Skip to main content

Understanding the Mechanism Involved in PGPR-Mediated Growth Promotion and Suppression of Biotic and Abiotic Stress in Plants

  • Chapter
  • First Online:
Future Challenges in Crop Protection Against Fungal Pathogens

Abstract

In the present scenario increased agricultural productivity is achieved by indiscriminate and excessive application of agrochemicals which lead to health and environmental hazards. Extensive research in developing eco-friendly strategy to reduce or replace the application of agrochemicals revealed plant growth-promoting rhizobacteria (PGPR) as potential candidate. PGPR are an important group of bacterial communities residing in rhizosphere and exert beneficial effects on host plant through various mechanisms. The mode of action through which PGPR enhance plant fitness under different biotic and abiotic stress have been a target of research from several years. Hence, in this chapter, mechanism involved in PGPR-mediated growth promotion and suppression of biotic and abiotic stress in plants is reviewed. PGPR is known to exert its beneficial effect on plant through several mechanisms. Plant growth-promoting mechanisms include root colonization, nitrogen fixation, phosphate solubilization, production of IAA, and other phytohormones, siderophore, and volatiles. Suppression of biotic stress is through competition for space, food and nutrition with phytopathogens, production of antibiotic, siderophores, volatiles, and by inducing systemic resistance (ISR). Abiotic stress (especially drought and salt) management by means of PGPR involves modification of physiological and biochemical activities of host plant by producing abscisic acid and other phytohormones, lowering the ethylene by activity of ACC deaminase, and producing antioxidants, which are collectively termed as induced systemic tolerance (IST). Hence expression of these PGPR traits and factors affecting on it should be studied thoroughly in order to use it to its best. Under experimental or field conditions, these traits may express singly or simultaneously which is affected by various biotic and abiotic factors which alter the performance of introduced PGPR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas A, Morrissey JP, Carnicero-Marquez P, Sheehan MM, Delany IR, O’Gara F (2002) Characterization of interactions between the transcriptional repressor PhlF and its binding site at the phlA promoter in Pseudomonas fluorescens F113. J Bacteriol 184:3008–3016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology, 2nd edn. Academic, San Diego, CA

    Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    CAS  PubMed  Google Scholar 

  • Ae N, Arihara J, Okada K (1991) Phosphorus response of chickpea and evaluation of phosphorus availability in Indian alfisols and vertisols. In: Johansen C, Lee KK, Sahrawat KL (eds) International Crops Research Institute for the semi arid tropics. Patancheru, Andhra Pradesh, India, pp 33–41

    Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic, San Diego. ISBN 80120445653

    Google Scholar 

  • Akiyoshi DE, Regier DA, Gordon MP (1987) Cytokinin production by Agrobacterium and Pseudomonas spp. J Bacteriol 169:4242–4248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Albareda M, Dardanelli MS, Sousa C, Megías M, Temprano F, Rodríguez Navarro DN (2006) Factors affecting the attachment of rhizospheric bacteria to bean and soybean roots. FEMS Microbiol Lett 259:67–73

    CAS  PubMed  Google Scholar 

  • Ali B, Sabri AN, Ljung K, Hasnain S (2009) Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol 48:542–547

    CAS  PubMed  Google Scholar 

  • Ali SZ, Sandhya V, Rao LV (2013) Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Arch Microbiol doi: 10.1007/s13213-013-0680-3

  • Alikhani HA, Saleh-Rastin N, Antoun H (2006) Phosphate solubilization activity of rhizobia native to Iranian soil. Plant Soil 287:35–41

    CAS  Google Scholar 

  • Angelini TE, Roper M, Kolter R, Weitz DA, Brenner MP (2009) Bacillus subtilis spreads by surfing on waves of surfactant. Proc Natl Acad Sci U S A 106:18109–18113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67

    CAS  Google Scholar 

  • Araujo FF, Henning AA, Hungria M (2005) Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J Microbiol Biotechnol 21:1639–1645

    CAS  Google Scholar 

  • Arima K, Imanaki H, Kousaka M, Fukuta A, Tamura G (1964) Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas. Agric Biol Chem 28:575–576

    CAS  Google Scholar 

  • Arshad M, Frankenberger WT (1991) Microbial production of plant hormones. Plant Soil 133:1–8

    CAS  Google Scholar 

  • Arshad M, Frankenberger WT (1993) Microbial production of plant growth regulators. In: Metting FB Jr (ed) Soil microbial ecology. Applications in agricultural and environmental management. Marcel Dekker, New York, pp 307–343

    Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620

    Google Scholar 

  • Asghar HN, Zahir ZA, Arshad M, Khaliq A (2002) Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L. Biol Fert Soils 35:231–237

    CAS  Google Scholar 

  • Aslantas R, Cakmakci R, Sahin F (2007) Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci Hortic 111:371–377

    Google Scholar 

  • Assmus B, Hutzler P, Kirchhof G, Amann R, Lawrence JR, Hartmann A (1995) In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescent labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl Environ Microbiol 61:1013–1019

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atzorn R, Crozier A, Wheeler C, Sandberg G (1988) Production of gibberellins and Indole 3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175:532–538

    CAS  PubMed  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant Microb Interact 15:1147–1156

    CAS  Google Scholar 

  • Bacilio-Jimenez M, Aguilar-Flores S, Ventura-Zapata E, Perez-Campos E, Bouquelet S, Zenteno E (2003) Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249:271–277

    CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    CAS  PubMed  Google Scholar 

  • Baker KF (1987) Evolving concepts of biological control of plant pathogens. Annu Rev Phytopathol 25:67–85

    Google Scholar 

  • Baker R, Elad Y, Sneh B (1986) Physical, biological and host factors in iron competition in soils. In: Swinburne TR (ed) Iron, siderophores, and plant diseases. Plenum Press, New York, pp 77–84

    Google Scholar 

  • Bakker AW, Schipper B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth reduction. Soil Biol Biochem 19:452–458

    Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    CAS  PubMed  Google Scholar 

  • Bangera MG, Thomashow LS (1996) Characterization of a genomic locus required for synthesis of the antibiotic 2,4-diacetylphloroglucinol by the biological control agent Pseudomonas fluorescens Q2-87. Mol Plant Microbe Interact 9:83–90

    CAS  PubMed  Google Scholar 

  • Barbara RH, Thomas H (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144

    Google Scholar 

  • Barea JM, Azcon R, Azcon-Aguilar C (2004) Mycorrhizal fungi and plant growth promoting rhizobacteria. In: Verma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Heidelberg, pp 351–371

    Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    CAS  PubMed  Google Scholar 

  • Bar-Ness E, Chen Y, Hadar Y, Marschner H, Römheld V (1991) Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil 130:231–241

    CAS  Google Scholar 

  • Bar-Ness E, Hadar Y, Chen Y, Römheld V, Marschner H (1992) Short-term effects of rhizosphere microorganisms on Fe uptake from microbial siderophores by maize and oat. Plant Physiol 100:451–456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barriuso J, Solano BR, Fray RG, Camara M, Hartmann A, Manero FJG (2008) Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria. Plant Biotechnol J 6:442–452

    CAS  PubMed  Google Scholar 

  • Bashan Y, de-Bashan LE (2005) Bacteria. In: Hillel D (ed) Encyclopaedia of soils in the environment. Elsevier, Oxford, UK, pp 103–115

    Google Scholar 

  • Bashan Y, de-Bashan LE (2010) How the plant growth promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136

    CAS  Google Scholar 

  • Bastian F, Cohen A, Piccoli P, Luna V, Baraldi R, Bottini R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11

    CAS  Google Scholar 

  • Beever RE, Burns DJW (1980) Phosphorus uptake storage and utilization by fungi. Adv Bot Res 8:127–219

    CAS  Google Scholar 

  • Bell CR, Dickie GA, Harvey WLG, Chan JWYF (1995) Endophytic bacteria in grapevine. Can J Microbiol 41:46–53

    CAS  Google Scholar 

  • Bell AA, Liu L, Reidy B, Davis RM, Subbarao KV (1998) Mechanisms of subsurface drip irrigation-mediated suppression of lettuce drop caused by Sclerotinia minor. Phytopathology 88:252–259

    CAS  PubMed  Google Scholar 

  • Benhamou N, Kloepper JW, Quadt-Hallman A, Tuzun S (1996) Induction of defense related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol 112:919–929

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benhamou N, Kloepper JW, Tuzun S (1998) Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta 204:153–168

    CAS  Google Scholar 

  • Blanco C, Bernard T (1994) Osmoadaptation in rhizobia: ectoine-induced salt tolerance. J Bacteriol 176:5210–5217

    PubMed Central  PubMed  Google Scholar 

  • Bleakley BH, Gaskins MH, Hubbel DH, Zam SG (1988) Floc formation by Azospirillum lipoferum grown on polyb-hydroxybutyrate. Appl Environ Microbiol 54:2986–2995

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boddey RM, Dobereiner J (1995) Nitrogen fixation associated with grasses and cereals: recent progress and perspectives for the future. Fert Res 42:241–250

    CAS  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Pena C, Cassán F, Luna V (2007) Phytohormone production by strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    CAS  PubMed  Google Scholar 

