Skip to main content

Meroterpenoids

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The fungal meroterpenoids comprise structurally diverse compounds with a wide range of biological activities, and the elucidation of their biosynthetic pathways is important for future drug discovery. Recent advances in genome sequencing have revealed many biosynthetic gene clusters for fungal meroterpenoids, thus providing clearer insights into the enzymes that construct these structurally complex molecules and the genetic bases for the production of these diversified compounds in nature. The roles of these biosynthetic genes have been studied by several approaches, including gene disruption and heterologous expression experiments. Here we present recent examples of the discoveries of the biosynthetic clusters for several meroterpenoids and the functional characterizations of their genes, including the biosynthetic genes for pyripyropene A, meroterpenoids derived from 3,5-dimethylorsellinic acid, and indole-diterpenes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Geris R, Simpson T. Meroterpenoids produced by fungi. Nat Prod Rep. 2009;26(8):1063–94.

    Article  CAS  PubMed  Google Scholar 

  2. Tomoda H, Nishida H, Kim YK, Obata R, Sunazuka T, Omura S, et al. Relative and absolute stereochemistry of pyripyropene A, a potent, bioavailable inhibitor of acyl-CoA:Cholesterol acyltransferase (ACAT). J Am Chem Soc. 1994;116:12097–8.

    Article  CAS  Google Scholar 

  3. Kuno F, Otoguro K, Shiomi K, Iwai Y, Omura S. Arisugacins A and B, novel and selective acetylcholinesterase inhibitors from penicillium sp. FO-4259. J Antibiot. 1996;49(8):742–51.

    Article  CAS  PubMed  Google Scholar 

  4. Parini P, Davis M, Lada A, Erickson S, Wright T, Gustafsson U, et al. ACAT2 is localized to hepatocytes and is the major cholesterol-esterifying enzyme in human liver. Circulation. 2004;110(14):2017–23.

    Article  CAS  PubMed  Google Scholar 

  5. Tomoda H, Tabata N, Nakata Y, Nishida H, Kaneko T, Obata R, et al. Biosynthesis of pyripyropene A. J Org Chem. 1996;61:882–6.

    Article  CAS  Google Scholar 

  6. Itoh T, Tokunaga K, Matsuda Y, Fujii I, Abe I, Ebizuka Y, et al. Reconstitution of a fungal meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases. Nat Chem. 2010;2(10):858–64.

    Article  CAS  PubMed  Google Scholar 

  7. Xu Z, Baunach M, Ding L, Hertweck C. Bacterial synthesis of diverse indole terpene alkaloids by an unparalleled cyclization sequence. Angew Chem Int Ed. 2012;51(41):10293–7.

    Article  CAS  Google Scholar 

  8. Hu J, Okawa H, Yamamoto K, Oyama K, Mitomi M, Anzai H. Characterization of two cytochrome P450 monooxygenase genes of the pyripyropene biosynthetic gene cluster from penicillium coprobium. J Antibiot. 2011;64(3):221–7.

    Article  CAS  PubMed  Google Scholar 

  9. Simpson TJ, Stenzel DJ, Bartlett AJ, Obrien E, Holker JSE. Studies on fungal metabolites part 3. 13C NMR spectral and structural studies on austin and new related meroterpenoids from Aspergillus ustus, Aspergillus variecolor, and Penicillium diversum. J Chem Soc Perkin Trans 1. 1982(11):2687–92.

    Google Scholar 

  10. Springer JP, Dorner JW, Cole RJ, Cox RH. Terretonin, a toxic compound from Aspergillus terreus. J Org Chem. 1979;44(29):4852–4.

    Article  CAS  Google Scholar 

  11. Omura S, Inokoshi J, Uchida R, Shiomi K, Masuma R, Kawakubo T, et al. Andrastins A similar to C, new protein farnesyltransferase inhibitors produced by penicillium sp. FO-3929. J Antibiot (Tokyo). 1996;49(5):414–24.

    Article  CAS  Google Scholar 

  12. Simpson TJ, Walkinshaw MD. Anditomin, a new C-25 metabolite from Aspergillus variecolor. J Chem Soc Chem Commun. 1981;1981(17):914–5.

    Article  Google Scholar 

  13. Ahmed SA, Scott FE, Stenzel DJ, Simpson TJ, Moore RN, Trimble LA, et al. Studies on the biosynthesis of the mycotoxin austin, a meroterpenoid metabolite of Aspergillus ustus. J Chem Soc Perkin Trans 1. 1989(4):807–16.

    Google Scholar 

  14. McIntyre CR, Simpson TJ, Stenzel DJ, Bartlett AJ, Q’Brien E, Holker JSE. Biosynthesis of the meroterpenoid metabolites, austin and terretonin: incorporation of 3,5-dimethylorsellinate. J Chem Soc Chem Commun. 1982;(14):781–2.

    Google Scholar 

  15. Shiomi K, Tomoda H, Otoguro K, Omura S. Meroterpenoids with various biological activities produced by fungi. Pure Appl Chem. 1999;71:1059–64.

