Skip to main content

Lovastatin, Compactin, and Related Anticholesterolemic Agents

  • Chapter
  • First Online:
Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Lovastatin and compactin are two fungal polyketide secondary metabolites isolated from Aspergillus terreus and Penicillium citrinum respectively. They are potent inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA reductase, a key enzyme involved in the regulation of cholesterol biosynthesis, and have spawned a revolution in cholesterol-lowering medications. The biosynthetic pathways of lovastatin and compactin have been studied in great detail, and there are a number of remarkable features. The main 18-carbon skeleton is prepared by an iterative highly reducing polyketide synthase (PKS) that requires an endogenous enoyl reductase (ER) for activity. The PKS and ER work in concert with a high level of selectivity to ensure correct product formation. The bicyclic skeleton is furnished by an enzyme-catalyzed Diels-Alder reaction to provide an unfavored stereoisomer. Further processing by an oxidase and transesterification with a second PKS product furnishes these substrates. Knowledge of the enzymes involved in this biosynthetic pathway has allowed for metabolic engineering processes that improve culture production and allow for the in vivo production of unnatural metabolites with greater pharmaceutical value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics-2013 update: a report from the American Heart Association. Circulation. 2013;127(1):E6–245.

    Article  PubMed  Google Scholar 

  2. Endo A, Kuroda M, Tsujita Y. ML-236a, ML-236b, and ML-236c, new inhibitors of cholesterogenesis produced by Penicillium citrinum. J Antibiot (Tokyo). 1976;29(12): 1346–8.

    Article  CAS  Google Scholar 

  3. Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, et al. Mevinolin—a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme-A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci U S A. 1980;77(7):3957–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Endo A. Monacolin K, a new hypocholesterolemic agent produced by a Monascus species. J Antibiot (Tokyo). 1979;32(8):852–4.

    Article  CAS  Google Scholar 

  5. Brown AG, Smale TC, King TJ, Hasenkamp R, Thompson RH. Crystal and molecular structure of compactin, a new antifungal metabolite from Penicillium brevicompactum. J Chem Soc Perkin 1. 1976(11):1165–73.

    Google Scholar 

  6. Endo A. The discovery and development of HMG-CoA reductase inhibitors. J Lipid Res. 1992;33(11):1569–82.

    CAS  PubMed  Google Scholar 

  7. Endo A, Hasumi K. HMG-CoA reductase inhibitors. Nat Prod Rep. 1993;10(6):541–50.

    Article  CAS  PubMed  Google Scholar 

  8. Kita T, Brown MS, Goldstein JL. Feedback regulation of 3-hydroxy-3-methyglutaryl coenzyme A reductase in livers of mice treated with mevinolin, a competitive inhibitor of the reductase. J Clin Invest. 1980;66(5):1094–100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990;343(6257): 425–30.

    Article  CAS  PubMed  Google Scholar 

  10. Campbell CD, Vederas JC. Biosynthesis of lovastatin and related metabolites formed by fungal iterative PKS enzymes. Biopolymers. 2010;93(9):755–63.

    Article  CAS  PubMed  Google Scholar 

  11. Hutchinson CR, Kennedy J, Park C, Auclair K, Kendrew S, Vederas J. Molecular genetics of lovastatin and compactin biosynthesis. Handbook of industrial mycology. New York: Marcel Dekker; 2005. p. 479–91.

    Google Scholar 

  12. Hutchinson CR, Kennedy J, Park C, Kendrew S, Auclair K, Vederas J. Aspects of the biosynthesis of non-aromatic fungal polyketides by iterative polyketide synthases. Antonie Van Leeuwenhoek. 2000;78(3–4):287–95.

    Article  CAS  PubMed  Google Scholar 

  13. Moore RN, Bigam G, Chan JK, Hogg AM, Nakashima TT, Vederas JC. Biosynthesis of the hypocholesterolemic agent mevinolin by Aspergillus terreus—determination of the origin of carbon, hydrogen, and oxygen atoms by C13-NMR and mass spectrometry. J Am Chem Soc. 1985;107(12):3694–701.

    Article  CAS  Google Scholar 

  14. Wagschal K, Yoshizawa Y, Witter DJ, Liu YQ, Vederas JC. Biosynthesis of ML-236C and the hypocholesterolemic agents compactin by Penicillium aurantiogriseum and lovastatin by Aspergillus terreus: determination of the origin of carbon, hydrogen and oxygen atoms by C13-NMR spectrometry and observation of unusual labelling of acetate-derived oxygens by 18O2. J Chem Soc Perkin 1. 1996(19):2357–63.

    Google Scholar 

  15. Yoshizawa Y, Witter DJ, Liu YQ, Vederas JC. Revision of the biosynthetic origin of oxygens in mevinolin (lovastatin), a hypocholesterolemic drug from Aspergillus terreus MF-4845. J Am Chem Soc. 1994;116(6):2693–4.