  • Boller T (1991) Ethylene in pathogenesis and disease resistance. In: Mattoo AK, Suttle JC (eds) The plant hormone ethylene. CRC Press, Boca Raton, FL, pp 293–314

    Google Scholar 

  • Bostock RM (1999) Signal conflicts and synergies in induced resistance to multiple attackers. Physiol Mol Plant Pathol 55:99–109

    Google Scholar 

  • Bottiglieri M, Keel C (2006) Characterization of PhlG, a hydrolase that specifically degrades the antifungal compound 2,4-diacetylphloroglucinol in the biocontrol agent Pseudomonas fluorescens CHA0. Appl Environ Microbiol 72:418–427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bowers JH, Parke JL (1993) Colonization of pea (Pisum sativum L.) taproots by Pseudomonas fluorescens: effect of soil temperature and bacterial motility. Soil Biol Biochem 25:1693–1701

    Google Scholar 

  • Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X (1997) The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell 9:1573–1584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    CAS  PubMed  Google Scholar 

  • Brandl MT, Lindow SE (1997) Environmental signals modulate the expression of an indole-3-acetic acid biosynthetic gene in Erwinia herbicola. Mol Plant Microb Interact 10:499–505

    CAS  Google Scholar 

  • Budzikiewicz H (1993) Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol Rev 104:209–228

    CAS  Google Scholar 

  • Bultreys A, Gheysen I, Wathelet B, Maraite H, de Hoffmann E (2003) High-performance liquid chromatography analyses of pyoverdin siderophores differentiate among phytopathogenic fluorescent Pseudomonas species. Appl Environ Microbiol 69:1143–1153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    CAS  PubMed  Google Scholar 

  • Burdman S, Jurkevitch E, Okon Y (2000) Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In: Subba Rao NS, Dommergues YR (eds) Microbial interactions in agriculture and forestry, vol II. Science Publishers, Enfield, pp 229–250

    Google Scholar 

  • Buysens S, Heungens K, Poppe J, Hofte M (1996) Involvement of pyochelin and pyoverdin in suppression of Pythium-Induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–871

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caltrider PG (1967) Protoanemonin. In: Corcoran JW, Hann F (eds) Antibiotics 1. Mechanism of action. Springer, Berlin, pp 671–673

    Google Scholar 

  • Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–1592

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carvalhais LC, Dennis PG, Fedoseyenko D, Hajirezaei MR, Boriss R, von Wirén N (2011) Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J Plant Nutr Soil Sci 174:3–11

    CAS  Google Scholar 

  • Cassan F, Bottini R, Schneider G, Piccoli P (2001) Azospirillum brasilense and Azospirillum lipoferum hydrolyze conjugates of GA20 and metabolize the resultant aglycones to GA1 in seedlings of rice dwarf mutants. Plant Physiol 125:2053–2058

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cezon R, Manero FJ, Gutierrez PA, Ramos B, Garica JAL (2003) Effect of two plant growth-promoting rhizobacteria on the germination and growth of pepper seedlings (Capsicum annum) cv. Roxy. Arch Agron Soil Sci 49:593–603

    Google Scholar 

  • Chaiharn M, Chunhaleuchanon S, Lumyong S (2009) Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World J Microbiol Biotechnol 25:1919–1928

    Google Scholar 

  • Chang WT, Chen ML, Wang SL (2010) An antifungal chitinase produced by Bacillus subtilis using chitin waste as a carbon source. World J Microbiol Biotechnol 26:945–950

    CAS  Google Scholar 

  • Chatterjee R, Allen RM, Ludden PW, Shah VK (1997) In vitro synthesis of the iron-molybdenum cofactor and maturation of the nif-encoded apodinitrogenase. J Biol Chem 272:21604–21608

    CAS  PubMed  Google Scholar 

  • Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, Guo J (2012) Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol 15:848–864

    PubMed Central  PubMed  Google Scholar 

  • Chet I, Ordentlich A, Shapira R, Oppenheim A (1990) Mechanisms of biocontrol of soil-borne plant-pathogens by rhizobacteria. Plant Soil 129:85–92

    Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2003) Mechanisms of biological control of phytopathogenic fungi by Pseudomonas spp. In: Stacey G, Keen NT (eds) Plant–microbe interactions, vol 6. The American Phytopathology Society, St. Paul, USA, pp 173–225

    Google Scholar 

  • Cohen Y, Gisi U, Niderman T (1993) Local and systemic protection against Phytophthora infestans induced in potato and tomato plants by jasmonic acid and jasmonic methyl ester. Phytopathology 83:1054–1062

    CAS  Google Scholar 

  • Cohen AC, Bottini R, Piccoli PN (2008) Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regul 54:97–103

    CAS  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462

    CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    CAS  PubMed  Google Scholar 

  • Cox CD, Rinehart KL Jr, Moore ML, Cook JC Jr (1981) Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 78:4256–4260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crichton RR, Charloteaux-Wauters M (1987) Iron transport and storage. Eur J Biochem 164:485–506

    CAS  PubMed  Google Scholar 

  • Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crowe JH (2007) Trehalose as a ‘chemical chaperone’: fact and fantasy. Adv Exp Med Biol 594:143–158

    PubMed  Google Scholar 

  • Crowley DA (2006) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadía J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Berlin

    Google Scholar 

  • Crozier A, Kamiya Y, Bishop G, Yokota T (2000) Biosynthesis of hormones and elicitor molecules. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiology, Rockville, pp 850–929

    Google Scholar 

  • Czaban J, Gajda A, Wroblewska B (2007) The motility of bacteria from rhizosphere and different zones of winter wheat roots. Pol J Environ Stud 16:301–308

    Google Scholar 

  • Davies PJ (1995) Plant hormones: physiology, biochemistry, and molecular biology. Kluwer Academic, London, pp 6–7

    Google Scholar 

  • de Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus). Biol Fertil Soils 24:358–364

    Google Scholar 

  • De Meyer G, Capieau K, Audenaert K, Buchala A, Métraux JP, Höfte M (1999) Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol Plant Microbe Interact 12:450–458

    PubMed  Google Scholar 

  • de Salamone G, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    Google Scholar 

  • de Souza J, Arnould C, Deulvot C, Lamanceau P, Pearson VG, Raaijmakers JM (2003) Effect of 2,4 diacetyl phloro glucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology 93:966–975

    PubMed  Google Scholar 

  • de Weert S, Bloemberg GV (2006) Rhizosphere competence and the role of root colonization in biocontrol. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 317–333

    Google Scholar 

  • de Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180

    PubMed  Google Scholar 

  • Defago G, Berling CH, Burger U, Hass D, Kahr G, Keel C, Voisard C, Wirthner P, Wuthrich B (1990) Suppression of black root rot of tobacco and other root disease by strains of Pseudomonas fluorescens: potential applications and mechanisms. In: Schippers D, Cook RJ, Henis Y, Ko WH, Rovira AD, Schippers B, Scott PR (eds) Biological control of soil borne plant pathogens. CABI, Oxfordshire, UK, pp 93–108

    Google Scholar 

  • Dekkers LC, van der Bij AJ, Mulders IHM, Phoelich CC, Wentwoord RAR, Glandorf DCM, Wijffelman CA, Lugtenberg BJJ (1998) Role of the O-antigen of lipopolysaccharide and possible roles of growth rate and of NADH: ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol Plant Microbe Interact 11:763–771

    CAS  PubMed  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    CAS  PubMed  Google Scholar 

  • Djavaheri M (2007) Iron-regulated metabolites of plant growth-promoting Pseudomonas fluorescens WCS374: their role in induced systemic resistance. PhD thesis, University Utrecht, The Netherlands

    Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Vande Broek A, Vanderleyden J (1999) Phyto stimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–164

    CAS  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    CAS  Google Scholar 

  • Dobereiner J (1997) Biological nitrogen fixation in tropics: social and economic contribution. Soil Biol Biochem 29:771–774

    Google Scholar 

  • Dobert RC, Rood SB, Blevins DG (1992) Gibberellins and the legume-Rhizobium symbiosis. I. Endogenous gibberellins of Lima Bean (Phaseolus lunatus L.) stems and nodules. Plant Physiol 98:221–224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dowling DN, Boesten B, Gill PR Jr, OíGara F (1994) Developing concepts in biological control: a molecular ecology approach. In: OíGara F et al (eds) Molecular ecology of rhizosphere microorganisms. Verlagsgesellschaft, Weinheim, Germany, pp 57–64

    Google Scholar 

  • Duffy B, Schouten A, Raaijmakers JM (2003) Pathogen self defense: mechanisms to counteract microbial antagonism. Annu Rev Phytopathol 41:501–538

    CAS  PubMed  Google Scholar 

  • Esitken A, Pirlak L, Turan M, Sahin F (2006) Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci Hortic 110:324–327

    CAS  Google Scholar 

  • Essen SA, Johnsson A, Bylund D, Pederson K, Lundstrom US (2007) Siderophore production by Pesudomonas stutzeri under aerobic and anaerobic conditions. Appl Environ Microbiol 73:5857–5864

    CAS  PubMed Central  PubMed  Google Scholar 

  • Estrada-de los Santos P, Bustillos-Cristales R, Caballero-Mellado J (2001) Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67:2790–2798

