Skip to main content

Ergot Alkaloids

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Ergot alkaloids and their derivatives have been traditionally used as therapeutic agents; e.g., in migraine and blood pressure regulation. Their production in submerse culture is a long established biotechnological process. Ergot alkaloids are produced mainly by phytopathogenic species of the Clavicipitaceae, with C. purpurea as the best investigated species concerning the biochemistry of alkaloid biosynthesis and molecular genetics. In recent years, endophytic members of this family (e.g., the genus Epichloe) have also become the focus of interest, and detailed research on the early part of the biosynthetic pathway has been performed in the human opportunistic pathogen Aspergillus fumigatus. Taken together, the different methodical approaches in all these systems have generated a detailed understanding of the biosynthetic pathways leading to the different ergot alkaloids and of the structure and evolution of ergot alkaloid synthesis (EAS) clusters, while the regulatory mechanisms of biosynthesis are not yet fully unraveled. The methodical improvements and the increased understanding of the molecular mechanism of action in mammalian cells have opened possibilities for metabolic design approaches and generation of designer pharmaceuticals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    L. Neubauer, M. Niss, P. Tudzynski, unpublished data.

References

  1. Taber WA. Biology of Claviceps. In: Demain AL, Nadine AS, editors. Biology of industrial microorganisms (Biotechnology series), vol. 6. New York: The Benjamin Cummings Publishing Co Inc.; 1985. p. 449–86.

    Google Scholar 

  2. Bové FJ. The story of ergot. Basel: S. Karger; 1970.

    Google Scholar 

  3. Tudzynski P, Scheffer J. Claviceps purpurea: molecular aspects of a unique pathogenic lifestyle. Mol Plant Pathol. 2004;5:377–88.

    Article  CAS  PubMed  Google Scholar 

  4. Schürmann J, Tudzynski P. Claviceps: the ergot fungus. In: Russell R, Paterson M, editors. Molecular biology of food and water borne mycotoxigenic and mycotic fungi of humans. CRC Press; 2013 (in press).

    Google Scholar 

  5. Eadie MJ. Convulsive ergotism: epidemics of the serotonin syndrome? Lancet Neurol. 2003;2:429–34.

    Article  CAS  PubMed  Google Scholar 

  6. Tulasne LR. Memoire sur l’ergot des glumacees. Ann Sci Nat (Parie Botanique). 1853; 20:5–6.

    Google Scholar 

  7. Barger G. Ergot and ergotism. London: Gurney; 1931.

    Google Scholar 

  8. Urga K, Debella A, W’Medihn YNA, Bayu A, Zewdie W. Laboratory studies on the outbreak of gangrenous ergotism associated with consumption of contaminated barley in Arsi, Ethiopian. J Health Dev. 2002;16:317–23.

    Google Scholar 

  9. van Dongen PWJ, de Groot ANJA. History of ergto alkaloids from ergotism to ergometrine. Eur J Obstet Gynaecol Reprod Biol. 1995;60:109–16.

    Article  Google Scholar 

  10. Li XF, Fortney JA, Kotelchuck M, Glover LH. The postpartum period: the key to maternal mortality. Int J Gynaecol Obstet. 1996;54:1–10.

    Article  CAS  PubMed  Google Scholar 

  11. Gröger D, Floss HG. Biochemistry of ergot alkaloids—achievements and challenges. In: Cordell GA, editor. The alkaloids: chemistry and biology, vol. 50. London: Academic Press; 1998. p. 171–218.

    Google Scholar 

  12. Sinz A. Die Bedeutung der Mutterkorn-Alkaloide als Arzneistoffe. Pharm Unserer Zeit. 2008;4:306–9.

    Article  Google Scholar 

  13. Hofmann A. Historical view on ergot alkaloids. Pharmacology. 1978;16:1–11.

    Article  CAS  PubMed  Google Scholar 

  14. Krska R, Crews C. Significance, chemistry and determination of ergot alkaloids: a review. Food Addit Contam. 2008;25:722–31.

