Skip to main content

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Eighty-five years after the discovery of penicillin, this beta-lactam antibiotic is still one of the most prescribed therapeutic drugs due to its high antimicrobial activity and low toxicity. The biosynthesis of penicillin is carried out by a limited number of ascomycete fungi from the genera Aspergillus and Penicillium, the latter including the industrial producer of penicillin Penicillium chrysogenum. Improvement of this filamentous fungus represents one of the most remarkable milestones of the pharmaceutical industry, which has provided strains producing five orders of magnitude more penicillin than the Fleming’s Penicillium original isolate. The joint effort performed by scientists from industry and academia has contributed to gather information on the biosynthetic genes and enzymes as well as on the regulation of the biosynthetic process. The most recent “omics” techniques have provided the key to understand the molecular mechanisms underlying the process of strain improvement. These studies have revealed that the increased productivity of industrial strains of P. chrysogenum lays on a careful rebalancing of metabolic pathways, which proves the versatility of this filamentous fungus for the production of the twentieth century magic bullet, the wonder drug penicillin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fleming A. On the antibacterial action of a Penicillium with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol. 1929;10:226–36.

    PubMed Central  CAS  Google Scholar 

  2. Clutterbuck PW, Lovell R, Raistrick H. Studies in the biochemistry of the microorganisms. XXVI. The formation from glucose by members of the Penicillium chrysogenum species of a pigment, an alkali soluble protein and penicillin. The antibacterial substance of Fleming. Biochem J. 1932;26:1907–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Chain E, Florey HW, Gardner AD, Heatley NG, Jennnings MA, Orr-Ewing J, Sanders AG. Penicillin as a chemotherapeutic agent. Lancet. 1940;II:226–8.

    Article  CAS  Google Scholar 

  4. Moyer AJ, Coghill RD. Penicillin VIII. Production of penicillin in surface cultures. J Bacteriol. 1946;51:57–78.

    PubMed Central  Google Scholar 

  5. Moyer AJ, Coghill RD. Penicillin IX. The laboratory scale production of penicillin in submerged cultures by Penicillium notatum Westling (NRRL 832). J Bacteriol. 1946;51:79–93.

    PubMed Central  Google Scholar 

  6. Moyer AJ, Coghill RD. Penicillin X. The effect of phenylacetic acid on penicillin production. J Bacteriol. 1947;53:329–41.

    PubMed Central  CAS  Google Scholar 

  7. Raper KB. The development of improved penicillin-producing molds. Ann N Y Acad Sci. 1946;58:41–56.

    Article  Google Scholar 

  8. Crowfoot D, Bunn CW, Rogers-Low BW, Turner-Jones A. X-ray crystallographic investigation of the structure of penicillin. In: Clarke HT, Johnson JR, Robinson R, editors. Chemistry of penicillin. Princeton: Princeton University; 1949. p. 310–67.

    Google Scholar 

  9. Kato K. Further notes on penicillin-nucleus. J Antibiot (Tokyo). 1953;6:184–5.

    CAS  Google Scholar 

  10. Batchelor FR, Doyle PD, Nayler JHC, Rolinson GN. Synthesis of penicillin: 6-amino-penicillanic acid in penicillin fermentations. Nature. 1959;183:257–8.

    Article  CAS  PubMed  Google Scholar 

  11. Elander RP. Industrial production of beta-lactam antibiotics. Appl Microbiol Biotechnol. 2003;61:385–92.

    Article  CAS  PubMed  Google Scholar 

  12. van den Berg MA, Albang R, Albermann K, Badger JH, Daran JM, Driessen AJ, Garcia-Estrada C, Fedorova ND, Harris DM, Heijne WH, Joardar V, Kiel JA, Kovalchuk A, Martín JF, Nierman WC, Nijland JG, Pronk JT, Roubos JA, van der Klei IJ, van Peij NN, Veenhuis M, von Döhren H, Wagner C, Wortman J, Bovenberg RAL. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol. 2008;26:1161–68.

    Article  CAS  PubMed  Google Scholar 

  13. Harris DM, van der Krogt ZA, Klaassen P, Raamsdonk LM, Hage S, van den Berg MA, Bovenberg RA, Pronk JT, Daran JM. Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillin G production. BMC Genomics. 2009;10:75.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Jami MS, Barreiro C, García-Estrada C, Martín JF. Proteome analysis of the penicillin producer Penicillium chrysogenum: Characterization of protein changes during the industrial strain improvement. Mol Cell Proteomics. 2010;9:1182–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Jami MS, García-Estrada C, Barreiro C, Cuadrado AA, Salehi-Najafabadi Z, Martín JF. The Penicillium chrysogenum extracellular proteome. Conversion from a food-rotting strain to a versatile cell factory for white biotechnology. Mol Cell Proteomics. 2010;9:2729–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Aharonowitz Y, Cohen G, Martin JF. Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. Annu Rev Microbiol. 1992;46:461–95.

    Article  CAS  PubMed  Google Scholar 

  17. O’Sullivan J, Sykes RB. β-Lactam antibiotics. In: Pape H, Rehm H-J, editors. Biotechnology, a comprehensive treatise in 8 volumes, vol. 4. Weinheim: VCH Verlagsgesellschaft; 1986. p. 247–81.