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferguson L, Lessenger JE (2006) Plant growth regulators. In: Lessenger JE (ed) Agricultural medicine. Springer, New York, pp 156–166

    Google Scholar 

  • Figueiredo MVB, Burity HA, Martínez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Google Scholar 

  • Franche C, Lindstrom K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    CAS  Google Scholar 

  • Fravel DR (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26:75–91

    CAS  Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soilborne plant pathogens by a β-1,3-glucanase producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221

    CAS  Google Scholar 

  • Fuentes-Ramírez LE, Bustillos-Cristales R, Tapia-Herńandez A, Jiménez-Salgado T, Wang ET, Martínez-Romero E, Caballero-Mellado J (2001) Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. And Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. Int J Syst Evol Microbiol 51:1305–1314

    PubMed  Google Scholar 

  • Galzebrook J (1999) Genes controlling expression of defence responses in Arabidopsis. Curr Opin Plant Biol 2:280–286

    Google Scholar 

  • Gaspar T, Franck T, Bisbis B, Kevers C, Jouve L, Hausman JF, Dommes J (2002) Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regul 37:263–285

    CAS  Google Scholar 

  • Gaudin V, Vrain D, Jouanin L (1994) Bacterial genes modifying hormonal balance in plant. Plant Physiol Biol 32:11–29

    CAS  Google Scholar 

  • Gerhardt KE, Green berg BM, Glick BR (2006) The role of ACC deaminase in facilitating the phytoremediation of organic metals and salt. Curr Trends Microbiol 2:61–73

    CAS  Google Scholar 

  • Glass ADM (1989) Plant nutrition: an introduction to current concepts. Jones and Bartlett, Boston

    Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    CAS  PubMed  Google Scholar 

  • Glick BR, Karaturovic DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can J Microbiol 41:533–536

    CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for lowering of plant ethylene concentrations by plant growth-promoting rhizobacteria. J Theor Biol 190:63–68

    CAS  PubMed  Google Scholar 

  • Glick BR, Patten CL, Holquin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London

    Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    CAS  Google Scholar 

  • Goddard VJ, Bailey MJ, Darrah P, Lilley AK, Thompson IP (2001) Monitoring temporal and spatial variation in rhizosphere bacterial population diversity: a community approach for the improved selection of rhizosphere competent bacteria. Plant Soil 232:181–193

    CAS  Google Scholar 

  • Goldstein AH (1986) Bacterial phosphate solubilization: historical perspective and future prospects. Am J Altern Agric 1:51–57

    Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenises in the solubilization of exogenous phosphates by Gram-negative bacteria. In: Gorini AT, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. American Society for Microbiology, Washington, DC, pp 197–203. ISBN 1-55581-265-1

    Google Scholar 

  • Gracia De Salome IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    CAS  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    CAS  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Google Scholar 

  • Gualtieri G, Bisseling T (2000) The evolution of nodulation. Plant Mol Biol 42:181–194

    CAS  PubMed  Google Scholar 

  • Gurska J, Wang W, Gerhardt KE, Khalid AM, Isherwood DM, Huang XD, Glick BR, Greenberg BM (2009) Three year field test of a plant growth promoting rhizobacteria enhanced phytoremediation system at a land farm for treatment of hydrocarbon waste. Environ Sci Technol 43:4472–4479

    CAS  PubMed  Google Scholar 

  • Gutierrez-Mannero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soilborne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    CAS  PubMed  Google Scholar 

  • Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A (2003) Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol Bioeng 81:316–322

    CAS  PubMed  Google Scholar 

  • Haiyin H, Silo-Suh LA, Handelsman J, Clardy J (1994) Zwittermicin A, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Lett 35:2499–2502

    Google Scholar 

  • Hallmann J, Rodriguez-Kabana R, Kloepper JW (1999) Chitin-mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control. Soil Biol Biochem 31:551–560

    CAS  Google Scholar 

  • Hammerschmidt R, Kuc JA (1995) Lignification as a mechanism for induced systemic resistance in cucumber. Physiol Plant Pathol 20:61–71

    Google Scholar 

  • Handelsman J, Stabb EV (1996) Biocontrol of soil-borne plant pathogens. Plant Cell 8:1855–1869

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hao Y, Charles TC, Glick BR (2007) ACC deaminase from plant growth promoting bacteria affects crown gall development. Can J Microbiol 53:1291–1299

    CAS  PubMed  Google Scholar 

  • Hariprasad P, Niranjana SR (2009) Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant Soil 316:13–24

    CAS  Google Scholar 

  • Hariprasad P, Navya HM, Chandranayak S, Niranjana SR (2009) Advantage of using PSIRB over PSRB and IRB to improve plant health in tomato. Biol Control 50:307–316

    Google Scholar 

  • Hariprasad P, Divakara ST, Niranjana SR (2011) Isolation and characterization of chitinolytic rhizobacteria for the management of Fusarium wilt in tomato. Crop Prot 30:1606–1612

    Google Scholar 

  • Hariprasad P, Chandrashekar S, Brijesh Singh S, Niranjana SR (2013) Mechanism of plant growth promotion and disease suppression by Pseudomonas aeruginosa strain 2apa. J Basic Microbiol (DOI: 10.1002/jobm.201200491).

    Google Scholar 

  • Hartmann A, Singh M, Klingmuller W (1983) Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Can J Microbiol 29:916–923

    CAS  Google Scholar 

  • Hasegawa S, Poling SM, Maier VP, Bennett RD (1984) Metabolism of abscisic-acid bacterial conversion to dehydrovomifoliol and vomifoliol dehydrogenase-activity. Phytochemistry 23:2769–2771

    CAS  Google Scholar 

  • Hashizume H, Igarashi M, Sawa R, Adachi H, Nishimura Y, Akamatsu Y (2008) A new type of tripropeptin with anteiso-branched chain fatty acid from Lysobacter sp. BMK333-48F3. J Antibiot 61:577–582

    CAS  PubMed  Google Scholar 

  • Hassan HM, Fridovich I (1980) Mechanism of the antibiotic action pyocyanine. J Bacteriol 141:156–163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hassett DJ, Woodruff WA, Wozniak DJ, Vasil ML, Cohen MS, Ohman DE (1993) Cloning of sodA and sodB genes encoding manganese and iron superoxide dismutase in Pseudomonas aeruginosa: demonstration of increased manganese superoxide dismutase activity in alginate-producing bacteria. J Bacteriol 175:7658–7665

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henri F, Laurette NN, Annertte D, John Q, Wolfgang M, Francois-Xavier E, Dieudonné N (2008) Solubilization of inorganic phosphates and plant growth promotion by strains of Pseudomonas fluorescens isolated from acidic soils of cameron. Afr J Microbiol Res 2:171–178

    Google Scholar 

  • Hilda R, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Google Scholar 

  • Hiltner L (1904) Uber neuere erfahrungen und problem auf dem gebeit der bodenbakteriologie und unter besonderer berucksichtigung der grund ungung und brache. Arb Dtsc Landwirt Ges 98:59–78

    Google Scholar 

  • Hinsa SM, Espinosa-Urgel M, Ramos JL, O’Toole GA (2003) Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol 49:905–918

    CAS  PubMed  Google Scholar 

  • Hoffman T, Schmidt JS, Zheng X, Bent AF (1999) Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol 119:935–949

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hofte M, Woesyne MV, Verstraete W (1994) Role of siderophores in plant growth promotion and plant protection by fluorescent pseudomonads. In: Manthey JA et al (eds) Biochemistry of metal micronutrients in the rhizosphere. Lewis Publishers, Boca Raton, FL, pp 81–92

    Google Scholar 

  • Hontzeas N, Zoidakis J, Glick BR, Abu-Omar MM (2004) Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion. Biochim Biophys Acta 1703:11–19

    CAS  PubMed  Google Scholar 

  • Horemans S, Koninck KD, Neuray J, Hermans R, Vlassak K (1986) Production of plant growth substances by Azospirillum sp. and other rhizosphere bacteria. Symbiosis 2:341–346

    CAS  Google Scholar 

  • Horinouchi S (2002) A microbial hormone, A-factor, as a master switch for morphological differentiation and secondary metabolism in Streptomyces griseus. Front Biosci 7:2045–2057

    Google Scholar 

  • Howell CR, Stipanovic RD (1980) Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70:712–715

    CAS  Google Scholar 

  • Huang C, Chen CY (2004) Gene cloning and biochemical characterization of chitinase CH from Bacillus cereus-28-9. Ann Microbiol 54:289–297

    CAS  Google Scholar 

  • Huang C, Wang T, Chung S, Chen C (2005) Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. J Biochem Mol Biol 38:82–88

    CAS  PubMed  Google Scholar 

  • Hughes J, Mellows G (1980) Interaction of pseudomonic acid A with Escherichia coli B isoleucyl-tRNA synthetase. Biochemistry 191:209–219

    CAS  Google Scholar 

  • Hussain A, Hasnain S (2009) Cytokinin production by some bacteria: Its impact on cell division in cucumber cotyledons. Afr J Microbiol Res 3:704–712

    CAS  Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Métraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 16:851–858

    CAS  PubMed  Google Scholar 

  • Idris EES, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of Indole-3-Acetic Acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact 20:619–626

