Skip to main content

Fusarium Diseases of Canadian Grain Crops: Impact and Disease Management Strategies

  • Chapter
  • First Online:
Book cover Future Challenges in Crop Protection Against Fungal Pathogens

Abstract

The genus Fusarium, first described in the early nineteenth century, is composed of a wide range of soil-borne saprophytic and pathogenic fungi. More than a few hundred different phylogenetic species of Fusarium have been identified to date. Plant species are the main target of Fusarium pathogenicity, although some species, including F. chlamydosporum, F. oxysporum and F. verticillioides, have been shown to infect immune-compromised humans. It is said that most plant species are susceptible to at least one disease caused by Fusarium fungi. Fusarium species can cause vascular wilt diseases, for which a broad range of host plants are susceptible, involving fungal colonization of the xylem via the roots and the growing mycelium eventually causes vessel obstruction, blocking transport of water to the aerial parts of the plant. In dicots, over 100 formae speciales of F. oxysporum have been identified as causative agents in vascular wilt, including F. oxysporum ff. spp. lycopersici, phaseoli and pisi, which infect tomato, beans and pea crops, respectively. Fusarium species also cause root rots and stem rots of various field crops worldwide, including peas and related pulse crops. In cereals and corn (maize) Fusarium crown rot (FCR) and Fusarium stalk (stem) rot, respectively, are caused by a different group of Fusarium pathogens from those responsible for diseases in dicots, and include F. graminearum, F. culmorum, F. avenaceum, F. verticillioides and F. pseudograminearum. In addition to root and stem rot diseases, Fusarium species also infect the inflorescence structures, causing Fusarium head blight (FHB; also known as scab) in cereals and Fusarium ear blight (sometimes referred to as FEB) in maize, and leads to damage and yield loss in developing kernels. There is an overlap of species responsible for Fusarium crown and stalk rots with those responsible for Fusarium head and ear blights. Many of these species produce harmful mycotoxins, including trichothecenes and fumonisins, which accumulate in the kernels of infected heads. In this chapter, we will start with an introduction to Fusarium species, their classification and genetics, provide a review of the Fusarium diseases of three groups of Canadian field crops (cereals, maize and pulses), followed by sections on disease management strategies, and Fusarium toxin quantification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aamot HU, Hofgaard IS, Brodal G, Elen O, Jestoi M, Klemsdal SS (2012) Evaluation of rapid test kits for quantification of deoxynivalenol in naturally contaminated oats and wheat. World Mycotoxin J 5:339–350

    CAS  Google Scholar 

  • Abbax HK, Gelderblom WCA, Cawood ME, Shier WT (1993) Biological activities of fumonisins, mycotoxins from Fusarium moniliforme, in jimsonweed (Datura stramonium L.) and mammalian cell cultures. Toxicon 31:345–353

    Google Scholar 

  • Abdellatif L, Fernandez MR, Bouzid S, Vujanovic V (2010) Characterization of virulence and PCR-DGGE profiles of Fusarium avenaceum from western Canadian Prairie Ecozone of Saskatchewan. Can J Plant Pathol 32:468–480

    CAS  Google Scholar 

  • Agrios GN (1988) Plant pathology, 3rd edn. Academic, San Diego

    Google Scholar 

  • Agrios GN (1997) Plant pathology, 4th edn. Academic, San Diego, CA

    Google Scholar 

  • Alexander NJ, McCormick SP, Waalwijk C, van der Lee T, Proctor RH (2011) The genetic basis for 3-ADON and 15-ADON trichothecene chemotypes in Fusarium. Fungal Genet Biol 48:485–495

    CAS  PubMed  Google Scholar 

  • Angers D, Recous S (1997) Decomposition of wheat straw and rye residues as affected by particle size. Plant and Soil 189:197–203

    CAS  Google Scholar 

  • Anonymous (1996) Sustainable agriculture facts—growing for tomorrow: dealing with Fusarium head blight. Canada-Manitoba Agreement on Agricultural Sustainability

    Google Scholar 

  • Arunachalam C, Doohan FM (2013) Trichothecene toxicity in eukaryotes: cellular and molecular mechanisms in plants and animals. Toxicol Lett 217:149–158

    CAS  PubMed  Google Scholar 

  • Assabgui RA, Reid LM, Hamilton RI, Arnason JT (1993) Correlation of kernel (E)-ferulic acid content of maize with resistance to Fusarium graminearum. Phytopathology 83:949–953