    Article  CAS  Google Scholar 

  16. Chan JK, Moore RN, Nakashima TT, Vederas JC. Biosynthesis of mevinolin—spectral assignment by double-quantum coherence NMR after high C-13 incorporation. J Am Chem Soc. 1983;105(10):3334–6.

    Article  CAS  Google Scholar 

  17. Endo A, Negishi Y, Iwashita T, Mizukawa K, Hirama M. Biosynthesis of ML-236b (compactin) and monacolin K. J Antibiot (Tokyo). 1985;38(3):444–8.

    Article  CAS  Google Scholar 

  18. Greenspan MD, Yudkovitz JB. Mevinolinic acid biosynthesis by Aspergillus terreus and its relationship to fatty-acid biosynthesis. J Bacteriol. 1985;162(2):704–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Treiber LR, Reamer RA, Rooney CS, Ramjit HG. Origin of monacolin L from Aspergillus terreus cultures. J Antibiot (Tokyo). 1989;42(1):30–6.

    Article  CAS  Google Scholar 

  20. Tamm C. The biosynthesis of mycotoxins. New York: Academic Press; 1980.

    Google Scholar 

  21. Oikawa H, Yokota T, Abe T, Ichihara A, Sakamura S, Yoshizawa Y, et al. Biosynthesis of solanapyrone A, a phytotoxin of Alternaria solani. J Chem Soc Chem Commun. 1989;17:1282–4.

    Article  Google Scholar 

  22. Kelly WL. Intramolecular cyclizations of polyketide biosynthesis: mining for a “Diels-Alderase”? Org Biomol Chem. 2008;6(24):4483–93.

    Article  CAS  PubMed  Google Scholar 

  23. Kim HJ, Ruszczycky MW, Liu HW. Current developments and challenges in the search for a naturally selected Diels-Alderase. Curr Opin Chem Biol. 2012;16(1–2):124–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Oikawa H, Tokiwano T. Enzymatic catalysis of the Diels-Alder reaction in the biosynthesis of natural products. Nat Prod Rep. 2004;21(3):321–52.

    Article  CAS  PubMed  Google Scholar 

  25. Stocking EM, Williams RM. Chemistry and biology of biosynthetic Diels-Alder reactions. Angew Chem Int Ed Engl. 2003;42(27):3078–115.

    Article  CAS  PubMed  Google Scholar 

  26. Witter DJ, Vederas JC. Putative Diels-Alder-catalyzed cyclization during the biosynthesis of lovastatin. J Org Chem. 1996;61(8):2613–23.

    Article  CAS  PubMed  Google Scholar 

  27. Auclair K, Sutherland A, Kennedy J, Witter DJ, Van den Heever JP, Hutchinson CR, et al. Lovastatin nonaketide synthase catalyzes an intramolecular Diels-Alder reaction of a substrate analogue. J Am Chem Soc. 2000;122(46):11519–20.

    Article  CAS  Google Scholar 

  28. Katayama K, Kobayashi T, Oikawa H, Honma M, Ichihara A. Enzymatic activity and partial purification of solanapyrone synthase: first enzyme catalyzing Diels-Alder reaction. Biochim Biophys Acta. 1998;1384(2):387–95.

    Article  CAS  PubMed  Google Scholar 

  29. Oikawa H, Kobayashi T, Katayama K, Suzuki Y, Ichihara A. Total synthesis of (−)-solanapyrone A via enzymatic Diels-Alder reaction of prosolanapyrone. J Org Chem. 1998;63(24):8748–56.

    Article  CAS  Google Scholar 

  30. Cane DE, Walsh CT, Khosla C. Harnessing the biosynthetic code: combinations, permutations, and mutations. Science. 1998;282(5386):63–8.

    Article  CAS  PubMed  Google Scholar 

  31. Hendrickson L, Davis CR, Roach C, Nguyen DK, Aldrich T, McAda PC, et al. Lovastatin biosynthesis in Aspergillus terreus: characterization of blocked mutants, enzyme activities and a multifunctional polyketide synthase gene. Chem Biol. 1999;6(7):429–39.

    Article  CAS  PubMed  Google Scholar 

  32. Kennedy J, Auclair K, Kendrew SG, Park C, Vederas JC, Hutchinson CR. Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science. 1999;284(5418):1368–72.

    Article  CAS  PubMed  Google Scholar 

  33. Hopwood DA. Molecular genetics of polyketides and its comparison to fatty-acid biosynthesis. Annu Rev Genet. 1990;24:37–66.

    Article  CAS  PubMed  Google Scholar 

  34. Burr DA, Chen XB, Vederas JC. Syntheses of conjugated pyrones for the enzymatic assay of lovastatin nonaketide synthase, an iterative polyketide synthase. Org Lett. 2007;9(1):161–4.