    Google Scholar 

  18. Laich F, Fierro F, Cardoza RE, Martin JF. Organization of the gene cluster for biosynthesis of penicillin in Penicillium nalgiovense and antibiotic production in cured dry sausages. Appl Environ Microbiol. 1999;65:1236–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Laich F, Fierro F, Martín JF. Production of penicillin by fungi growing on food products: identification of a complete penicillin gene cluster in Penicillium griseofulvum and a truncated cluster in Penicillium verrucosum. Appl Environ Microbiol. 2002;68:1211–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Houbraken J, Frisvad JC, Seifert KA, Overy DP, Tuthill DM, Valdez JG, Samson RA. New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia. 2012;29:78–100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Giesbrecht P, Franz M, Krüeger D, Labischinski H, Wecke J. Bacteriolysis of Staphylococci is only a side-effect of penicillin induced death. In: Kleinkauf H, von Döhren H, editors. 50 years of penicillin application, history and trends. Czech Republic: PUBLIC Ltd; 1991. p. 353–63.

    Google Scholar 

  22. Frère JM, Nguyen-Distéche M, Coyette J, Joris B. Mode of action: interaction with the penicillin binding proteins. In: Page MI, editor. The chemistry of β-lactams. London: Blackie Academic and Professional; 1993. p. 148–97.

    Google Scholar 

  23. Kong KF, Schneper L, Mathee K. Beta-lactam antibiotics: From antibiosis to resistance and bacteriology. Acta Pathol Microbiol Immunol Scandinavica. 2010;118:1–36.

    Article  CAS  Google Scholar 

  24. Martín JF, Ullán RV, García-Estrada C. Regulation and compartmentalization of beta-lactam biosynthesis. Microb Biotechnol. 2010;3:285–99.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Díez B, Gutiérrez S, Barredo JL, van Solingen P, van der Voort LHM, Martín JF. The cluster of penicillin biosynthetic genes. Identification and characterization of the pcbAB gene encoding the α-aminoadipyl-cysteinylvaline synthetase and linkage to the pcbC and penDE genes. J Biol Chem. 1990;265:16358–65.

    PubMed  Google Scholar 

  26. MacCabe AP, Riach MB, Unkles SE, Kinghorn JR. The Aspergillus nidulans npeA locus consists of three contiguous genes required for penicillin biosynthesis. EMBO J. 1990;9:279–87.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Montenegro E, Barredo JL, Gutiérrez S, Díez B, Alvarez E, Martín JF. Cloning, characterization of the acyl-CoA: 6 amino penicillanic acid acyltransferase gene of Aspergillus nidulans and linkage to the isopenicillin N synthase gene. Mol Gen Genet. 1990;221:322–30.

    Article  CAS  PubMed  Google Scholar 

  28. Fierro F, Gutiérrez S, Díez B, Martín JF. Resolution of four large chromosomes in penicillin-producing filamentous fungi: the penicillin gene cluster is located on chromosome II (9.6 Mb) in Penicillium notatum and chromosome I (10.4 Mb) in Penicillium chrysogenum. Mol Gen Genet. 1993;241:573–8.

    Article  CAS  PubMed  Google Scholar 

  29. Smith DJ, Burnham MK, Edwards J, Earl AJ, Turner G. Cloning and heterologous expression of the penicillin biosynthetic gene cluster from Penicillum chrysogenum. Biotechnology (NY). 1990;8:39–41.

    Article  CAS  Google Scholar 

  30. Theilgaard HBA, Kristiansen KN, Enriksen CM, Nielsen J. Purification and characterization of δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase from Penicillium chrysogenum. Biochem J. 1997;327:185–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Martín JF. α-Aminoadipyl-cysteinyl-valine synthetases in β-lactam producing organisms. From Abraham’s discoveries to novel concepts of non-ribosomal peptide synthesis. J Antibiot. 2000;53:1008–21.

    Article  PubMed  Google Scholar 

  32. Baldwin JE, Bird JW, Field RA, O’Callaghan NM, Schofield CJ, Willis AC. Isolation y partial characterisation of ACV synthetase from Cephalosporium acremonium and Streptomyces clavuligerus: evidence for the presence of phosphopantothenate in ACV synthetase. J Antibiot. 1991;44:241–8.

    Article  CAS  PubMed  Google Scholar 

  33. Stachelhaus T, Marahiel MA. Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis. FEMS Microbiol Lett. 1995;125:3–14.

    Article  CAS  PubMed  Google Scholar 

  34. García-Estrada C, Ullán RV, Velasco-Conde T, Godio RP, Teijeira F, Vaca I, Feltrer R, Kosalková K, Mauriz E, Martín JF. Post-translational enzyme modification by the phosphopantethenyl transferase is required for lysine and penicillin biosynthesis but not for roquefortine or fatty acid formation in Penicillium chrysogenum. Biochem J. 2008;415:317–24.

    Article  PubMed  CAS  Google Scholar 

  35. Wu X, García-Estrada C, Vaca I, Martín JF. Motifs in the C-terminal region of the Penicillium chrysogenum ACV synthetase are essential for valine epimerization and processivity of tripeptide formation. Biochimie. 2012;94:354–64.

    Article  CAS  PubMed  Google Scholar 

  36. Kurylowicz W, Kurzatkowski W, Kurzatkowski J. Biosynthesis of benzylpenicillin by Penicillium chrysogenum and its Golgi apparatus. Arch Immunol Ther Exp (Warsz). 1987;35:699–724.

    Google Scholar 

  37. Müller WH, van der Krift TP, Krouwer AJ, Wösten HA, van der Voort LH, Smaal EB, Verkleij AJ. Localization of the pathway of the penicillin biosynthesis in Penicillium chrysogenum. EMBO J. 1991;10:489–95.

    PubMed Central  PubMed  Google Scholar 

  38. Lendenfeld T, Ghali D, Wolschek M, Kubicek-Pranz EM, Kubicek CP. Subcellular compartmentation of penicillin biosynthesis in Penicillium chrysogenum. The amino acid precursors are derived from the vacuole. J Biol Chem. 1993;268:665–71.