    CAS  Google Scholar 

  • Backhouse D, Abubakar AA, Burgess LW, Dennis JI, Hollaway GJ, Wildermuth GB et al (2004) Survey of Fusarium species associated with crown rot of wheat and barley in eastern Australia. Australas Plant Pathol 33:255–261

    Google Scholar 

  • Bai G, Shaner G (1994) Scab of wheat: prospects for control. Plant Dis 78:760–766

    Google Scholar 

  • Bai G-H, Desjardins AE, Plattner RD (2002) Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia 153:91–98

    CAS  PubMed  Google Scholar 

  • Bailey KL, Gossen BD, Derksen DA, Watson PR (2000) Impact of agronomic practices and environment on diseases of wheat and lentil in southeastern Saskatchewan. Can J Plant Sci 80:917–927

    Google Scholar 

  • Bailey KL, Gossen BD, Lafond GP, Watson PR, Derksen DA (2001) Effect of tillage and crop rotation on root and foliar diseases of wheat and pea in Saskatchewan from 1991 to 1998: univariate and multivariate analyses. Can J Plant Sci 81:789–803

    Google Scholar 

  • Bailey KL, Gossen BD, Gugel RK, Morrall RAA (2003) Diseases of field crops in Canada, 3rd edn. University Extension Press, University of Saskatchewan, Saskatoon, SK

    Google Scholar 

  • Ban T, Watanabe N (2001) The effects of chromosomes 3A and 3B on resistance to Fusarium head blight in tetraploid wheat. Hereditas 135:95–99

    CAS  PubMed  Google Scholar 

  • Bernardo A, Bai G, Guo P, Xiao K, Guenzi AC, Ayoubi P (2007) Fusarium graminearum-induced changes in gene expression between Fusarium head blight-resistant and susceptible wheat cultivars. Funct Integr Genomics 7:69–77

    CAS  PubMed  Google Scholar 

  • Berthiller F, Dall’Asta C, Schuhmacher R, Lemmens M, Adam G, Krska R (2005) Masked mycotoxins: determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry. J Agric Food Chem 53:3421–3425

    CAS  PubMed  Google Scholar 

  • Bilgi VN, Bradley CA, Khot SD, Grafton KF, Rasmussen JB (2008) Response of dry bean genotypes to Fusarium root rot, caused by Fusarium solani f. sp. phaseoli, under field and controlled conditions. Plant Dis 92:1197–1200

    Google Scholar 

  • Bilgi VN, Bradley CA, Mathew FM, Ali S, Rasmussen JB (2011) Root rot of dry edible bean caused by Fusarium graminearum. Plant Health Prog. doi:10.1094/PHP-2011-0425-01-RS

    Google Scholar 

  • Bily AC, Reid LM, Taylor JH, Johnston D, Malouin C, Burt AJ et al (2003) Dehydrodimers of ferulic acid in maize grain pericarp and aleurone: resistance factors to Fusarium graminearum. Phytopathology 93:712–719

    CAS  PubMed  Google Scholar 

  • Biselli S, Persin C, Syben M (2008) Investigation of the distribution of deoxynivalenol and ochratoxin A contamination within a 26 t truckload of wheat kernels. Mycotoxin Res 24:98–104

    CAS  PubMed  Google Scholar 

  • Boddu J, Cho S, Kruger WM, Muehlbauer GJ (2006) Transcriptome analysis of the barley-Fusarium graminearum interaction. Mol Plant Microbe Interact 19:407–417

    Google Scholar 

  • Boddu J, Cho S, Muehlbauer GJ (2007) Transcriptome analysis of trichothecene-induced gene expression in barley. Mol Plant Microbe Interact 20:1364–1375

    CAS  PubMed  Google Scholar 

  • Bogale M, Wingfield BD, Wingfield MJ, Steenkamp ET (2007) Species-specific primers for Fusarium redolens and a PCR-RFLP technique to distinguish among three clades of Fusarium oxysporum. FEMS Microbiol Lett 271:27–32

    CAS  PubMed  Google Scholar 

  • Boland GL (1984) Epidemiology and management of diseases caused by Sclerotinia sclerotiorum in white bean and soybean [Thesis]. Dissertation, University of Guelph, Guelph, ON

    Google Scholar 

  • Bolduan C, Miedaner T, Schipprack W, Dhillon BS, Melchinger AE (2009) Genetic variation for resistance to ear rots and mycotoxins contamination in early European maize inbred lines. Crop Sci 49:2019–2028

    Google Scholar 

  • Boling MB, Grogan CO (1965) Gene action affecting host resistance to Fusarium ear rot of maize. Crop Sci 5:305–307