    Article  CAS  PubMed  Google Scholar 

  35. Guenzi E, Galli G, Grgurina I, Gross DC, Grandi G. Characterization of the syringomycin synthetase gene cluster—a link between prokaryotic and eukaryotic peptide synthetases. J Biol Chem. 1998;273(49):32857–63.

    Article  CAS  PubMed  Google Scholar 

  36. Rangaswamy V, Jiralerspong S, Parry R, Bender CL. Biosynthesis of the Pseudomonas polyketide coronafacic acid requires monofunctional and multifunctional polyketide synthase proteins. Proc Natl Acad Sci U S A. 1998;95(26):15469–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Sorensen JL, Vederas JC. Monacolin N, a compound resulting from derailment of type I iterative polyketide synthase function en route to lovastatin. Chem Commun. 2003;13: 1492–3.

    Article  Google Scholar 

  38. Ma SM, Li JWH, Choi JW, Zhou H, Lee KKM, Moorthie VA, et al. Complete reconstitution of a highly reducing iterative polyketide synthase. Science. 2009;326(5952):589–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Kim YT, Lee YR, Jin JM, Han KH, Kim H, Kim JC, et al. Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Mol Microbiol. 2005;58(4):1102–13.

    Article  CAS  PubMed  Google Scholar 

  40. Ames BD, Nguyen C, Bruegger J, Smith P, Xu W, Ma S, et al. Crystal structure and biochemical studies of the trans-acting polyketide enoyl reductase LovC from lovastatin biosynthesis. Proc Natl Acad Sci U S A. 2012;109(28):11144–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kimura K, Komagata D, Murakawa S, Endo A. Biosynthesis of monacolins—conversion of monacolin J to monacolin K (mevinolin). J Antibiot (Tokyo). 1990;43(12):1621–2.

    Article  CAS  Google Scholar 

  42. Auclair K, Kennedy J, Hutchinson CR, Vederas JC. Conversion of cyclic nonaketides to lovastatin and compactin by a LovC deficient mutant of Aspergillus terreus. Bioorg Med Chem Lett. 2001;11(12):1527–31.

    Article  CAS  PubMed  Google Scholar 

  43. Xie XK, Watanabe K, Wojcicki WA, Wang CCC, Tang Y. Biosynthesis of lovastatin analogs with a broadly specific acyltransferase. Chem Biol. 2006;13(11):1161–9.

    Article  CAS  PubMed  Google Scholar 

  44. Xie XK, Meehan MJ, Xu W, Dorrestein PC, Tang Y. Acyltransferase mediated polyketide release from a fungal megasynthase. J Am Chem Soc. 2009;131(24):8388–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Hoffman WF, Alberts AW, Anderson PS, Chen JS, Smith RL, Willard AK. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors. 4. Side-chain ester derivatives of mevinolin. J Med Chem. 1986;29(5):849–52.

    Article  CAS  PubMed  Google Scholar 

  46. Xie XK, Tang Y. Efficient synthesis of simvastatin by use of whole-cell biocatalysis. Appl Environ Microbiol. 2007;73(7):2054–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Xie XK, Wong WW, Tang Y. Improving simvastatin bioconversion in Escherichia coli by deletion of bioH. Metab Eng. 2007;9(4):379–86.

    Article  CAS  PubMed  Google Scholar 

  48. Xie X, Pashkov I, Gao X, Guerrero JL, Yeates TO, Tang Y. Rational improvement of simvastatin synthase solubility in Escherichia coli leads to higher whole-cell biocatalytic activity. Biotechnol Bioeng. 2009;102(1):20–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Gao X, Xie XK, Pashkov I, Sawaya MR, Laidman J, Zhang WJ, et al. Directed evolution and structural characterization of a simvastatin synthase. Chem Biol. 2009;16(10):1064–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Nakamura T, Komagata D, Murakawa S, Sakai K, Endo A. Isolation and biosynthesis of 3-alpha-hydroxy-3,5-dihydromonacolin-L. J Antibiot (Tokyo). 1990;43(12):1597–600.

    Article  CAS  Google Scholar 

  51. Sorensen JL, Auclair K, Kennedy J, Hutchinson CR, Vederas JC. Transformations of cyclic nonaketides by Aspergillus terreus mutants blocked for lovastatin biosynthesis at the lovA and lovC genes. Org Biomol Chem. 2003;1(1):50–9.

    Article  CAS  PubMed  Google Scholar 

  52. Barriuso J, Nguyen DT, Li JWH, Roberts JN, MacNevin G, Chaytor JL, et al. Double oxidation of the cyclic nonaketide dihydromonacolin L to monacolin J by a single cytochrome P450 monooxygenase, LovA. J Am Chem Soc. 2011;133(21):8078–81.