    CAS  PubMed  Google Scholar 

  • Illmer P, Schinner F (1995) Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biol Biochem 27:257–263

    CAS  Google Scholar 

  • Ilyas N, Bano A (2010) Azospirillum strains isolated from roots and rhizosphere soil of wheat (Triticum aestivum L.) grown under different soil moisture conditions. Biol Fert Soil 46:393–406

    Google Scholar 

  • Inbar O, Ron EZ (1993) Induction of cadmium tolerance in Escherichia coli K-12. FEMS Microbiol Lett 113:197–200

    CAS  PubMed  Google Scholar 

  • Islam Md T, Deora A, Hashidoko Y, Rahman A, Ito T, Tahara S (2007) Isolation and identification of potential phosphate solubilizing bacteria from the rhizosphere of Oryza sativa L. cv. BR29 of Bangladesh. Z Natureforsch 62:103–110

    Google Scholar 

  • Itoh S, Honda H, Tomita F, Suzuki T (1971) Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin (mixture of C12, C13 and C14 fractions). J Antibiot 24:855–859

    CAS  Google Scholar 

  • Jacobson CB, Pasternak JJ, Glick BR (1994) Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 40:1019–1025

    CAS  Google Scholar 

  • Jagadeesh KS, Kulkarni JH, Krishnaraj PU (2001) Evaluation of the role of fluorescent siderophore in the biological control of bacterial wilt in tomato using Tn5 mutants of fluorescent Pseudomonas sp. Curr Sci 81:882–883

    Google Scholar 

  • Jaizme-Vega MDC, Rodriguez-Romero AS, Guerra MSP (2004) Potential use of rhizobacteria from the Bacillus genus to stimulate the plant growth of micropropagated bananas. Fruit 59:83–90

    Google Scholar 

  • Janiak AM, Milewski S (2001) Mechanism of antifungal action of kanosamine. Med Mycol 39:401–408

    CAS  PubMed  Google Scholar 

  • Janzen R, Rood S, Dormar J, McGill W (1992) Azospirillum brasilense produces gibberellins in pure culture and chemically-medium and in co-culture on straw. Soil Biol Biochem 24:1061–1064

    CAS  Google Scholar 

  • Jiao Y, Yoshihara T, Ishikuri S, Uchino H, Ichihara A (1996) Structural identification of Cepaciamide A, a novel fungitoxic compound from Pseudomonas cepacia D-202. Tetrahedron Lett 37:1039–1042

    CAS  Google Scholar 

  • Jofré E, Fischer S, Rivarola V, Balegno H, Mori G (1998) Saline stress affects the attachment of Azospirillum brasilense Cd to maize and wheat roots. Can J Microbiol 44:416–422

    Google Scholar 

  • Joo GJ, Kim YM, Lee IJ, Song KS, Rhee IK (2004) Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol Lett 26:487–491

    CAS  PubMed  Google Scholar 

  • Kamil Z, Rizk M, Saleh M, Moustafa S (2007) Isolation and identification of rhizosphere bacteria and their potential in antifungal biocontrol. Global J Mol Sci 2:57–66

    Google Scholar 

  • Kampert M, Strzelczyk E, Pokojska A (1975) Production of auxins by bacteria isolated from the roots of pine seedlings (Pinus silvestris L.) and from soil. Acta Microbiol Pol 7:135–143

    CAS  Google Scholar 

  • Kaper JM, Veldstra H (1958) On the metabolism of tryptophan by Agrobacterium tumefaciens. Biochim Biophys Acta 30:401–420

    CAS  PubMed  Google Scholar 

  • Kate M, Bryant L (2007) Topical antibiotics—more harm than good. Focus. p.1. Archived from the original on 2007-07-16

    Google Scholar 

  • Kaymak HC, Yarali F, Guvenc I, Donmez FM (2008) The effect of inoculation with plant growth rhizobacteria (PGPR) on root formation of mint (Mentha piperita L.) cuttings. Afr J Biotechnol 24:4479–4483

    Google Scholar 

  • Kearns DB, Chu F, Rudner R, Losick R (2004) Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility. Mol Microbiol 52:357–369

    CAS  PubMed  Google Scholar 

  • Keel C, Schiner U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Defago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol Plant Microbe Interact 5:4–13

    CAS  Google Scholar 

  • Kennedy AC (1999) Bacterial diversity in agroecosystems. Agric Ecosyst Environ 74:65–76

    Google Scholar 

  • Kennedy IR, Pereg-Gerk LL, Wood C, Deaker R, Glichrist K, Katupitiya S (1997) Biological nitrogen fixation in non-leguminous field corps: facilitating the evolution of an effective association between Azospirillum and Wheat. Plant Soil 194:65–79

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2006) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 26:1–15

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture-a review. Agron Sustain Dev 27:29–43

    Google Scholar 

  • Khiyami M, Masmali I (2008) Characterization of thermostable chitinase enzyme of Bacillus licheniformis isolated from red palm weevil gut. Aust J Basic Appl Sci 2:943–948

    CAS  Google Scholar 

  • Kim KY, Mc Donald GA, Jordan D (1997) Solubilization of hydroxypatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol Fertil Soils 24:347–352

    CAS  Google Scholar 

  • Kim BS, Lee JY, Hwang BK (2000) In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Manag Sci 56:1029–1035

    CAS  Google Scholar 

  • Kishore GK, Pande S (2007) Chitin-supplemented foliar application of chitinolytic Bacillus cereus reduces severity of Botrytis gray mold disease in chickpea under controlled conditions. Lett Appl Microbiol 44:98–105

    CAS  PubMed  Google Scholar 

  • Kishore GK, Pande S, Podile AR (2005) Chitin-supplemented foliar application of Serratia marcescens GPS 5 improves control of late leaf spot disease of groundnut by activating defense-related enzymes. J Phytopathol 153:169–173

    CAS  Google Scholar 

  • Kloepper JW, Scroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the fourth international Conference on Pl pathogenic bacteria, vol 2. Station de Pathologie Vegetale et Phytobacteriologie, INRA, Angers, France, pp 879–882

    Google Scholar 

  • Kloepper JW, Hume DJ, Scher FM, Singleton C, Tipping B, Laliberte M, Frauley K, Kutchaw T, Simonson C, Lifshitz R, Zaleska I, Lee L (1988) Plant growth-promoting rhizobacteria on canola (rape seed). Plant Dis 72:42–45

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Google Scholar 

  • Kloepper JW, Zablokovisz RM, Tipping EM, Lifshitz R (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic, The Netherlands, pp 315–326

    Google Scholar 

  • Knoester M, van Loon LC, van den Heuvel J, Hennig J, Bol JF, Linthorst HJM (1998) Ethylene-insensitive tobacco lacks non host resistance against soil-borne fungi. Proc Natl Acad Sci USA 95:1933–1937

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi M, Izui H, Nagasawa T, Yamada H (1993) Nitrilase in biosynthesis of the plant hormone indole-3-acetic acid from indole-3-acetonitrile—cloning of the Alcaligenes gene and site-directed mutagenesis of cysteine residues. Proc Natl Acad Sci 90:247–251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koch B, Nielsen TH, Sorensen D, Andersen JB, Christophersen C, Molin S, Givskov M, Sorensen J, Nybroe O (2002) Lipopeptide production in Pseudomonas sp. strain DSS73 is regulated by components of sugar beet exudates via the Gac two component regulatory system. Appl Environ Microbiol 68:4509–4516

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koda N, Asaeda T, Yamade K, Kawahara H, Obata H (2001) A novel cryoprotective protein (CRP) with high activity from the ice nucleating bacterium, Pantoea agglomerans IFO12686. Biosci Biotechnol Biochem 65:888–894

    CAS  PubMed  Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldan A (2008) Plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151

    CAS  Google Scholar 

  • Kokalis-Burelle N, Backman PA, Rodriguez-kabana R, Ploper LD (1992) Potential for biological control of early leaf spot of peanut using Bacillus cereus and chitin as foliar amendments. Biol Control 2:321–328

    Google Scholar 

  • Kpomblekou K, Tabatabai MA (1994) Effect of organic acids on release of phosphorous from phosphate rocks. Soil Sci 158:442–453

    Google Scholar 

  • Kravchenko LV, Azarova TS, Makarova NM, Tikhonovich IA (2004) The effect of tryptophan of plant root metabolites on the phytostimulating activity of rhizobacteria. Mikrobiologia 73:195–198

    CAS  Google Scholar 

  • Kumar RS, Ayyadurai N, Pandiaraja P, Reddy AV, Venkateswarlu Y, Prakash O, Shakthivel N (2005) Characterization of antifungal metabolite produced by a new strain of Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J Appl Microbiol 98:145–154

    CAS  PubMed  Google Scholar 

  • Kumar SPP, Hariprasad P, Brijesh Singh S, Gowtham HG, Niranjana SR (2014) Structural and functional diversity of rhizobacteria associated with Rauwolfia spp. across the Western Ghat regions of Karnataka, India. World J Microbiol Biotechnol 30:163–173

    Google Scholar 

  • Kunc F, Macura J (1988) Mechanism of adaptation and selection of microorganisms in the soil. In: Vancura V, Kunc F (eds) Soil microbial associations. Elsevier, Amsterdam, pp 281–299