    CAS  PubMed  Google Scholar 

  39. van der Lende TR, van de Kamp M, Berg M, Sjollema K, Bovenberg RA, Veenhuis M, Konings WN, Driessen AJ. δ-(L-α- aminoadipyl)-L-cysteinyl-D-valine synthetase, that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme. Fungal Genet Biol. 2002;37:49–55.

    Article  PubMed  CAS  Google Scholar 

  40. Ramos FR, López-Nieto MJ, Martín JF. Isopenicillin N synthetase of Penicillium chrysogenum, an enzyme that converts δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine to isopenicillin N. Antimicrob Agents Chemother. 1985;27:380–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Perry D, Abraham EP, Baldwin JE. Factors affecting the isopenicillin N synthetase reaction. Biochem J. 1988;255:345–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Bainbridge ZA, Scott RI, Perry D. Oxygen utilisation by isopenicillin N synthase from Penicillium chrysogenum. J Chem Technol Biotechnol. 1992;55:233–8.

    Article  CAS  PubMed  Google Scholar 

  43. Cooper RD. The enzymes involved in biosynthesis of penicillin and cephalosporin; their structure and function. Bioorg Med Chem. 1993;1:1–17.

    Article  CAS  PubMed  Google Scholar 

  44. Abraham EP, Huddlestone JA, Jayatilake GS, O’Sullivan J, White R. Conversion of δ(L-α-aminoadipyl)-L-cysteinyl-D-valine to isopenicillin N in cell-free extracts of Cephalosporium acremonium. In: Gregory GI, editor. Recent advances in the chemistry of beta-lactam antibiotics. London: Royal Society of Chemistry; 1981. p. 125–34.

    Google Scholar 

  45. Sawada Y, Baldwin JE, Singh PD, Solomon NA, Demain AL. Cell-free cyclization of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine to isopenicillin N. Antimicrob Agents Chemother. 1980;18:465–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Carr LG, Skatrud PL, Scheetz ME, Queener SW, Ingolia TD. Cloning and expression of the isopenicillin N synthetase gene from Penicillium chrysogenum. Gene. 1986;48:257–66.

    Article  CAS  PubMed  Google Scholar 

  47. Barredo JL, Cantoral JM, Álvarez E, Díez B, Martín JF. Cloning, sequence analysis and transcriptional study of the isopenicillin N synthase of Penicillium chrysogenum AS-P-78. Mol Gen Genet. 1989;216:91–8.

    Article  CAS  PubMed  Google Scholar 

  48. Roach PL, Clifton IJ, Fülöp V, Harlos K, Barton GJ, Hajdu J, Andersson I, Schofield CJ, Baldwin JE. Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes. Nature. 1995;375:700–4.

    Article  CAS  PubMed  Google Scholar 

  49. Roach PL, Clifton IJ, Hensgens CMH, Shibata N, Schofield CJ, Hajdu J, Baldwin JE. Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation. Nature. 1997;387:827–30.

    Article  CAS  PubMed  Google Scholar 

  50. Alvarez E, Meesschaert B, Montenegro E, Gutiérrez S, Díez B, Barredo JL, Martín JF. The isopenicillin-N acyltransferase of Penicillium chrysogenum has isopenicillin-N amidohydrolase, 6-aminopenicillanic acid acyltransferase and penicillin amidase activities, all of which are encoded by the single penDE gene. Eur J Biochem. 1993;215:323–32.

    Article  CAS  PubMed  Google Scholar 

  51. Queener SF, Neuss N. The biosynthesis of β-lactam antibiotics. In: Morin RB, Morgan N, editors. The chemistry and biology of β-lactam antibiotics. London: Academic; 1982. p. 1–81.

    Google Scholar 

  52. Barredo JL, van Solingen P, Díez B, Álvarez E, Cantoral JM, Kattevilder A, Smaal EB, Groenen MAM, Veenstra AE, Martín JF. Cloning and characterization of the acyl coenzyme A: 6 aminopenicilanic acid acyltransferase gene of Penicillium chrysogenum. Gene. 1989;83:291–300.

    Article  CAS  PubMed  Google Scholar 

  53. Whiteman PA, Abraham EP, Baldwin JE, Fleming MD, Schofield CJ, Sutherland JD, Willis AC. Acyl coenzyme A: 6-aminopenicillanic acid acyltransferase from Penicillium chrysogenum and Aspergillus nidulans. FEBS Lett. 1990;262:342–4.

    Article  CAS  PubMed  Google Scholar 

  54. Tobin MB, Fleming MD, Skatrud PL, Miller JR. Molecular characterization of the acylcoenzyme A:isopenicillin N acyltransferase gene (penDE) from Penicillium chrysogenum and Aspergillus nidulans and activity of recombinant enzyme in Escherichia coli. J Bacteriol. 1990;172:5908–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Tobin MB, Baldwin JE, Cole SCJ, Miller JR, Skatrud PL, Sutherland JD. The requirement for subunit interaction in the production of Penicillium chrysogenum acyl-coenzyme A: isopenicillin N acyltransferase in Escherichia coli. Gene. 1993;132:199–206.

    Article  CAS  PubMed  Google Scholar 

  56. Fernández FJ, Cardoza RE, Montenegro E, Velasco J, Gutiérrez S, Martín JF. The isopenicillin N acyltransferases of Aspergillus nidulans and Penicillium chrysogenum differ in their ability to maintain the 40-kDa alpha beta heterodimer in an undissociated form. Eur J Biochem. 2003;270:1958–68.

    Article  PubMed  CAS  Google Scholar 

  57. García-Estrada C, Vaca I, Fierro F, Sjollema K, Veenhuis M, Martín JF. The unprocessed preprotein form IATC103S of the isopenicillin N acyltransferase is transported inside peroxisomes and regulates its self-processing. Fungal Genet Biol. 2008;45:1043–52.