    Article  CAS  Google Scholar 

  16. Simpson TJ. Biosynthesis of highly modified meroterpenoids in Aspergillus variecolor. Incorporation of 13C-labelled acetates and methionine into anditomin and andilesin C. Tetrahedron Lett. 1981;22(38):3785–8.

    Article  CAS  Google Scholar 

  17. Nielsen M, Nielsen J, Rank C, Klejnstrup M, Holm D, Brogaard K, et al. A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans. FEMS Microbiol Lett. 2011;321(2):157–66.

    Article  CAS  PubMed  Google Scholar 

  18. Lo H-C, Entwistle R, Guo C-J, Ahuja M, Szewczyk E, Hung J-H, et al. Two separate gene clusters encode the biosynthetic pathway for the meroterpenoids austinol and dehydroaustinol in Aspergillus nidulans. J Am Chem Soc. 2012;134(10):4709–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Matsuda Y, Awakawa T, Itoh T, Wakimoto T, Kushiro T, Fujii I, et al. Terretonin biosynthesis requires methylation as essential step for cyclization. Chembiochem. 2012;13(12):1738–41.

    Article  CAS  PubMed  Google Scholar 

  20. Itoh T, Tokunaga K, Radhakrishnan E, Fujii I, Abe I, Ebizuka Y, et al. Identification of a key prenyltransferase involved in biosynthesis of the most abundant fungal meroterpenoids derived from 3,5-dimethylorsellinic acid. Chembiochem. 2012;13(8):1132–5.

    Article  CAS  PubMed  Google Scholar 

  21. Guo C-J, Knox B, Chiang Y-M, Lo H-C, Sanchez J, Lee K-H, et al. Molecular genetic characterization of a cluster in A. terreus for biosynthesis of the meroterpenoid terretonin. Org Lett. 2012;14(22):5684–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. McDonough M, Kavanagh K, Butler D, Searls T, Oppermann U, Schofield C. Structure of human phytanoyl-CoA 2-hydroxylase identifies molecular mechanisms of refsum disease. J Biol Chem. 2005;280(49):41101–10.

    Article  CAS  PubMed  Google Scholar 

  23. Saikia S, Nicholson M, Young C, Parker E, Scott B. The genetic basis for indole-diterpene chemical diversity in filamentous fungi. Mycol Res. 2008;112(Pt 2):184–99.

    Article  CAS  PubMed  Google Scholar 

  24. Young C, McMillan L, Telfer E, Scott B. Molecular cloning and genetic analysis of an indole-diterpene gene cluster from Penicillium paxilli. Mol Microbiol. 2001;39(3):754–64.

    Article  CAS  PubMed  Google Scholar 

  25. Saikia S, Parker E, Koulman A, Scott B. Four gene products are required for the fungal synthesis of the indole-diterpene, paspaline. FEBS Lett. 2006;580(6):1625–30.

    Article  CAS  PubMed  Google Scholar 

  26. Tagami K, Liu C, Minami A, Noike M, Isaka T, Fueki S, et al. Reconstitution of biosynthetic machinery for indole-diterpene paxilline in Aspergillus oryzae. J Am Chem Soc. 2013;135(4): 1260–3.

    Article  CAS  PubMed  Google Scholar 

  27. Saikia S, Parker E, Koulman A, Scott B. Defining paxilline biosynthesis in Penicillium paxilli: functional characterization of two cytochrome P450 monooxygenases. J Biol Chem. 2007;282(23):16829–37.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang S, Monahan B, Tkacz J, Scott B. Indole-diterpene gene cluster from Aspergillus flavus. Appl Environ Microbiol. 2004;70(11):6875–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Motoyama T, Hayashi T, Hirota H, Ueki M, Osada H. Terpendole E, a kinesin eg5 inhibitor, is a key biosynthetic intermediate of indole-diterpenes in the producing fungus Chaunopycnis alba. Chem Biol. 2012;19(12):1611–9.

    Article  CAS  PubMed  Google Scholar 

  30. Young C, Felitti S, Shields K, Spangenberg G, Johnson R, Bryan G, et al. A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Neotyphodium lolii. Fungal Genet Biol. 2006;43(10):679–93.

    Article  CAS  PubMed  Google Scholar 

  31. Nicholson M, Koulman A, Monahan B, Pritchard B, Payne G, Scott B. Identification of two aflatrem biosynthesis gene loci in Aspergillus flavus and metabolic engineering of Penicillium paxilli to elucidate their function. Appl Environ Microbiol. 2009;75(23):7469–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Saikia S, Takemoto D, Tapper B, Lane G, Fraser K, Scott B. Functional analysis of an indole-diterpene gene cluster for lolitrem B biosynthesis in the grass endosymbiont Epichloë festucae. FEBS Lett. 2012;586(16):2563–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikuro Abe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Matsuda, Y., Abe, I. (2014). Meroterpenoids. In: Martín, JF., García-Estrada, C., Zeilinger, S. (eds) Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1191-2_13

Download citation

Publish with us

Policies and ethics