    Google Scholar 

  • Kusukawa N, Yura T (1988) Heat-shock protein GroE of Escherichia coli: key protective roles against thermal stress. Genes Dev 2:874–882

    CAS  PubMed  Google Scholar 

  • Lambert B, Leyns F, Van Rooyen L, Gossele F, Papon Y, Swings J (1987) Rhizobacteria of maize and their antifungal activities. Appl Environ Microbiol 53:1866–1871

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lankford CE (1973) Bacterial assimilation of iron. Crit Rev Microbiol 2:273–331

    CAS  Google Scholar 

  • Lawton KA, Friedrich L, Hunt M, Weymann K, Delaney T, Kessmann H, Staub T, Ryals J (1996) Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J 10:71–82

    CAS  PubMed  Google Scholar 

  • Lee B, Farag MA, Park HB, Kloepper JW, Lee SH, Ryu CM (2012) Induced resistance by a longchain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PLoS One 7:e48744

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leelasuphakul W, Sivanunsakul P, Phongpaichit S (2006) Purification, characterization and synergistic activity of -1,3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis. Enzyme Microb Technol 38:990–997

    CAS  Google Scholar 

  • Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers BS (1995) Induction of systemic resistance by Pseudomonas fuorescens in radish cultivars differing in susceptibility to Fusarium wilt, using a novel bioassay. Eur J Plant Pathol 101:655–664

    Google Scholar 

  • Leong J, Bitter W, Koster M, Marugg JD, Weisbeek PJ (1991) Genetics of iron transport in plant growth-promoting Pseudomonas putida WCS358. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic, Dordrecht, The Netherlands, pp 271–278

    Google Scholar 

  • Li J, Ovakim D, Charles TC, Glick BR (2000) An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr Microbiol 41:101–105

    CAS  PubMed  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against fusarium wilt by plant growth promoting rhizobacteria. Phytopathology 85:695–698

    Google Scholar 

  • López CS, Heras H, Garda H, Ruzal S, Sánchez-Rivas C, Rivas E (2000) Biochemical and biophysical studies of Bacillus subtilis envelopes under hyperosmotic stress. Int J Food Microbiol 55:137–142

    PubMed  Google Scholar 

  • Lou H, Chen M, Black SS, Bushell SR, Ceccarelli M (2011) Altered antibiotic transport in ompc mutants isolated from a series of clinical strains of multi-drug resistant E. coli. PLoS One 6(10):e25825

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    CAS  PubMed  Google Scholar 

  • Lugtenberg BJJ, Dekkers LC (1999) What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:9–13

    CAS  PubMed  Google Scholar 

  • Lugtenberg BJJ, van Der Bij A, Blemberg G, Woeng TCA, Dekkers K, Kravchenko L, Mulders I, Phoelich C, Simons M, Spink H, Tikhonovich I, De Weger L, Wijffelman C (1996) Molecular basis of rhizosphere colonization by Pseudomonas bacteria. In: Stacey G, Mullin B, Gresshoff PM (eds) Biology of plant-microbe interactions. Proceedings of eighth international symposium on mol plant-microbe interaction, Knoxville, TN, pp 433–440

    Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by bacteria. Annu Rev Phytopathol 39:461–490

    CAS  PubMed  Google Scholar 

  • Lyon GD, Newton AC (1997) Do resistance elicitors offer new opportunities in integrated disease control strategies? Plant Pathol 46:636–641

    Google Scholar 

  • M’Piga P, Belanger RR, Paulitz TC, Benhamou N (1997) Increased resistance to Fusarium oxysporum f. sp. radicis lycopersici in tomato plants treated with endophytic bacterium Pseudomonas fluorescens strain 63–28. Physiol Mol Plant Pathol 50:301–320

    Google Scholar 

  • Ma JH, Yao JL, Cohen D, Mom’s B (1998) Ethylene inhibitors enhance in vitro formation from apple shoot cultures. Plant Cell Rep 17:211–214

    CAS  Google Scholar 

  • Ma W, Zalec K, Glick BR (2001) Biological activity and colonization pattern of the bioluminescence-labeled plant growth-promoting bacterium Kluyvera ascorbata SUD165/26. FEMS Microbiol Ecol 35:137–144

    CAS  PubMed  Google Scholar 

  • Madigan MT, Oren A (1999) Thermophilic and halophilic extremophiles. Curr Opin Microbiol 2:265–269

    CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    CAS  PubMed  Google Scholar 

  • Maksimov IV, Abizgil’dina RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (Review). Appl Biochem Microbiol 47:333–345

    CAS  Google Scholar 

  • Maloney PE, van Bruggen AHC, Hu S (1997) Bacterial community structure in relation to the carbon environments in lettuce and tomato rhizospheres and in bulk soil. Microbial Ecol 34:109–117

    CAS  Google Scholar 

  • Mandimba G, Heulin T, Bally R, Guckert A, Balandreau J (1986) Chemotaxis of free-living nitrogen-fixing bacteria towards maize mucilage. Plant Soil 90:129–139

    Google Scholar 

  • Manjula K, Podile AR (2001) Chitin-supplemented formulations improve biocontrol and plant growth promoting efficiency of Bacillus subtilis AF 1. Can J Microbiol 47:618–625

    CAS  PubMed  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    CAS  PubMed  Google Scholar 

  • Marasco EK, Schmidt-Dannert C (2008) Identification of bacterial carotenoid cleavage dioxygenase homologues that cleave the interphenyl α, β double bond of stilbene derivatives via a monooxygenase reaction. Chem Biol Chem 9:1450–1461

    CAS  Google Scholar 

  • Marschner P, Timonen S (2006) Bacterial community composition and activity in rhizosphere of roots colonized by arbuscular mycorrhizal fungi. In: Mukerji KG, Manoharachari C, Singh J (eds) Microbial activity in the rhizosphere. Soil Biology 7:139-154. Springer, Berlin

    Google Scholar 

  • Martens DA, Frankenberger WT (1994) Assimilation of exogenous 2’-14C-indole-3-acetic acid and 3’-14C-tryptophan exposed to the roots of three wheat varieties. Plant Soil 166:281–290

    CAS  Google Scholar 

  • Masalha J, Kosegarten H, Elmaci O, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fert Soils 30:433–439

    CAS  Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1988) Antifungal hydrolasses in pea tissue: II. Inhibition of fungal growth by combinations of chitinases and two β-1,3-glucanases. Plant Physiol 87:936–942

    Google Scholar 

  • Maurhofer M, Keel C, Schnider U, Voisard C, Haas D, Defago G (1992) Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathology 82:190–195

    CAS  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Metraux JP, Defago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHAO: influence of the gacA gene and of pyoverdine production. Phytopathology 84:139–146

    CAS  Google Scholar 

  • Mavingui P, Laguerre G, Berge O, Heulin T (1992) Genetic and phenotypic diversity of Bacillus polymyxa in soil and wheat rhizosphere. Appl Environ Microbiol 58:1894–1903

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445

    CAS  PubMed  Google Scholar 

  • Mawdsley JL, Burns RG (1994) Root colonization by a Flavobacterium species and the influence of percolating water. Soil Biol Biochem 26:861–870

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    CAS  PubMed  Google Scholar 

  • Meharg AA, Killham K (1995) Loss of exudates from the roots of perennial ryegrass inoculated with a range of microorganisms. Plant Soil 170:345–349

    CAS  Google Scholar 

  • Mercado-Blanco J, van der Drift KMGM, Olsson PE, ThomasOates JE, van Loon LC, Bakker PAHM (2001) Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. J Bacteriol 183:1909–1920

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer JM, Geoffroy VA, Baida N, Gardan L, Izard D, Lemanceau P, Achouak W, Palleroni NJ (2002) Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl Environ Microbiol 68:2745–2753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meziane H, Van der Sluis I, Van Loon LC, Hofte M, Bakker PAHM (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185

    PubMed  Google Scholar 

  • Miller CM, Miller RV, Kenny DG, Redgrave B, Sears J, Condron MM, Teplow DB, Strobel GA (1998) Ecomycins, unique antimycotics from Pseudomonas viridiflava. J Appl Microbiol 84:937–944

    CAS  PubMed  Google Scholar 

  • Mirza MS, Mehnaz S, Normand P, Prigent-Combaret C, Moe¨nne-Loccoz Y, Bally R, Malik KA (2006) Molecular characterization and PCR detection of a nitrogen-fixing Pseudomonas strain promoting rice growth. Biol Fertil Soils 43:163–170

    CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    CAS  PubMed  Google Scholar 

  • Molina-Favero C, Creus CM, Lanteri ML, Correa-Aragunde N, Lombardo MC, Barassi CA, Lamattina L (2007) Nitric oxide and plant growth promoting rhizobacteria: common features influencing root growth and development. Adv Bot Res 46:1–33

    Google Scholar 

  • Mordukhova EA, Skvortsova NP, Kochetkov VV, Dubei-kovskii AN, Boronin AM (1991) Synthesis of the phytohormone indole-3-acetic acid by rhizosphere bacteria of the genus Pseudomonas. Mikrobiologiya 60:494–500

    CAS  Google Scholar 

  • Morris RO (1995) Genes specifying auxin and cytokinin biosynthesis in prokaryotes. In: Davies PJ (ed) Plant hormones. Kluwer, Dordrecht, The Netherlands, pp 318–339