    Article  PubMed  CAS  Google Scholar 

  58. Müller WH, Bovenberg RA, Groothuis MH, Kattevilder F, Smaal EB, van der Voort LH, Verkleij AJ. Involvement of microbodies in penicillin biosynthesis. Biochim Biophys Acta. 1992;1116:210–13.

    Article  PubMed  Google Scholar 

  59. Müller WH, Essers J, Humbel BM, Verkleij AJ. Enrichment of Penicillium chrysogenum microbodies by isopycnic centrifugation in nycodenz as visualized with immunoelectron microscopy. Biochim Biophys Acta. 1995;1245:215–20.

    Article  PubMed  Google Scholar 

  60. Meijer WH, Gidijala L, Fekken S, Kiel JA, van den Berg MA, Lascaris R, Bovenberg RA, van der Klei IJ. Peroxisomes are required for efficient penicillin biosynthesis in Penicillium chrysogenum. Appl Environ Microbiol. 2010;76:5702–09.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Martín JF, García-Estrada C, Ullán RV. Transport of substrates into peroxisomes: the paradigm of β-lactam biosynthetic intermediates. Biomol Concepts. 2013;4:197–211.

    Article  PubMed  CAS  Google Scholar 

  62. Spröte P, Hynes MJ, Hortschansky P, Shelest E, Scharf DH, Wolke SM, Brakhage AA. Identification of the novel penicillin biosynthesis gene aatB of Aspergillus nidulans and its putative evolutionary relationship to this fungal secondary metabolism gene cluster. Mol Microbiol. 2008;70:445–61.

    Article  PubMed  CAS  Google Scholar 

  63. García-Estrada C, Vaca I, Ullán RV, van den Berg MA, Bovenberg RA, Martín JF. Molecular characterization of a fungal gene paralogue of the penicillin penDE gene of Penicillium chrysogenum. BMC Microbiol. 2009;9:104.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Lambalot RH, Gehring AM, Flugel RS, Zuber P, LaCelle M, Marahiel MA, Reid R, Khosla C, Walsh CT. A new enzyme superfamily - the phosphopantetheinyl transferases. Chem Biol. 1996;3:923–36.

    Article  CAS  PubMed  Google Scholar 

  65. Keszenman-Pereyra D, Lawrence S, Twfieg ME, Price J, Turner G. The npgA/cfwA gene encodes a putative 4′-phosphopantetheinyl transferase which is essential for penicillin biosynthesis in Aspergillus nidulans. Curr Genet. 2003;43:186–90.

    CAS  PubMed  Google Scholar 

  66. Márquez-Fernández O, Trigos A, Ramos-Balderas JL, Viniegra-González G, Deising HB, Aguirre J. Phosphopantetheinyl transferase CfwA/NpgA is required for Aspergillus nidulans secondary metabolism and asexual development. Eukaryot Cell. 2007;6:710–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Cohen G, Argaman A, Schreiber R, Mislovati M, Aharonowitz Y. The thioredoxin system of Penicillium chrysogenum and its possible role in penicillin biosynthesis. J Bacteriol. 1994;176:973–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Gledhill L, Greaves PA, Griffin JP. Phenilacetyl-CoA ligase from Penicillium chrysogenum. Patent IPN WO97/02349, Smithkline Beecham, 1997.

    Google Scholar 

  69. Lamas-Maceiras M, Vaca I, Rodríguez E, Casqueiro J, Martín JF. Amplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an arylcapping enzyme that supplies phenylacetic acid to the isopenicillin N acyltransferase. Biochem J. 2006;395:147–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Wang FQ, Liu J, Dai M, Ren ZH, Su CY, He JG. Molecular cloning and functional identification of a novel phenylacetyl-CoA ligase gene from Penicillium chrysogenum. Biochem Biophys Res Commun. 2007;360:453–8.

    Article  CAS  PubMed  Google Scholar 

  71. Koetsier MJ, Jekel PA, van den Berg MA, Bovenberg RA, Janssen DB. Characterization of a phenylacetate-CoA ligase from Penicillium chrysogenum. Biochem J. 2009;417:467–76.

    Article  CAS  PubMed  Google Scholar 

  72. Koetsier MJ, Gombert AK, Fekken S, Bovenberg RA, van den Berg MA, Kiel JA, Jekel PA, Janssen DB, Pronk JT, van der Klei IJ, Daran JM. The Penicillium chrysogenum aclA gene encodes a broad-substrate-specificity acyl-coenzyme A ligase involved in activation of adipic acid, a side-chain precursor for cephem antibiotics. Fungal Genet Biol. 2010;47:33–42.

    Article  CAS  PubMed  Google Scholar 

  73. Yu ZL, Liu J, Wang FQ, Dai M, Zhao BH, He JG, Zhang H. Cloning and characterization of a novel CoA-ligase gene from Penicillium chrysogenum. Folia Microbiol (Praha). 2011;56: 246–52.

    Article  CAS  Google Scholar 

  74. Kubicek CP, Hönlinger CH, Jaklitsch WM, Affenzeller K, Mach R, Gerngross TU, Ying L. Regulation of lysine biosynthesis in the fungus Penicillium chrysogenum. In: Lubec G, Rozenthal GA, editors. Amino acids: chemistry, biology and medicine. Leiden: ESCOM; 1990.