    Article  CAS  Google Scholar 

  15. Alderman SC, Coats DD, Crowe FJ, Butler MD. Occurrence and distribution of ergot and estimates of seed loss in Kentuckey bluegrass grown for seed in central Oregon. Plant Dis. 1998;82:89–93.

    Article  Google Scholar 

  16. Schardl CL, Panaccione DG, Tudzynski P. Ergot alkaloids—biology and molecular biology. Alkaloids Chem Biol. 2006;63:45–86.

    Article  CAS  PubMed  Google Scholar 

  17. Panaccione DG. Ergot alkaloids. In: Hofrichter M, editor. The Mycota X. Berlin: Springer; 2010. p. 195–214.

    Google Scholar 

  18. Wallwey C, Li SM. Ergot alkaloids: structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Nat Prod Rep. 2011;28:496–510.

    Article  CAS  PubMed  Google Scholar 

  19. Hulvová H, Galuszka P, Frébortová J, Frébort I. Parasitic fungus Claviceps as a source for biotechnological production of ergot alkaloids. Biotechnol Adv. 2013;31(1):79–89.

    Article  PubMed  Google Scholar 

  20. Berde B, Stürmer E. Introduction to the pharmacology of ergot alkaloids and related compounds. In: Berde B, Schild HO, editors. Ergot alkaloids and related compounds. Berlin: Springer; 1978. p. 1–28.

    Chapter  Google Scholar 

  21. Stadler PA, Giger R. Ergot alkaloids and their derivatives in medical chemistry and therapy. In: Krosgard-Larson P, Christensen CH, Kofod H, editors. Natural products and drug development. Copenhagen: Munksgaard; 1984. p. 463–85.

    Google Scholar 

  22. Burki HR, Asper H, Ruch W, Zuger PE. Bromocriptine, dihydroergotoxine, methysergide, D-LSD, CF 25-397, and 29-712: effects on the metabolism of the biogenic amines in the brain of the rat. Psychopharmacology (Berl). 1978;57:227–37.

    Article  CAS  Google Scholar 

  23. Vendrell M, Angulo E, Casadó V, Lluis C, Franco R, Albericio F, et al. Novel ergopeptides as dual ligands for adenosine and dopamine receptors. J Med Chem. 2007;50:3062–9.

    Article  CAS  PubMed  Google Scholar 

  24. Görnemann T, Jähnichen S, Schurad B, Latté KP, Horowski R, Tack J, et al. Pharmacological properties of a wide array of ergolines at functional alpha1-adrenoceptor subtypes. Naunyn Schmiedebergs Arch Pharmacol. 2008;376:321–30.

    Article  PubMed  Google Scholar 

  25. Villalon CM, de Vries P, Rabelo G, Centurion D, Sanchez-Lopez A, Saxena PR. Canine external carotid vasoconstriction to methysergide, ergotamine and dihydroergotamine: role of 5-HT1B/1D receptors and α2-adrenoceptors. Br J Pharmacol. 1999;126:585–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Willems EW, Trion M, de Vries P, Heiligers JOC, Villalon CM, Saxena PR. Pharmacological evidence that α1- and α2-adrenoceptors mediate vasoconstriction of carotid arteriovenous anastomoses in anaesthetized pigs. Br J Pharmacol. 1999;127:1263–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Tfelt-Hansen PC, Koehler PJ. History of the use of ergotamine and dihydroergotamine in migraine from 1906 and onward. Cephalalgia. 2008;28:877–86.

    Article  CAS  PubMed  Google Scholar 

  28. de Groot AN, van Dongen PW, Vree TB, Hekster YA, van Roosmalen J. Ergot alkaloids. Current status and review of clinical pharmacology and therapeutic use compared with other oxytocics in obstetrics and gyneacology. Drugs. 1998;56:523–35.

    Article  PubMed  Google Scholar 

  29. Wadworth AN, Crisp P. Co-dergocrine mesylate. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in age-related cognitive decline. Drugs Aging. 1992;2:153–73.

