modulates transporters of beta-lactam intermediates preventing the loss of penicillins to the broth and increases cephalosporin production in Acremonium chrysogenum. Metab Eng. 2011;13(5):532–43.

    Article  CAS  PubMed  Google Scholar 

  100. Sarikaya Bayram Ö, Bayram Ö, Valerius O, Park HS, Irniger S, Gerke J, Ni M, Han KH, Yu JH, Braus GH. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genet. 2010;6(12):e1001226.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Schuster A, Schmoll M. Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol. 2010;87(3):787–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Lüllmann H, Mohr K, Hein L. Pharmakologie und Toxikologie. 17th ed. Stuttgart: Thieme; 2010. German.

    Google Scholar 

Download references

Acknowledgements

The experimental work of the authors is funded by the Christian Doppler Society (Vienna) and Sandoz GmbH (Kundl). We are deeply thankful to Gabriele Frenßen-Schenkel for the artwork, and to MSc Janina Kluge and MSc Dominik Terfehr for their help with some figures. We further thank Isabel van der Kamp for her support in preparing the chapter about cephalosporin derivatives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Kück .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bloemendal, S., Kück, U. (2014). Cephalosporins. In: Martín, JF., García-Estrada, C., Zeilinger, S. (eds) Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1191-2_3

Download citation

Publish with us

Policies and ethics