    Google Scholar 

  75. Jaklitsch WM, Kubicek CP. Homocitrate synthase from Penicillium chrysogenum. Localization, purification of the cytosolic isoenzyme, and sensitivity to lysine. Biochem J. 1990;269:247–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Klionsky DJ, Herman PK, Emr SD. The fungal vacuole: composition, function, and biogenesis. Microbiol Rev. 1990;54:266–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Kubicek-Pranz EM, Kubicek CP. Production and biosynthesis of amino acids by fungi. In: Arora DK, Elander RP, Mukerji KG, editors. Handbook of applied mycology. vol. 4: fungal biotechnology. New York: Marcel Dekker; 1991. p. 313–56.

    Google Scholar 

  78. Horak J. Amino acid transport in eukaryotic microorganisms. Biochim Biophys Acta. 1986;864:223–56.

    Article  CAS  PubMed  Google Scholar 

  79. Bañuelos O, Casqueiro J, Gutiérrez S, Riaño J, Martín JF. The specific transport system for lysine is fully inhibited by ammonium in Penicillium chrysogenum: an ammonium-insensitive system allows uptake in carbon-starved cells. Antonie Van Leeuwenhoek. 2000;77:91–100.

    Article  PubMed  Google Scholar 

  80. Trip H, Evers ME, Konings WN, Driessen AJ. Cloning and characterization of an aromatic amino acid and leucine permease of Penicillium chrysogenum. Biochim Biophys Acta. 1992;1565:73–80.

    Article  Google Scholar 

  81. Benko PV, Word TC, Segel IH. Specificity and regulation of methionine transport in filamentous fungi. Arch Biochem Biophys. 1967;122:783–804.

    Article  CAS  Google Scholar 

  82. Skye GE, Segel IH. Independent regulation of cysteine and cystine transport in Penicillium chrysogenum. Arch Biochem Biophys. 1970;138:306–18.

    Article  CAS  PubMed  Google Scholar 

  83. Benko PV, Wood TC, Segel IH. Multiplicity and regulation of amino acid transport in Penicillium chrysogenum. Arch Biochem Biophys. 1969;129:498–508.

    Article  CAS  PubMed  Google Scholar 

  84. Hunter DR, Segel IH. Acidic and basic amino acid transport systems of Penicillium chrysogenum. Arch Biochem Biophys. 1971;144:168–83.

    Article  CAS  PubMed  Google Scholar 

  85. Evers ME, Trip H, van den Berg MA, Bovenberg RA, Driessen AJ. Compartmentalization and transport in β-lactam antibiotics biosynthesis. Adv Biochem Eng Biotechnol. 2004;88:111–35.

    CAS  PubMed  Google Scholar 

  86. Fernández-Aguado M, Teijeira F, Martín JF, Ullán RV. A vacuolar membrane protein affects drastically the biosynthesis of the ACV tripeptide and the beta-lactam pathway of Penicillium chrysogenum. Appl Microbiol Biotechnol. 2013;97:795–808.

    Article  PubMed  CAS  Google Scholar 

  87. Eriksen SH, Jensen B, Schneider I, Kaasgaard S, Olsen J. Uptake of phenoxyacetic acid by Penicillium chrysogenum. Appl Microbiol Biotechnol. 1995;42:945–50.

    Article  CAS  PubMed  Google Scholar 

  88. Hillenga DJ, Versantvoort H, van der Molen S, Driessen A, Konings WN. Penicillium chrysogenum takes up the penicillin G precursor phenylacetic acid by passive diffusion. Appl Environ Microbiol. 1995;61:2589–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Fernández-Cañón JM, Reglero A, Martínez-Blanco H, Ferrero MA, Luengo JM. Phenylacetic acid transport system in Penicillium chrysogenum Wis 54-1255: molecular specificity of its induction. J Antibiot (Tokyo). 1989;42:1410–15.

    Article  Google Scholar 

  90. Fernández-Cañón JM, Reglero A, Martínez-Blanco H, Luengo JM. Uptake of phenylacetic acid by Penicillium chrysogenum Wis 54-1255: a critical regulatory point in benzylpenicillin biosynthesis. J Antibiot (Tokyo). 1989;42:1398–409.

    Article  Google Scholar 

  91. Martínez-Blanco H, Reglero A, Ferrero MA, Fernández-Cañón JM, Luengo JM. Repression of phenylacetic acid transport system in Penicillium chrysogenum Wis 54-1255 by free amino acids and ammonium salts. J Antibiot (Tokyo). 1989;42:1416–23.

    Article  Google Scholar 

  92. Eriksen SH, Soderblom TB, Jensen B, Olsen J. Uptake of phenylacetic acid by two strains of Penicillium chrysogenum. Biotechnol Bioeng. 1998;60:310–6.

    Article  CAS  PubMed  Google Scholar 

  93. Fernández-Aguado M, Ullán RV, Teijeira F, Rodríguez-Castro R, Martín JF. The transport of phenylacetic acid across the peroxisomal membrane is mediated by the PaaT protein in Penicillium chrysogenum. Appl Microbiol Biotechnol. 2013;97:3073–84.

    Article  PubMed  CAS  Google Scholar 

  94. Yang J, Xu X, Liu G. Amplification of an MFS transporter encoding gene penT significantly stimulates penicillin production and enhances the sensitivity of Penicillium chrysogenum to phenylacetic acid. J Genet Genomics. 2012;39:593–602.

    Article  CAS  PubMed  Google Scholar 

  95. Demain AL. Biosynthesis of β-lactam antibiotics. In: Demain AL, Solomon NA, editors. Antibiotics containing the β-lactam structure. Berlin: Springer; 1983. p. 189–228.

    Google Scholar 

  96. López-Nieto MJ, Ramos FR, Luengo JM, Martín JF. Characterization of the biosynthesis in vivo of α-aminoadipyl-cysteinylvaline in Penicillium chrysogenum. Appl Microbiol Biotechnol. 1985;22:343–51.