    Article  CAS  PubMed  Google Scholar 

  30. Crosignani PG. Current treatment issues in female hyperprolactinaemia. Eur J Obstet Gynaecol Reprod Biol. 2006;125:152–64.

    Article  CAS  Google Scholar 

  31. Barrett A, Morgan L, Raggatt PR, Hobbs JR. Bromocriptine in the treatment of advanced breast cancer. Clin Oncol. 1976;2(4):373–7.

    CAS  PubMed  Google Scholar 

  32. Thobois S. Proposed dose equivalence for rapid switch between dopamine receptor agonists in Parkinson’s disease: a review of the literature. Clin Ther. 2006;28:1–12.

    Article  CAS  PubMed  Google Scholar 

  33. Kellerman DJ, Forst A, Combs DL, Borland S, Kori S. Assessment of the consistency of absorption of dihydroergotamine following oral inhalation: pooled results from four clinical studies. J Aerosol Med Pulm Drug Deliv. 2013;26:1–10.

    Article  Google Scholar 

  34. Fantegrossi WE, Murnane AC, Reissig CJ. The behavioral pharmacology of hallucinogens. Biochem Pharmacol. 2008;75:17–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sigafoos J, Green VA, Edrisinha C, Lancioni GE. Flashback to the 1960s: LSD in the treatment of autism. Dev Neurorehabil. 2007;10:75–81.

    Article  PubMed  Google Scholar 

  36. Crider AM, Lu CK, Floss HG, Cassady JM, Clemens JA. Ergot alkaloids. Synthesis of nitrosourea derivatives of ergolines as potential anticancer agents. J Med Chem. 1979;22(1):32–5.

    Article  CAS  PubMed  Google Scholar 

  37. Mulac D, Humpf HU. Cytotoxicity and accumulation of ergot alkaloids in human primary cells. Toxicology. 2011;282(3):112–21.

    Article  CAS  PubMed  Google Scholar 

  38. Mulac D, Lepski S, Ebert F, Schwerdtle T, Humpf HU. Cytotoxicity and fluorescence visualization of ergot alkaloids in human cell lines. J Agric Food Chem. 2013;61(2):462–71.

    Article  CAS  PubMed  Google Scholar 

  39. Gebler JC, Poulter D. Purification and characterization of dimethylallyl tryptophan synthase from Claviceps purpurea. Arch Biochem Biophys. 1992;296:308–13.

    Article  CAS  PubMed  Google Scholar 

  40. Cheng LJ, Robbers JE, Floss HG. End-product regulation of ergot alkaloid formation in intact cells and protoplasts of Claviceps species, strain SD58. J Nat Prod. 1980;43:329–39.

    Article  CAS  Google Scholar 

  41. Tsai HF, Wang H, Gebler JC, Poulter CD, Schardl CL. The Claviceps purpurea gene encoding dimethylallyltryptophan synthase, the committed step for ergot alkaloid biosynthesis. Biochem Biophys Res Commun. 1995;216:119–25.

    Article  CAS  PubMed  Google Scholar 

  42. Keller U. Highly efficient mutagenesis of Claviceps purpurea by using protoplasts. Appl Environ Microbiol. 1983;46:580–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Tudzynski P, Hölter K, Correia T, Arntz C, Grammel N, Keller U. Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Mol Gen Genet. 1999;261:133–41.

    Article  CAS  PubMed  Google Scholar 

  44. Lorenz N, Wilson EV, Machado C, Schardl C, Tudzynski P. Comparison of ergot alkaloid biosynthesis gene clusters in Claviceps species indicate loss of late pathway steps in evolution of C. fusiformis. Appl Environ Microbiol. 2007;73:7185–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Schardl CL, Young CA, Hesse U, Amyotte SG, Andreeva K, Calie PJ, et al. Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet. 2013;9(2):e1003323.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Lorenz N, Olsovska J, Sulc M, Tudzynski P. The alkaloid cluster gene ccsA of the ergot fungus Claviceps purpurea encodes the chanoclavine-I-synthase, an FAD-containing oxidoreductase mediating the transformation of N-methyl-dimethyltryptophan to chanoclavine I. Appl Environ Microbiol. 2010;76:1822–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Haarmann T, Ortel I, Tudzynski P, Keller U. Identification of the cytochrome P450 monooxygenase that bridges the clavine and ergoline alkaloid pathways. Chembiochem. 2006;7:645–52.