    Article  CAS  PubMed  Google Scholar 

  53. Xu W, Chooi YH, Choi JW, Li S, Vederas JC, Da Silva NA, et al. LovG: the thioesterase required for dihydromonacolin L release and lovastatin nonaketide synthase turnover in lovastatin biosynthesis. Angew Chem Int Ed Engl. 2013;52(25):6472–5.

    Article  CAS  PubMed  Google Scholar 

  54. Abe Y, Suzuki T, Ono C, Iwamoto K, Hosobuchi M, Yoshikawa H. Molecular cloning and characterization of an ML-236B (compactin) biosynthetic gene cluster in Penicillium citrinum. Mol Genet Genomics. 2002;267(5):636–46.

    Article  CAS  PubMed  Google Scholar 

  55. Chen YP, Tseng CP, Liaw LL, Wang CL, Chen IC, Wu WJ, et al. Cloning and characterization of monacolin K biosynthetic gene cluster from Monascus pilosus. J Agric Food Chem. 2008;56(14):5639–46.

    Article  CAS  PubMed  Google Scholar 

  56. Ichihara A, Tazaki H, Sakamura S. Solanapyrones A, B and C, phytotoxic metabolites from the fungus Alternaria solani. Tetrahedron Lett. 1983;24(48):5373–6.

    Article  CAS  Google Scholar 

  57. Kasahara K, Miyamoto T, Fujimoto T, Oguri H, Tokiwano T, Oikawa H, et al. Solanapyrone synthase, a possible Diels-Alderase and iterative type I polyketide synthase encoded in a biosynthetic gene cluster from Alternaria solani. Chembiochem. 2010;11(9):1245–52.

    Article  CAS  PubMed  Google Scholar 

  58. Hess BA, Smentek L. Concerted, highly asynchronous, enzyme-catalyzed [4 + 2] cycloaddition in the biosynthesis of spinosyn A; computational evidence. Org Biomol Chem. 2012;10(37):7503–9.

    Article  CAS  PubMed  Google Scholar 

  59. Kim HJ, Ruszczycky MW, Choi SH, Liu YN, Liu HW. Enzyme-catalysed [4 + 2] cycloaddition is a key step in the biosynthesis of spinosyn A. Nature. 2011;473(7345):109–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Singh SB, Zink DL, Goetz MA, Dombrowski AW, Polishook JD, Hazuda DJ. Equisetin and a novel opposite stereochemical homolog phomasetin, two fungal metabolites as inhibitors of HIV-1 integrase. Tetrahedron Lett. 1998;39(16):2243–6.

    Article  CAS  Google Scholar 

  61. Sims JW, Fillmore JP, Warner DD, Schmidt EW. Equisetin biosynthesis in Fusarium heterosporum. Chem Commun. 2005;2:186–8.

    Article  Google Scholar 

  62. Scherlach K, Boettger D, Remme N, Hertweck C. The chemistry and biology of cytochalasans. Nat Prod Rep. 2010;27(6):869–86.

    Article  CAS  PubMed  Google Scholar 

  63. Qiao KJ, Chooi YH, Tang Y. Identification and engineering of the cytochalasin gene cluster from Aspergillus clavatus NRRL 1. Metab Eng. 2011;13(6):723–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Boettger D, Hertweck C. Molecular diversity sculpted by fungal PKS-NRPS hybrids. Chembiochem. 2013;14(1):28–42.

    Article  CAS  PubMed  Google Scholar 

  65. Cox RJ, Simpson TJ. Fungal type I polyketide synthases. Methods Enzymol. 2009;459:49–78.

    Article  CAS  PubMed  Google Scholar 

  66. Fujii I. Functional analysis of fungal polyketide biosynthesis genes. J Antibiot (Tokyo). 2010;63(5):207–18.

    Article  CAS  Google Scholar 

  67. Guimaraes CRW, Udier-Blagovic M, Jorgensen WL. Macrophomate synthase: QM/MM simulations address the Diels-Alder versus Michael-Aldol reaction mechanism. J Am Chem Soc. 2005;127(10):3577–88.

    Article  CAS  PubMed  Google Scholar 

  68. Ose T, Watanabe K, Mie T, Honma M, Watanabe H, Yao M, et al. Insight into a natural Diels-Alder reaction from the structure of macrophomate synthase. Nature. 2003;422(6928):185–9.

    Article  CAS  PubMed  Google Scholar 

  69. Ose T, Watanabe K, Yao M, Honma M, Oikawa H, Tanaka I. Structure of macrophomate synthase. Acta Crystallogr D Biol Crystallogr. 2004;60:1187–97.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Vederas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dietrich, D., Vederas, J.C. (2014). Lovastatin, Compactin, and Related Anticholesterolemic Agents. In: Martín, JF., García-Estrada, C., Zeilinger, S. (eds) Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1191-2_12

Download citation

Publish with us

Policies and ethics