    Article  Google Scholar 

  97. Meister A, Anderson ME. Glutathione. Annu Rev Biochem. 1983;52:711–60.

    Article  CAS  PubMed  Google Scholar 

  98. del Carmen MR, Sánchez S. Transport of neutral amino acids and penicillin formation in Penicillium chrysogenum. J Gen Genet. 1990;254:417–26.

    Google Scholar 

  99. García-Estrada C, Vaca I, Lamas-Maceiras M, Martín JF. In vivo transport of the intermediates of the penicillin biosynthetic pathway in tailored strains of Penicillium chrysogenum. Appl Microbiol Biotechnol. 2007;76:169–82.

    Article  PubMed  CAS  Google Scholar 

  100. Ullán RV, Teijeira F, Guerra SM, Vaca I, Martín JF. Characterization of a novel peroxisome membrane protein essential for conversion of isopenicillin N into cephalosporin C. Biochem J. 2010;432:227–36.

    Article  PubMed  CAS  Google Scholar 

  101. Ullán RV, Teijeira F, Martín JF. Expression of the Acremonium chrysogenum cefT gene in Penicillum chrysogenum indicates that it encodes an hydrophilic beta-lactam transporter. Curr Genet. 2008;54:153–61.

    Article  PubMed  CAS  Google Scholar 

  102. Nijland JG, Kovalchuk A, van den Berg MA, Bovenberg RA, Driessen AJ. Expression of the transporter encoded by the cefT gene of Acremonium chrysogenum increases cephalosporin production in Penicillium chrysogenum. Fungal Genet Biol. 2008;45:1415–21.

    Article  CAS  PubMed  Google Scholar 

  103. Kirschbaum J. Penicillin G potassium. In: Florey K, editor. Analytical profiles of drugs substances, vol. 15. New York: Academic; 1986. p. 427–509.

    Chapter  Google Scholar 

  104. Hillenga DJ, Versantvoor HJ, Driessen AJ, Konings WN. Structural and functional properties of plasma membranes from the filamentous fungus Penicillium chrysogenum. Eur J Biochem. 1994;224:581–7.

    Article  CAS  PubMed  Google Scholar 

  105. van de Kamp M, Driessen AJ, Konings WN. Compartmentalization and transport in β-lactam antibiotic biosynthesis by filamentous fungi. Antonie Van Leeuwenhoek. 1999;75:41–78.

    Article  PubMed  Google Scholar 

  106. Andrade AC, Van Nistelrooy JG, Peery RB, Skatrud PL, De Waard MA. The role of ABC transporters from Aspergillus nidulans in protection against cytotoxic agents and in antibiotic production. Mol Gen Genet. 2000;263:966–97.

    Article  CAS  PubMed  Google Scholar 

  107. Roze LV, Chanda A, Linz JE. Compartmentalization and molecular traffic in secondary metabolism: a new understanding of established cellular processes. Fungal Genet Biol. 2010;48:35–48.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  108. Bartoszewska M, Kiel JA, Bovenberg RA, Veenhuis M, van der Klei IJ. Autophagy deficiency promotes beta-lactam production in Penicillium chrysogenum. Appl Environ Microbiol. 2011;77:1413–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Brakhage AA. Molecular regulation of β-lactam biosynthesis in filamentous fungi. Microbiol Mol Biol Rev. 1998;62:547–85.

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Martín JF, Casqueiro J, Kosalková K, Marcos AT, Gutiérrez S. Penicillin and cephalosporin biosynthesis: mechanism of carbon catabolite regulation of penicillin production. Antonie Van Leeuwenhoek. 1999;75:21–31.

    Article  PubMed  Google Scholar 

  111. Martín JF. Molecular control of expression of penicillin biosynthesis genes in fungi: regulatory proteins interact with a bidirectional promoter region. J Bacteriol. 2000;182:2355–62.

    Article  PubMed Central  PubMed  Google Scholar 

  112. Brakhage AA, Spröte P, Al-Abdallah Q, Gehrke A, Plattner H, Tüncher A. Regulation of penicillin biosynthesis in filamentous fungi. Adv Biochem Eng Biotechnol. 2004;88:45–90.

    CAS  PubMed  Google Scholar 

  113. Fierro F, García-Estrada C, Castillo NI, Rodríguez R, Velasco-Conde T, Martín JF. Transcriptional and bioinformatic analysis of the 56.8 Kb DNA region amplified in tandem repeats containing the penicillin gene cluster in Penicillium chrysogenum. Fungal Genet Biol. 2006;43:618–29.

    Article  CAS  PubMed  Google Scholar 

  114. van den Berg MA, Westerlaken I, Leeflang C, Kerkman R, Bovenberg RA. Functional characterization of the penicillin biosynthetic gene cluster of Penicillium chrysogenum Wisconsin 54-1255. Fungal Genet Biol. 2007;44:830–44.

    Article  PubMed  CAS  Google Scholar 

  115. Revilla G, Ramos FR, López-Nieto MJ, Álvarez E, Martín JF. Glucose represses formation of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine and isopenicillin N synthase but not penicillin acyltransferase in Penicillium chrysogenum. J Bacteriol. 1986;168:947–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Brakhage AA, Browne P, Turner G. Regulation of Aspergillus nidulans penicillin biosynthesis and penicillin biosynthesis genes acvA and ipnA by glucose. J Bacteriol. 1992;174: 3789–99.

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Espeso EA, Peñalva MA. Carbon catabolite repression can account for the temporal pattern of expression of a penicillin biosynthetic gene in Aspergillus nidulans. Mol Microbiol. 1992;6:1457–65.

    Article  CAS  PubMed  Google Scholar 

  118. Espeso EA, Tilburn J, Arst Jr HN, Peñalva MA. pH regulation is a major determinant in expression of a fungal penicillin biosynthetic gene. EMBO J. 1993;12:3947–56.