    Article  CAS  PubMed  Google Scholar 

  48. Cheng JZ, Coyle CM, Panaccione DG, O’Connor SE. A role for old yellow enzyme in ergot alkaloid biosynthesis. J Am Chem Soc. 2010;132:1776–7.

    Article  CAS  PubMed  Google Scholar 

  49. Goetz KE, Coyle CM, Cheng JZ, O’Connor SE, Panaccione DG. Ergot cluster-encoded catalase is required for synthesis of chanoclavine-I in Aspergillus fumigatus. Curr Genet. 2011;57:201–11.

    Article  CAS  PubMed  Google Scholar 

  50. Wallwey C, Matuschek M, Li SM. Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I to chanoclavine-I aldehyde catalyzed by a short-chain alcohol dehydrogenase FgaDH. Arch Microbiol. 2010;192:127–34.

    Article  CAS  PubMed  Google Scholar 

  51. Rigbers O, Li SM. Ergot alkaloid biosynthesis in Aspergillus fumigatus. Overproduction and biochemical characterization of A4-dimethylallyltryptophan N-methyltransferase. J Biol Chem. 2008;283:26859–68.

    Article  CAS  PubMed  Google Scholar 

  52. Matuschek M, Wallwey C, Xie X, Li SM. New insights into ergot alkaloid biosynthesis in Claviceps purpurea: an agroclavine synthase EasG catalyses, via a non-enzymatic adduct with reduced glutathione, the conversion of chanoclavine-I aldehyde to agroclavine. Org Biomol Chem. 2011;9:4328–35.

    Article  CAS  PubMed  Google Scholar 

  53. Correia T, Grammel N, Ortel I, Tudzynski P, Keller U. Molecular cloning and analysis of the ergopeptine assembly system in the ergot fungus Claviceps purpurea. Chem Biol. 2003;10:1281–92.

    Article  CAS  PubMed  Google Scholar 

  54. Ortel I, Keller U. Combinatorial assembly of simple and complex D-lysergic acid alkaloid peptide classes in the ergot fungus Claviceps purpurea. J Biol Chem. 2009;284(11):6650–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Riederer B, Han M, Keller U. D-lysergyl peptide synthetase from the ergot fungus Claviceps purpurea. J Biol Chem. 1996;271:27524–30.

    Article  CAS  PubMed  Google Scholar 

  56. Haarmann T, Lorenz N, Tudzynski P. Use of a nonhomologous end joining deficient strain (∆ku70) of the ergot fungus Claviceps purpurea for identification of the nonribosomal peptide synthetase gene involved in ergotamine biosynthesis. Fungal Genet Biol. 2008;45:35–44. 21.

    Article  CAS  PubMed  Google Scholar 

  57. Ryan KL, Moore CT, Panaccione DG. Partial reconstruction of the ergot alkaloid pathway by heterologous gene expression in Aspergillus nidulans. Toxins (Basel). 2013;5(2):445–55.

    Article  CAS  Google Scholar 

  58. Haarmann T, Machado C, Lübbe Y, Correia T, Schardl CL, Panaccione DG, et al. The ergot alkaloid gene cluster in Claviceps purpurea: extension of the cluster sequence and intra species evolution. Phytochemistry. 2005;66:1312–20.

    Article  CAS  PubMed  Google Scholar 

  59. Lorenz N, Haarmann T, Pazoutová S, Jung M, Tudzynski P. The ergot alkaloid gene cluster: functional analyses and evolutionary aspects. Phytochemistry. 2009;70(15–16):1822–32.