    Google Scholar 

  • Mossialos D, Meyer JM, Budzikiewicz H, Wolff U, Koedam N, Baysse C, Anjaiah V, Cornelis P (2000) Quinolobactin, a new siderophore of Pseudomonas fluorescens ATCC 17400, the production of which is repressed by the cognate pyoverdine. Appl Environ Microbiol 66:487–492

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mulkey TJ, Kuzmanoff KM, Evans ML (1982) Promotion of growth and shift in the auxin dose/response relationship in maize roots treated with the ethylene biosynthesis inhibitors aminoethoxyvinylglycine and cobalt. Plant Sci Lett 25:43948

    Google Scholar 

  • Munchbach M, Dainese P, Staudenmann W, Narberhaus F, James P (1999) Proteome analysis of heat-shock protein expression in Bradyrhizobium japonicum. Eur J Biochem 264:39–48

    CAS  PubMed  Google Scholar 

  • Murphy JF, Reddy MS, Ryu CM, Kloepper JW, Li R (2003) Rhizobacteria-mediated growth promotion of tomato leads to protection against Cucumber mosaic virus. Phytopathology 93:1301–1307

    PubMed  Google Scholar 

  • Nadeem M, Younis A, Riaz A, Hameed M (2012) Growth response of some cultivars of bermuda grass (Cyanodon dactylon L.) to salt stress. Pak J Bot 44:1347–1350

    CAS  Google Scholar 

  • Nagasawa T, Mauger J, Yamada H (1990) A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3—purification and characterization. Eur J Biochem 194:765–772

    CAS  PubMed  Google Scholar 

  • Nahas E (1996) Factors determining rock phosphate solubilization by micro-organisms. World J Microbiol Biotechnol 12:567–572

    CAS  PubMed  Google Scholar 

  • Nakayama T, Homma Y, Hashidoko Y, Mizutani J, Tahara S (1999) Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. Appl Environ Microbiol 55:4334–4339

    Google Scholar 

  • Neidhardt F, Van Bogelen RA (1987) Heat shock response. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger E (eds) Escherichia coli and Salmonella typhimurium, vol 2. American Society of Microbiology, Washington, DC, pp 1334–1345

    Google Scholar 

  • Neiland JB (1981) Microbial iron compounds. Annu Rev Biochem 50:715–731

    Google Scholar 

  • Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sorensen J (2000) Structure, production characteristics and fungal antagonism of tensin—a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol 89:992–1001

    CAS  PubMed  Google Scholar 

  • Nieto KF, Frankenberger WT Jr (1989) Biosynthesis of cytokinin by Azotobacter chroococcum. Soil Biol Biochem 21:967–972

    CAS  Google Scholar 

  • Nihorimbere V, Cawoy H, Seyer A, Brunelle A, Thonart P, Ongena M (2012) Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol Ecol 79:176–191

    CAS  PubMed  Google Scholar 

  • Niki T, Mitsuhara I, Seo S, Ohtsubo N, Ohashi Y (1998) Antagonistic effects of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol 39:500–507

    CAS  Google Scholar 

  • Niranjana SR, Hariprasad P (2012) Serratia—an under estimated potential plant growth promoting and bioprotecting rhizobacteria. Biopestic Int 8:49–62

    Google Scholar 

  • Nowak-Thompson B, Chaney N, Wing JS, Gould SJ, Loper JE (1999) Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 181:2166–2174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oberhansli T, Défago G, Haas D (1991) Indole-3-acetic-acid (IAA) synthesis in the biocontrol strain CHA0 of Pseudomonas fluorescens—role of tryptophan side-chain oxidase. J Gen Microbiol 137:2273–2279

    CAS  PubMed  Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum. An evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    CAS  Google Scholar 

  • Oldroyd GED (2007) Nodules and hormones. Science 315(5808):52–53

    CAS  PubMed  Google Scholar 

  • Omar SA (1998) The role of rock phosphate solubilizing fungi and vesicular arbuscular mycorrhizae (VAM) in growth of wheat plants facilitated with rockphosphate. World J Microbiol Biotechnol 14:211–218

    CAS  Google Scholar 

  • Ongena M, Daayf F, Jacques P, Thonart P, Benhamou N, Paulitz TC, Cornelis P, Koedam N, Belanger RR (1999) Protection of cucumber against Pythium root rot by fluorescent pseudomonads: predominant role of induced resistance over siderophore and antibiosis. Plant Pathol 48:66–76

    Google Scholar 

  • Ongena M, Giger A, Jacques P, Dommes J, Thonart P (2002) Study of bacterial determinants involved in the induction of systemic resistance in bean by Pseudomonas putida BTP1. Eur J Plant Pathol 108:187–196

    CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:378–384

    CAS  PubMed  Google Scholar 

  • Penninckx IAMA, Eggermont K, Terras FRG, Thomma BPHJ, De Samblanx GW, Buchala A, Métraux J-P, Manners JM, Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid–independent pathway. Plant Cell 8:2309–2323

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perley JW, Stowe BB (1966) On the ability of Taphrina deformans to produce indoleacetic acid from tryptophan by way of tryptamine. Plant Physiol 41:234–237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pierson EA, Wood DW, Cannon JA, Blachere FM, Pierson LS III (1998) Interpopulation signaling via N-acyl homoserine lactones among bacteria in the wheat rhizosphere. Mol Plant Microbe Interact 11:1078–1084

    CAS  Google Scholar 

  • Pieterse CMJ, van Loon LC (1999) Salicylic acid-independent plant defence pathways. Trends Plant Sci 4:52–58

    PubMed  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Hoffland E, Van Pelt JA, Van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, Van Loon LC (1998) A novel signalling pathway controlling induced systemic resistance in Arabidobsis. Plant Cell 10:1571–1580

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pieterse CMJ, Ton J, Van Loon LC (2001) Cross-talk between plant defence signalling pathways: boost or burden? AgBiotechNet 3:ABN 068

    Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Ton J, Van Pelt JA, Van Loon LC (2002) Signaling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol 4:535–544

    CAS  Google Scholar 

  • Piuri M, Sanchez-Rivas C, Ruzal SM (2005) Cell wall modifications during osmotic stress in Lactobacillus casei. J Appl Microbiol 98:84–95

    CAS  PubMed  Google Scholar 

  • Press CM, Wilson M, Tuzun S, Kloepper JW (1997) Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol Plant Microbe Interact 6:761–768

    Google Scholar 

  • Press CM, Loper JE, Kloepper JW (2001) Role of iron in rhizobacteria mediated induced systemic resistance of cucumber. Phytopathology 91:593–598

    CAS  PubMed  Google Scholar 

  • Prinsen E, Costacurta A, Michiels K, Vanderleyden J, Van Onckelen H (1993) Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Mol Plant Microb Interact 6:609–615

    CAS  Google Scholar 

  • Qi F, Merritt J, Lux R, Shi W (2004) Inactivation of the ciaHgene in Streptococcus mutans diminishes mutacin production and competence development, alters sucrose-dependent biofilm formation, and reduces stress tolerance. Infect Immun 72:4895–4899

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raaijmakers JM, van der Sluis I, Koster M, Bakker PAHM, Welsbeek PJ, Schippers B (1995) Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Can J Microbiol 41:126–135

    CAS  Google Scholar 

  • Raaijmakers JM, Weller DM, Thomashow L (1997) Frequency of antibiotics producing spp. in natural environments. Appl Environ Microbiol 63:881–887

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    CAS  PubMed  Google Scholar 

  • Radjacommare R, Kandan A, Nandakumar R, Samiyappan R (2004) Association of the hydrolytic enzyme chitinase against Rhizoctonia solani in rhizobacteria-treated rice plants. J Phytopathol 152:365–370

    CAS  Google Scholar 

  • Raj NS, Shett NP, Shetty HS (2004) Seed bio-priming with Pseudomonas fluorescens isolates enhances growth of pearl millet plants and induces resistance against downy mildew. Int J Pest Manage 50:41–48

    Google Scholar 

  • Raj NS, Lavanya SN, Amruthesh KN, Niranjana SR, Reddy MS, Shetty HS (2012) Histo-chemical changes induced by PGPR during induction of resistance in pearl millet against downy mildew disease. Biol Control 60:90–102

    Google Scholar 

  • Ramos-Solano B, García JAL, Garcia-Villaraco A, Algar E, Garcia-Cristobal J, Mañero FJG (2010) Siderophore and chitinase producing isolates from the rhizosphere of Nicotiana glauca Graham enhance growth and induce systemic resistance in Solanum lycopersicum L. Plant Soil 334:189–197

    CAS  Google Scholar 

  • Ran LX, Li ZN, Wu GJ, Van Loon LC, Bakker PAHM (2005) Induction of systemic resistance against bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. Eur J Plant Pathol 113:59–70

    CAS  Google Scholar 

  • Rana A, Saharan B, Joshi M, Prasanna R, Kumar K, Nain L (2011) Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann Microbiol 61:893–900

    CAS  Google Scholar 

  • Rane MR, Sarode PD, Chaudhar BL, Chincholkar SB (2007) Detection isolation and identification of phenzine-1-carboxylic acid produced by biocontrol strains of Pseudomonas aeruginosa. J Sci Ind Res 66:627–631