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, Peñalva MA, Arst Jr HN. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J. 1995;14:779–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Suárez T, Peñalva MA. Characterization of a Penicillium chrysogenum gene encoding a PacC transcription factor and its binding sites in the divergent pcbAB-pcbC promoter of the penicillin biosynthetic cluster. Mol Microbiol. 1996;20:529–40.

    Article  PubMed  Google Scholar 

  121. Orejas M, Espeso EA, Tilburn J, Sarkar S, Arst Jr HN, Peñalva MA. Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. Genes Dev. 1995;13:1622–32.

    Article  Google Scholar 

  122. Marzluf GA. Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev. 1997;61:17–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Haas H, Marzluf GA. NRE, the major nitrogen regulatory protein of Penicillium chrysogenum, binds specifically to elements in the intergenic promoter regions of nitrate assimilation and penicillin biosynthetic gene clusters. Curr Genet. 1995;28:177–83.

    Article  CAS  PubMed  Google Scholar 

  124. Kolar M, Holzmann K, Weber G, Leitner E, Schwab H. Molecular characterization and functional analysis in Aspergillus nidulans of the 5′-region of the Penicillium chrysogenum isopenicillin N synthetase gene. J Biotechnol. 1991;17:67–80.

    Article  CAS  PubMed  Google Scholar 

  125. Demain AL. Inhibition of penicillin formation by lysine. Arch Biochem Biophys. 1957;67:244–6.

    Article  CAS  PubMed  Google Scholar 

  126. Swartz RW. Penicillins. In: Blanch HW, Drew S, Wang DIC, editors. Comprehensive biotechnology. The principles, applications and regulations of biotechnology in industry, agriculture and medicine. The practice of biotechnology: Current commodity products, vol. 3. Oxford: Pergamon; 1985. p. 7–47.

    Google Scholar 

  127. Hilgendorf P, Heiser V, Diekmann H, Thoma M. Constant dissolved oxygen concentrations in cephalosporin C fermentation: applicability of different controllers and effect on fermentation parameters. Appl Microbiol Biotechnol. 1987;27:247–51.

    CAS  Google Scholar 

  128. Renno DV, Saunders G, Bull AT, Holt G. Transcript analysis of penicillin genes from Penicillium chrysogenum. Curr Genet. 1992;21:49–54.

    Article  CAS  PubMed  Google Scholar 

  129. Martín J, García-Estrada C, Rumbero A, Recio E, Albillos SM, Ullán RV, Martín JF. Characterization of an auto inducer of penicillin biosynthesis in Penicillium chrysogenum. Appl Environ Microbiol. 2011;77:5688–96.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  130. Martín J, García-Estrada C, Kosalková K, Ullán RV, Albillos SM, Martín JF. The inducers 1,3-diaminopropane and spermidine produce a drastic increase in the expression of the penicillin biosynthetic genes for prolonged time, mediated by the LaeA regulator. Fungal Genet Biol. 2012;49:1004–13.

    Article  PubMed  CAS  Google Scholar 

  131. García-Estrada C, Barreiro C, Jami MS, Martín-González J, Martín JF. The inducers 1,3-diaminopropane and spermidine cause the reprogramming of metabolism in Penicillium chrysogenum, leading to multiple vesicles and penicillin overproduction. J Proteomics. 2013;85C:129–59.

    Article  CAS  Google Scholar 

  132. Liggett RW, Koffler H. Corn steep liquor in microbiology. Bacteriol Rev. 1948;12:297–311.

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Cove DJ. The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta. 1966;113:51–6.

    Article  CAS  PubMed  Google Scholar 

  134. Peñalva MA, Espeso E, Orejas M, Gómez-Pardo E. Evolution and control of gene expression of the Aspergillus nidulans isopenicillin N synthetase gene. In: Kleinkauf H, von Döhren H, editors. Fifty years of penicillin application. Czech Republic: PUBLIC Ltd; 1991. p. 224–30.

    Google Scholar 

  135. Peñalva MA, Espeso E, Orejas M, Gómez-Pardo E. Penicillin production by Aspergillus nidulans: studies on the regulation of expression of the IPNS gene. In: Stahl U, Tudzinsky P, editors. Molecular biology of filamentous fungi. Weinheim: VCH Verlagsgesellschaft; 1991. p. 217–27.

    Google Scholar 

  136. Bok JW, Keller NP. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell. 2004;3:527–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Kosalková K, García-Estrada C, Ullán RV, Godio RP, Feltrer R, Teijeira F, Mauriz E, Martín JF. The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie. 2009;91:214–25.

    Article  PubMed  CAS  Google Scholar 

  138. Kato N, Brooks W, Calvo AM. The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. Eukaryot Cell. 2003;2:1178–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  139. Spröte P, Brakhage AA. The light-dependent regulator velvet A of Aspergillus nidulans acts as a repressor of the penicillin biosynthesis. Arch Microbiol. 2007;188:69–79.

    Article  PubMed  CAS  Google Scholar 

  140. Hoff B, Kamerewerd J, Sigl C, Mitterbauer R, Zadra I, Kürnsteiner H, Kück U. Two components of a velvet-like complex control hyphal morphogenesis, conidiophore development, and penicillin biosynthesis in Penicillium chrysogenum. Eukaryot Cell. 2010;9:1236–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Kopke K, Hoff B, Bloemendal S, Katschorowski A, Kamerewerd J, Kück U. Members of the Penicillium chrysogenum velvet complex play functionally opposing roles in the regulation of penicillin biosynthesis and conidiation. Eukaryot Cell. 2013;12:299–310.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Domínguez-Santos R, Martín JF, Kosalková K, Prieto C, Ullán RV, García-Estrada C. The regulatory factor PcRFX1 controls the expression of the three genes of β-lactam biosynthesis in Penicillium chrysogenum. Fungal Genet Biol. 2012;49:866–81.