    Article  CAS  PubMed  Google Scholar 

  60. Schürmann J, Buttermann D, Herrmann A, Giesbert S, Tudzynski P. Molecular characterization of the NADPH oxidase complex in the ergot fungus Claviceps purpurea: CpNox2 and CpPls1 are important for a balanced host-pathogen interaction. Mol Plant Microbe Interact. 2013;26:1151–64. Jun 18 [Epub ahead of print].

    Google Scholar 

  61. Coyle CM, Kenaley SC, Rittenour WR, Panaccione DG. Association of ergot alkaloids with conidiation in Aspergillus fumigatus. Mycologia. 2007;99(6):804–11.

    Article  CAS  PubMed  Google Scholar 

  62. Twumasi-Boateng K, Yu Y, Chen D, Gravelat FN, Nierman WC, Sheppard DC. Transcriptional profiling identifies a role for BrlA in the response to nitrogen depletion and for StuA in the regulation of secondary metabolite clusters in Aspergillus fumigatus. Eukaryot Cell. 2009;8(1):104–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Mielke H. Untersuchungen zur Bekämpfung des Mutterkorns. Nachrichtenbl Deut Pflanzenschutzd. 1993;5/6:97–102.

    Google Scholar 

  64. Mielke H. Studien über den Pilz Claviceps purpurea (Fries) Tulasne unter Berücksichtigung der Anfälligkeit verschiedener Roggensorten und der Bekämpfungsmöglichkeiten des Erregers. Mitt Biol Bundesanst Land-Forstwirtsch, vol. 375. Berlin: Parey Buchverlag; 2000.

    Google Scholar 

  65. Appelt M, Ellner FM. Ergot alkaloids—relevance and first own results of incidences in 2007. ALVA Mitteilungen. 2008;6:27–30.

    Google Scholar 

  66. Mirdita V, Dhillon BS, Geiger HH, Miedaner T. Genetic variation for resistance to ergot (Claviceps purpurea [Fr.] Tul.) among full-sib families of five populations of winter rye (Secale cereale L.). Theor Appl Genet. 2008;118:85–90.

    Article  CAS  PubMed  Google Scholar 

  67. Betz HG, Müller R, Wilde P, Wortmann H. Mutterkorn vermeiden. Auswertungs- und Informationsdienst für Ernährung, Landwirtschaft und Forsten. 1998;1361:3–16.

    Google Scholar 

  68. Lindhauer M, Münzing K, Seling S, Betsche T, Kersting HJ, Masloff S, et al. Hochwertiges Getreide durch kontinuierliche Qualitätserhebungen. Federal Research Centre for Nutrition and Food. Detmold: Forschungsreport 2; 2005.

    Google Scholar 

  69. Schwarz PB, Neate SM, Rottinghaus GE. Widespread occurrence of ergot in upper midwestern U.S. barley, 2005. Plant Dis. 2006;90:527.

    Article  Google Scholar 

  70. Cross DL. Ergot alkaloid toxicity. In: White Jr JF, Bacon CW, Hywel-Jones NL, Spatafora JW, editors. Mycology, clavicipitacean fungi: evolutionary biology, chemistry, biocontrol and cultural impacts, vol. 19. New York: Marcel Dekker Inc.; 2003. p. 475–94.

    Google Scholar 

  71. Zhang HW, Song YC, Tan RX. Biology and chemistry of endophytes. Nat Prod Rep. 2006;23:753–71.

    Article  CAS  PubMed  Google Scholar 

  72. Schardl CL, Scott B, Florea S, Zhang D. Epichloë endophytes: clavicipitaceous symbionts of grasses. In: Deising H, editor. The mykota V: plant relationships. 2nd ed. Berlin: Springer; 2009. p. 275–306.

    Google Scholar 

  73. Schardl CL, Phillips TD. Protective grass endophytes where are they from and where are they going? Plant Dis. 1997;81:430–8.