    Google Scholar 

  • Boström U, Lofs-Holmin A (1986) Growth of earthworms (Allolobophora caliginosa) fed shoots and roots of barley, meadow fescue and lucerne. Studies in relation to particle size, protein, crude fiber content and toxicity. Pedobiologia 29:1–12

    Google Scholar 

  • Boutigny AL, Richard FF, Barreau C (2008) Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes. Eur J Plant Pathol 121:411–423

    CAS  Google Scholar 

  • Boutigny A-L, Ward TJ, Van Coller GJ, Flett B, Lamprecht SC, O’Donnell K et al (2011) Analysis of the Fusarium graminearum species complex from wheat, barley and maize in South Africa provides evidence of species-specific differences in host preference. Fungal Genet Biol 48:914–920

    CAS  PubMed  Google Scholar 

  • Branham BE, Plattner RD (1993) Isolation and characterization of a new fumonisin from liquid cultures of Fusarium moniliforme. J Nat Prod 56:1630–1633

    CAS  Google Scholar 

  • Bremer E, Houtum W, Kessel C (1991) Carbon dioxide evolution from wheat and lentil residues as affected by grinding, added nitrogen, and the absence of soil. Biol Fertil Soils 11:221–227

    Google Scholar 

  • Brown DW, Dyer RB, McCormick SP, Kendra DF, Plattner RD (2004) Functional demarcation of the Fusarium core trichothecene gene cluster. Fungal Genet Biol 41:454–462

    CAS  PubMed  Google Scholar 

  • Burgess LW, Griffin DM (1968) The recovery of Gibberella zeae from wheat straws. Aust J Exp Agric Anim Hus 8:364–370

    Google Scholar 

  • Burgess LW, Backhouse D, Summerell BA, Swan LJ (2001) Crown rot of wheat. In: Summerell B, Leslie J, Backhouse D, Bryden W, Burgess L (eds) Fusarium: Paul E. Nelson memorial symposium. APS Press, St. Paul, MN, pp 271–294

    Google Scholar 

  • Bürstmayr H, Ban T, Anderson AJ (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 128:1–26

    Google Scholar 

  • Bürstmayr M, Huber K, Heckmann J, Steiner B, Nelson J, Bürstmayr H (2012) Mapping of QTL for Fusarium head blight resistance and morphological and developmental traits in three backcross populations derived from Triticum dicoccum × Triticum durum. Theor Appl Genet 125:1751–1765

    Google Scholar 

  • Bushnell WR, Hazen BE, Pritsch C (2003) Histology and physiology of Fusarium head blight. In: Leonard KJ, Bushnell WR (eds) Fusarium head blight of wheat and barley. The American Phytopathological Society, St. Paul, MN, pp 44–84

    Google Scholar 

  • Caesar AJ, Pearson RC (1983) Environmental factors affecting survival of ascospores of Sclerotinia sclerotiorum. Phytopathology 73:1024–1030

    Google Scholar 

  • Canadian Food Inspection Agency (2012a) RG-8 regulatory guidance: contaminants in feed. http://www.inspection.gc.ca/animals/feeds/regulatory-guidance/rg-8/eng/1347383943203/1347384015909?chap=1#s1c1. Accessed 5 April 2013

  • Canadian Food Inspection Agency (2012b) 2009–2010 Ochratoxin A and deoxynivalenol in selected foods. http://www.inspection.gc.ca/food/chemical-residues-microbiology/chemical-residues/ochratoxin-a-and-deoxynivalenol/eng/1348258196979/1348258304536. Accessed 5 April 2013

  • Cao A, Reid LM, Butrón A, Malvar RA, Souto XC, Santiago R (2011) Role of hydroxycinnamic acids in the infection of maize silks by Fusarium graminearum Schwabe. Mol Plant Microbe Interact 24:1020–1026

    CAS  PubMed  Google Scholar 

  • Carapito R, Vorwerk S, Jeltsch J-M, Phalip V (2013) Genome-wide transcriptional responses of Fusarium graminearum to plant cell wall substrates. FEMS Microbiol Lett 340:129–134

    CAS  PubMed  Google Scholar 

  • Champeil A, Fourbet J-F, Doré T (2004) Effects of grain sampling procedures on Fusarium mycotoxin assays in wheat grains. J Agric Food Chem 52:6049–6054

    CAS  PubMed  Google Scholar 

  • Chan KY (2001) An overview of some tillage impacts on earthworm population abundance and diversity—implications for functioning in soils. Soil Tillage Res 57:179–191