    Article  PubMed  CAS  Google Scholar 

  143. Bergh KT, Litzka O, Brakhage AA. Identification of a major cis-acting DNA element controlling the bidirectionally transcribed penicillin biosynthesis genes acvA (pcbAB) and ipnA (pcbC) of Aspergillus nidulans. J Bacteriol. 1996;178:3908–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Litzka O, Then Bergh K, Brakhage AA. The Aspergillus nidulans penicillin-biosynthesis gene aat (penDE) is controlled by a CCAAT-containing DNA element. Eur J Biochem. 1996;238:675–82.

    Article  CAS  PubMed  Google Scholar 

  145. Caruso ML, Litzka O, Martic G, Lottspeich F, Brakhage AA. Novel basic-region helix-loop-helix transcription factor (AnBH1) of Aspergillus nidulans counteracts the CCAAT-binding complex AnCF in the promoter of a penicillin biosynthesis gene. J Mol Biol. 2002;323:425–39.

    Article  CAS  PubMed  Google Scholar 

  146. Kosalková K, Marcos AT, Fierro F, Hernando-Rico V, Gutiérrez S, Martín JF. A novel heptameric sequence (TTAGTAA) is the binding site for a protein required for high level expression of pcbAB, the first gene of the penicillin biosynthesis in Penicillium chrysogenum. J Biol Chem. 2000;275:2423–30.

    Article  PubMed  Google Scholar 

  147. García-Rico RO, Fierro F, Mauriz E, Gómez A, Fernández-Bodega MA, Martín JF. The heterotrimeric Galpha protein pga1 regulates biosynthesis of penicillin, chrysogenin and roquefortine in Penicillium chrysogenum. Microbiology. 2008;154:3567–78.

    Article  PubMed  CAS  Google Scholar 

  148. Fierro F, Barredo JL, Díez B, Gutiérrez S, Fernández FJ, Martín JF. The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc Natl Acad Sci U S A. 1995;92:6200–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. Newbert RW, Barton B, Greaves P, Harper J, Turner G. Analysis of a commercially improved Penicillium chrysogenum strain series: involvement of recombinogenic regions in amplification and deletion of the penicillin biosynthesis gene cluster. J Ind Microbiol Biotechnol. 1997;19:18–27.

    Article  CAS  PubMed  Google Scholar 

  150. Smith DJ, Bull JH, Edwards J, Turner G. Amplification of the isopenicillin N synthetase gene in a strain of Penicillium chrysogenum producing high levels of penicillin. Mol Gen Genet. 1989;216:492–7.

    Article  CAS  PubMed  Google Scholar 

  151. Nijland JG, Ebbendorf B, Woszczynska M, Boer R, Bovenberg RA, Driessen AJ. Nonlinear biosynthetic gene cluster dose effect on penicillin production by Penicillium chrysogenum. Appl Environ Microbiol. 2010;76:7109–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  152. Smidák R, Jopcík M, Kralovicová M, Gajdosíková J, Kormanec J, Timko J, Turna J. Core promoters of the penicillin biosynthesis genes and quantitative RT-PCR analysis of these genes in high and low production strain of Penicillium chrysogenum. Folia Microbiol (Praha). 2010;55:126–32.

    Article  CAS  Google Scholar 

  153. Fernández-Cañón JM, Peñalva MA. Overexpression of two penicillin structural genes in Aspergillus nidulans. Mol Gen Genet. 1995;246:110–18.

    Article  PubMed  Google Scholar 

  154. Mingot JM, Peñalva MA, Fernández-Cañón JM. Disruption of phacA, an Aspergillus nidulans gene encoding a novel cytochrome P450 monooxygenase catalyzing phenylacetate 2-hydroxylation, results in penicillin overproduction. J Biol Chem. 1999;274:14545–50.

    Article  CAS  PubMed  Google Scholar 

  155. Arias-Barrau E, Olivera ER, Luengo JM, Fernández C, Galán B, García JL, Díaz E, Miñambres B. The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida. J Bacteriol. 2004;186:5062–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  156. Ferrer-Sevillano F, Fernández-Cañón JM. Novel phacB-encoded cytochrome P450 monooxygenase from Aspergillus nidulans with 3-hydroxyphenylacetate 6-hydroxylase and 3,4-dihydroxyphenylacetate 6-hydroxylase activities. Eukaryot Cell. 2007;6:514–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  157. Rodríguez-Sáiz M, Barredo JL, Moreno MA, Fernández-Cañón JM, Peñalva MA, Díez B. Reduced function of a phenylacetate-oxidizing cytochrome P450 caused strong genetic improvement in early phylogeny of penicillin-producing strains. J Bacteriol. 2001;183:5465–71.

    Article  PubMed Central  PubMed  Google Scholar 

  158. Rodríguez-Sáiz M, Díez B, Barredo JL. Why did the Fleming strain fail in penicillin industry? Fungal Genet Biol. 2005;42:464–70.

    Article  PubMed  CAS  Google Scholar 

  159. Kiel JA, van der Klei IJ, van den Berg MA, Bovenberg RA, Veenhuis M. Overproduction of a single protein, Pc-Pex11p, results in 2-fold enhanced penicillin production by Penicillium chrysogenum. Fungal Genet Biol. 2005;42:154–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos García-Estrada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

García-Estrada, C., Martín, JF. (2014). Penicillins. In: Martín, JF., García-Estrada, C., Zeilinger, S. (eds) Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1191-2_2

Download citation

Publish with us

Policies and ethics