    Article  Google Scholar 

  74. Hoveland C. Importance and economic significance of the Acremonium endophytes to performance of animals and grass plants. Agric Ecosyst Environ. 1993;44:3–12.

    Article  Google Scholar 

  75. Strickland JR, Looper ML, Matthews JC, Rosenkrans Jr CF, Flythe MD, Brown KR. St. Anthony’s fire in livestock: causes, mechanisms, and potential solutions. J Anim Sci. 2011;89(5):1603–26.

    Article  CAS  PubMed  Google Scholar 

  76. Schmid SP, Osborne TG. Effects of endophyte-infected tall fescue on animal performance. Agric Ecosyst Environ. 1993;44:233–62.

    Article  Google Scholar 

  77. Porter JK, Thompson FNJ. Effects of fescue toxicosis on reproduction in livestock. J Anim Sci. 1992;70:1594–603.

    CAS  PubMed  Google Scholar 

  78. Thomson FN, Stuedemann JA. Pathophysiology of fescue toxicosis. Agric Ecosyst Environ. 1993;44:263–81.

    Article  Google Scholar 

  79. Hill NS, Thompson FN, Stuedemann JA, Rottinghaus GW, Ju HJ, Dawe DL, et al. Ergot alkaloid transport across ruminant gastric tissues. J Anim Sci. 2001;79:542–9.

    CAS  PubMed  Google Scholar 

  80. Cvak L. Industrial production of ergot alkaloids. In: Kren V, Cvak L, editors. Ergot, the genus Claviceps, vol. 6. Amsterdam: Harwood Academic Publishers; 1999. p. 373–409.

    Google Scholar 

  81. Schiff PL. Ergot and its alkaloids. Am J Pharm Educ. 2006;70:98–107.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Keller U, Tudzynski P. Ergot alkaloids. In: Osiewacz HD, editor. The mycota X, industrial applications. Berlin: Springer; 2002. p. 157–72.

    Chapter  Google Scholar 

  83. Tudzynski P, Correia T, Keller U. Biotechnology and genetics of ergot alkaloids. Appl Microbiol Biotechnol. 2001;57:593–605.

    Article  CAS  PubMed  Google Scholar 

  84. Spalla C. Genetic problems of production of ergot alkaloids in saprophytic and parasitic conditions. In: Vaněk Z, Řeháček Z, Cudlin J, editors. Genetics of industrial microorganisms. Amsterdam: Elsevier; 1973. p. 393–403.

    Google Scholar 

  85. Malinka Z. Saprophytic cultivation of Claviceps. In: Křen V, Cvak L, editors. Ergot: the genus Claviceps. Amsterdam: Harwood Academic Publishers; 1999. p. 321–71.

    Google Scholar 

  86. Kren V, Pazoutová S, Rylko V, Sajdl P, Wurst M, Rehácek Z. Extracellular metabolism of sucrose in a submerged culture of Claviceps purpurea: formation of monosaccharides and clavine alkaloids. Appl Environ Microbiol. 1984;48(4):826–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Amici AM, Minghetti A, Scotti T, Spalla C, Tognoli L. Ergotamine production in submerged culture and physiology of Claviceps purpurea. Appl Microbiol. 1967;15(3):597–602.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Sočič H, Gaberc-Porekar V. Biosynthesis and physiology of ergot alkaloids. In: Arora DK, Elander RP, Mukerji KG, editors. Handbook of applied mycology: fungal biotechnology. New York: Dekker; 1992. p. 475–515.

    Google Scholar 

Download references

Acknowledgment

We thank M. Niss for sharing of data prior to publication, and the Deutsche Forschungsgemeinschaft (DFG) for financial support (Tu 50/18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Tudzynski .

Editor information

Editors and Affiliations

Additional information

This chapter is dedicated to Karl Esser on the occasion of his 90th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tudzynski, P., Neubauer, L. (2014). Ergot Alkaloids. In: Martín, JF., García-Estrada, C., Zeilinger, S. (eds) Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1191-2_14

Download citation

Publish with us

Policies and ethics