    CAS  Google Scholar 

  • Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069

    CAS  PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T, Gillis M, Hoste B, Vancanneyt M, Kersters K, De Ley J (1993) Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth) and description of two species Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. Int J Syst Bacteriol 43:574–584

    Google Scholar 

  • Reyes I, Valery A, Valduz Z (2006) Phosphate-solubilizing microorganisms isolated from rhizospheric and bulk soils of colonizer plants at an abandoned rock phosphate mine. Plant Soil 287:69–75

    CAS  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganism to improve the acquisition of phosphate by plant. Aus J Plant Physiol 28:897–906

    Google Scholar 

  • Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Aus J Plant Physiol 28:829–836

    Google Scholar 

  • Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology and application. Annu Rev Microbiol 56:117–137

    CAS  PubMed  Google Scholar 

  • Rodriguez JA, Nanos N, Grau JM, Gil L, Lopez-Arias M (2008) Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere 70:1085–1096

    CAS  PubMed  Google Scholar 

  • Roessler M, Müller V (2001) Osmoadaptation in Bacteria and Archaea: common principles and differences. Environ Microbiol 3:743–754

    CAS  Google Scholar 

  • Ross AF (1961a) Localized acquired resistance to plant vinis infection in hypersensitive hosts. Virology 14:329–339

    CAS  PubMed  Google Scholar 

  • Ross AF (1961b) Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340–358

    CAS  PubMed  Google Scholar 

  • Rovira AD (1969) Plant root exudates. Bot Rev 35:35–57

    CAS  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    CAS  PubMed  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salisbury FB (1994) The role of plant hormones. In: Wilkinson RE (ed) Plant-environment interactions. Marcel Dekker, New York, pp 39–81

    Google Scholar 

  • Salisbury FB, Ross CW (1992) Plant physiology. Wadsworth, Belmont, CA, pp 127–138

    Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stresseffects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    CAS  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogaea) plants. J Appl Microbiol 102:1283–1292

    CAS  PubMed  Google Scholar 

  • Sattely ES, Walsh CT (2008) A latent oxazoline electrophile for N-O-C bond formation in pseudomonine biosynthesis. J Am Chem Soc 130:12282–12284

    CAS  PubMed  Google Scholar 

  • Sayyed RZ, Chincholkar SB (2009) Siderophore-producing Alcaligenes feacalis exhibited more biocontrol potential Vis-à-Vis chemical fungicide. Curr Microbiol 58:47–51

    CAS  PubMed  Google Scholar 

  • Scher FM, Baker R (1982) Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72:1567–1573

    CAS  Google Scholar 

  • Scher FM, Kloepper JW, Singleton CA (1985) Chemotaxis of fluorescent Pseudomonas spp. to soybean seed exudates in vitro and in soil. Can J Microbiol 31:570–574

    Google Scholar 

  • Schultze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Annu Rev Genet 32:33–57

    CAS  PubMed  Google Scholar 

  • Senthil Kumar R, Parthibhan KT, Govinda Rao M (2009) Molecular characterization of Jatropha genetic resources through inter-simple sequence repeat (ISSR) markers. Mol Biol Rep 36:1951–1956

    CAS  PubMed  Google Scholar 

  • Sessitsch A, Howieson JG, Perret X, Antoun H, Martinez-Romero E (2002) Adavances in Rhizobium research. Crit Rev Plant Sci 21:323–378

    CAS  Google Scholar 

  • Shah J, Tsui F, Klessig DF (1997) Characterization of a salicylic acid–insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol Plant Microbe Interact 10:69–78

    CAS  PubMed  Google Scholar 

  • Siddiqui IA, Shaukat SS (2003) Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2,4-diacetylphloroglucinol. Soil Biol Biochem 35:1615–1623

    CAS  Google Scholar 

  • Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J, Handelsman J (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol 60:2023–2030

    CAS  PubMed Central  PubMed  Google Scholar 

  • Silo-suh LA, Stab VE, Raffel SR, Handelsman J (1998) Target range of Zwittermicin A, an Aminopolyol antibiotic from Bacillus cereus. Curr Microbiol 37:6–11

    CAS  PubMed  Google Scholar 

  • Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146

    CAS  PubMed  Google Scholar 

  • Siwayaprahm P, Audtho M, Ohmiya K, Wiwat C (2006) Purification and characterization of a Bacillus circulans No. 41 chitinase expressed in Escherichia coil. World J Microbial Biotechnol 22:331–335

    CAS  Google Scholar 

  • Skvortsov IM, Ignatov VV (1998) Extracellular polysaccharides and polysaccharide-containing biopolymers from Azospirillum species: properties and the possible role in interaction with plant roots. FEMS Microbiol Lett 165:223–229

    CAS  PubMed  Google Scholar 

  • Sleator RD, Hill C (2002) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26:49–71

    CAS  PubMed  Google Scholar 

  • Sorensen J (1997) The rhizosphere as a habitat for soil microorganisms. In: van Elsa JD, Trevors JT, Welington EMH (eds) Modern soil ecology. Marcel Dekker, New York, pp 21–46

    Google Scholar 

  • Sotirova AV, Spasova DI, Galabova DN, Karpenko E, Shulga A (2008) Rhamnolipid–biosurfactant permeabilizing effects on gram-positive and gram-negative bacterial strains. Curr Microbiol 56:639–644

    CAS  PubMed  Google Scholar 

  • Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J (2008) Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312:15–23

    CAS  Google Scholar 

  • Srivastava LM (2002) Plant growth and development: hormones and environment. Academic, San Diego

    Google Scholar 

  • Stabb EV, Handelsman J (1998) Genetic analysis of zwittermicin A resistance in Escherichia coli: effects on membrane potential and RNA polymerase. Mol Microbiol 27:311–322

    CAS  PubMed  Google Scholar 

  • Staunton S, Leprince F (1996) Effect of ph and some organic anions on the solubility of soil phosphate: implications for P bioavailability. Eur J Soil Sci 47:231–239

    CAS  Google Scholar 

  • Stevens PJG, Walker JTS, Shaw PW, Suckling DM (1994) Organosilicone surfactants: tools for horticultural crop protection. BCPC Pests Dis 2:755–760

    Google Scholar 

  • Stitcher L, Mauch-Mani B, Metraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270

    Google Scholar 

  • Strzelczyk E, Pokojska-Burdziej A (1984) Production of auxins and gibberellin like substances by mycorrhizal fungi, bacteria and actinomycetes isolated from soil and mycorhizosphere of pine (Pinus silvestris L.). Plant Soil 81:185–194

    CAS  Google Scholar 

  • Subba Rao NS (1982) Advances in agricultural microbiology. Oxford and IBH Publishing, Delhi

    Google Scholar 

  • Tahmatsidou V, O’Sullivan J, Cassells AC, Voyiatzis D, Paroussi G (2006) Comparison of AMF and PGPR inoculants for the suppression of Verticillium wilt of strawberry (Fragaria ananassa cv. Selva). Appl Soil Ecol 32:316–324

    Google Scholar 

  • Taize L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Association, Sunderland, MA, http://4e.plantphys.net

    Google Scholar 

  • Takeuchi Y, Yoshikawa M, Takeba G, Tanaka K, Shibata D, Horino O (1990) Molecular cloning and ethylene induction of mRNA encoding a phytoalexin elicitor-releasing factor, β‐1,3‐glucanase, in soybean. Plant Physiol 93:673–682

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taller BJ, Wong TY (1989) Cytokinins in Azobacter vinelandii culture medium. Appl Environ Microbiol 55:266–267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka H, Watanabe T (1995) Glucanases and chitinases of Bacillus circulans WL-12. J Ind Microbiol 14:478–483

    CAS  PubMed  Google Scholar 

  • Tans-Kersten J, Huang H, Allen C (2001) Ralstonia solanacearum needs motility for invasive virulence on tomato. J Bacteriol 183:3597–3605

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density dependent behaviors in associated bacteria. Mol Plant Microbe Int 13:637–648

    CAS  Google Scholar 

  • Theunis M, Kobayashi H, Broughton WJ, Prinsen E (2004) Flavonoids, NodD1, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol Plant Microbe Interact 17:1153–1161

    CAS  PubMed  Google Scholar 

  • Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomashow LS, Bonsall RF, Weller DM (1997) Antibiotic production by soil and rhizosphere microbes in situ. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology, 1st edn. American Society of Microbiology, Washington, DC, pp 493–499

    Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci U S A 95:15107–15111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thrane C, Nielsen TH, Nielsen MN, Olsson S, Sorensen J (2000) Viscosinamide producing Pseudomonas fluorescens DR54 exerts biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiol Ecol 33:139–146

    CAS  PubMed  Google Scholar 

  • Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospririllum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 34:1016–1024

    Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • Timmusk S, Grantcharova N, Wagner EGH (2005) Paenibacillus polymyxa invades plant roots and forms bio-films. Appl Environ Microbiol 11:7292–7300

    Google Scholar 

  • Tisdale SL, Nelson WL, Beaton JD, Havlin JL (1993) Soil fertility and fertilizers, 5th edn. Macmillan, New York, p 634

    Google Scholar 

  • Toshima BH, Maru K, Saito M, Ichihara A (1999) Study on fungitoxic 3-amino-2-piperidinone-containing lipids: total syntheses of cepaciamides A and B. Teterahedron Lett 40:939–942

    CAS  Google Scholar 

  • Toth IK, Newton JA, Hyman LJ, Lees AK, Daykin M, Ortori C, Williams P, Fray RG (2004) Potato plants genetically modified to produce N-acylhomoserine lactones increase susceptibility to soft rot erwiniae. Mol Plant Microbe Interact 17:880–87161

    CAS  PubMed  Google Scholar 

  • Tripathi RK, Gottlieb D (1969) Mechanism of action of the antifungal antibiotic pyrrolnitrin. J Bacteriol 100:310–318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tripathi M, Munot HP, Schouche Y, Meyer JM, Goel R (2005) Isolation and functional characterization of siderophore-producing lead and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol 50:233–237

    CAS  PubMed  Google Scholar 

  • Tuzun S (2001) The relationship between pathogen-induced systemic resistance (ISR) and multigenic (horizontal) resistance in plants. Eur J Plant Pathol 107:85–93

    Google Scholar 

  • Ugoji EO, Laing MD, Hunter CH (2005) Colonization of Bacillus spp. on seeds and in plant rhizoplane. J Environ Biol 26:459–466

    CAS  PubMed  Google Scholar 

  • Upadhyay SK, Maurya SK, singh DP (2012) Salinity tolerance in free living plant growth promoting rhizobacteria. Indian J Sci Res 3:73–78

    CAS  Google Scholar 

  • Uren NC (2000) Types, amounts and possible functions of compounds released into the rhizosphere by soil grown plants. In: Pinton R, Varani Z, Nanniperi P (eds) The rhizosphere: biochemistry, and organic substances at the soil interface. Marcel Dekker, New York, pp 19–40

    Google Scholar 

  • Vaidya RJ, Roy S, Macmil S, Gandhi S, Vyas P, Chhatpar HS (2003) Purification and characterization of chitinase from Alcaligenes xylosoxydans. Biotehnol Lett 25:715–717

    CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    PubMed  Google Scholar 

  • Van Overbeek LS (2013) Exploration of hitherto-uncultured bacteria from the rhizosphere. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 1 & 2. Wiley, Hoboken, NJ. doi:10.1002/9781118297674.ch16

    Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Google Scholar 

  • Van Wees S, Pieterse CMJ, Trijssenaar A, Van´t Westende YAM, Hartog F, Van Loon LC (1997) Differential induction of systemic resistance in Arabidobsis by biocontrol bacteria. Mol Plant Microbe Interact 10:716–724

    PubMed  Google Scholar 

  • Van Wees SCM, Luijendijk M, Smoorenburg I, Van Loon LC, Pieterse CMJ (1999) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Mol Biol 41:537–549

    PubMed  Google Scholar 

  • Van Wees SCM, de Swart EAM, Van Pelt JA, Van Loon LC, Pieterse CMJ (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate and jasmonate dependent defence pathways in Arabidopsis thaliana. Proc Natl Acad Sci 97:8711–8716

    PubMed Central  PubMed  Google Scholar 

  • Vande Broek A, Vanderleyden J (1995) The role of bacterial motility, chemotaxis, and attachment in bacteria-plant interactions. Mol Plant Microbe Interact 8:800–810

    CAS  Google Scholar 

  • Vande Broek A, Lambrecht M, Eggermont K, Vanderleyden J (1999) Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. J Bacteriol 181:1338–1342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vande Broek A, Gysegom P, Ona O, Hendrickx N, Prinsen E, Van Impe J, Vanderleyden J (2005) Transcriptional analysis of the Azospirillum brasilense indole-3-pyruvate decarboxylase gene and identification of a cis-acting sequence involved in auxin responsive expression. Mol Plant Microbe Interact 18:311–323

    CAS  PubMed  Google Scholar 

  • Vesper SJ (1987) Production of pili (fimbriae) by Pseudomonas xuorescens and correlation with attachment to corn roots. Appl Environ Microbiol 53:1397–1403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    CAS  Google Scholar 

  • Vijayan P, Shockey J, Levesque CA, Cook RJ, Browse J (1998) A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci U S A 95:7209–7214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Villegas J, Fortin JA (2002) Phosphorous solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizae fungi on a medium containing no3 as nitrogen source. Can J Bot 80:571–576

    CAS  Google Scholar 

  • Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15:22–30

    CAS  PubMed  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. Eur Mol Biol Org J 8:351–358

    CAS  Google Scholar 

  • Walker TS, Bais HP, Grotwewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walsh C, Pascal RA Jr, Johnston M, Raines R, Dikshit D, Krantz A, Honma M (1981) Mechanistic studies on the pyridoxal phosphate enzyme 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas sp. Biochemistry 20:7509–7519

    CAS  PubMed  Google Scholar 

  • Walsh UF, Morrissey JP, O’Gara F (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289–295

    CAS  PubMed  Google Scholar 

  • Wang S, Chang W (1997) Purification and characterization of two bifunctional chitinase/lysozymes extracellularly produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium. Appl Environ Microbiol 63:380–386

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (1993) Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ 16:579–585

    CAS  Google Scholar 

  • Wang CKE, Glick BR, Defago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907

    CAS  PubMed  Google Scholar 

  • Watt M, Hugenholtz P, White R, Vinall K (2006) Numbers and locations of native bacteria on field grown wheat roots quantified by fluorescence in situ hybridization. Environ Microbiol 71:1291–1299

    Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512

    Google Scholar 

  • Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L, Bankhead SB, Molar RA, Bonsall RF, Mavrodi DM, Thomashow LS (2007) Role of 2,4-diacetylphloroglucinol producing fluorescent Pseudomonas spp. in plant defence. Plant Biol 9:4–20

    CAS  PubMed  Google Scholar 

  • Werner T, Motyka V, Strnad M, Schmulling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci U S A 98:10487–10492

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whipps JM (2001) Microbial interaction and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    CAS  PubMed  Google Scholar 

  • Whitehead NA, Barnard AML, Slater H, Simpson NJL, Salmond GPC (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404

    CAS  PubMed  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv Agron 69:99–151

    CAS  Google Scholar 

  • Winkelmann G (ed) (1991) Handbook of microbial iron chelates. CRC Press, Boca Raton, FL

    Google Scholar 

  • Winkelmann G, van der Helm D, Neilands JB (1987) Iron transport in microbes, plants and animals. VCH Press, Weinheim

    Google Scholar 

  • Wu S, Fallon RD, Payne MS (1997) Over-production of stereoselective nitrile hydratase from Pseudomonas putida 5B in Escherichia coli: requirement for a novel downstream protein. Appl Microbiol Biotechnol 48:704–708

    CAS  PubMed  Google Scholar 

  • Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12–2 that overproduce indoleacetic acid. Curr Microbiol 32:67–71

    CAS  Google Scholar 

  • Yadav BK and Verma A (2012) Phosphate solubilization and mobilization in soil through microorganisms under arid ecosystems. In Ali M (ed) The functioning of ecosystems. ISBN:978-953-51-0573-2, In Tech, Available from:http://www.intechopen.com/books/the-functioning-of-ecosystems/phosphate-solubilization-and-mobilization-in-soil-through-microorganisms-under-arid-ecosystems

  • Yamada Y (1999) Autoregulatory factors and regulation of antibiotic production in Streptomyces. In: England R, Hobbs G, Bainton N, Roberts ML (eds) Microbial signalling and communication. Society for General Microbiology, Cambridge, pp 177–196

    Google Scholar 

  • Yamada Y, Nihira T (1998) Microbial hormones and microbial chemical ecology. In: Barton DHR, Nakanishi K, Meto-Cohn O (eds) Comprehensive natural products chemistry, vol 8. Elsevier, Oxford, pp 377–413

    Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    CAS  PubMed  Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    CAS  PubMed  Google Scholar 

  • Yasmin F, Othman R, Sijam K, Saad MS (2009) Characterization of beneficial properties of plant growth-promoting rhizobacteria isolated from sweet potato rhizosphere. Afr J Microbiol Res 3:815–821

    CAS  Google Scholar 

  • Zahir ZA, Ghani U, Naveed M, Nadeem SM, Arshad M (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat under salt-stressed conditions. Arch Microbiol 191:415–424

    CAS  PubMed  Google Scholar 

  • Zdor RE, Anderson AJ (1992) Influence of root colonizing bacteria on the defense responses of bean. Plant Soil 140:99–107

    Google Scholar 

  • Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu CM, Allen R, Melo IS, Pare PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851

    CAS  PubMed  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Pare PW (2008) Soil bacteria confer plant salt tolerance by tissue specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact 21:737–744

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddapura Ramachandrappa Niranjana M.Sc., M.Phil., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Niranjana, S.R., Hariprasad, P. (2014). Understanding the Mechanism Involved in PGPR-Mediated Growth Promotion and Suppression of Biotic and Abiotic Stress in Plants. In: Goyal, A., Manoharachary, C. (eds) Future Challenges in Crop Protection Against Fungal Pathogens. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1188-2_3

Download citation

Publish with us

Policies and ethics