    Google Scholar 

  • Chan KY, Heenan DP (2006) Earthworm population dynamics under conservation tillage systems in south-eastern Australia. Soil Res 44:425–431

    Google Scholar 

  • Chen X, Steed A, Travella S, Keller B, Nicholson P (2009) Fusarium graminearum exploits ethylene signalling to colonize dicotyledonous and monocotyledonous plants. New Phytol 182:975–983

    CAS  PubMed  Google Scholar 

  • Chittem K, Porter L, McPhee K, Khan M, Goswami RS (2012) Fusarium avenaceum as causal agent of root rot in field peas and its control. Phytopathology 100:S25

    Google Scholar 

  • Cho S-H, Lee J, Jung K-H, Lee Y-W, Park J-C, Paek N-C (2012) Genome-wide analysis of genes induced by Fusarium graminearum infection in resistant and susceptible wheat cultivars. J Plant Biol 55:64–72

    CAS  Google Scholar 

  • Chongo G, Gossen BD, Kutcher HR, Gilbert J, Turkington TK, Fernandez MR et al (2001) Reaction of seedling roots of 14 crop species to Fusarium graminearum from wheat heads. Can J Plant Pathol 23:132–137

    Google Scholar 

  • Christensen CM, Kaufmann HH (1969) Grain storage: the role of fungi in quality loss. University of Minnesota Press, Minneapolis

    Google Scholar 

  • Chungu C, Mather DE, Reid LM, Hamilton RI (1996) Inheritance of kernel resistance to Fusarium graminearum in maize. J Heredity 87:382–385

    Google Scholar 

  • Cichy K, Snapp S, Kirk W (2007) Fusarium root rot incidence and root system architecture in grafted common bean lines. Plant and Soil 300:233–244

    CAS  Google Scholar 

  • Clear RM, Abramson D (1986) Occurrence of Fusarium head blight and deoxynivalenol (vomitoxin) in two samples of Manitoba wheat in 1984. Can Plant Dis Surv 66:9–11

    Google Scholar 

  • Clear RM, Babb J, Bullock P (1993) Fusarium head blight on the prairies: past, present, and future. Agriforum 1993:1–4

    Google Scholar 

  • Clear RM, Patrick SK, Nowicki T, Gaba D, Edney M, Babb JC (1997) The effect of hull removal and pearling on Fusarium species and trichothecenes in hulless barley. Can J Plant Sci 77:161–166

    Google Scholar 

  • Clear RM, Patrick SK, Gaba D, Abramson D, Smith DM (2005) Prevalence of fungi and fusariotoxins on hard red spring and amber durum wheat seed from western Canada, 2000 to 2002. Can J Plant Pathol 27:528–540

    CAS  Google Scholar 

  • Clear RM, Tucker JR, Gaba D, Patrick SK, Lee SJ, Demeke T et al (2013) Deoxynivalenol levels and chemotype frequency in barley cultivars inoculated with two chemotypes of Fusarium graminearum. Can J Plant Pathol 35:37–45

    CAS  Google Scholar 

  • Cole RJ, Cox RH (1981) The trichothecenes. In: Cole RA, Cox RH (eds) Handbook of toxic fungal metabolites. Academic Press, Toronto, ON, pp 152–263

    Google Scholar 

  • Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC, Grimwood J et al (2009) The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet 5:e1000618

    PubMed Central  PubMed  Google Scholar 

  • Cuomo CA, Gcoldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A et al (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400–1402

    CAS  PubMed  Google Scholar 

  • Dall’Asta C, Berthiller F, Schuhmacher R, Adam G, Lemmens M, Krska R (2005) DON-glycosides: characterisation of synthesis products and screening for their occurrence in DON-treated wheat samples. Mycotoxin Res 21:123–127

    PubMed  Google Scholar 

  • de la Pena RC, Smith KP, Capettini F, Muehlbauer GJ, Gallo MM, Dill MR et al (1999) Quantitative trait loci associated with resistance to Fusarium head blight and kernel discoloration in barley. Theor Appl Genet 99:561–569

    PubMed  Google Scholar 

  • Del Ponte EM, Fernandes JMC, Bergstrom GC (2007) Influence of growth stage on Fusarium head blight and deoxynivalenol production in wheat. J Phytopathol 155:577–581

    Google Scholar 

  • Demeke T, Gräfenhan T, Clear RM, Phan A, Ratnayaka I, Chapados J et al (2010) Development of a specific TaqMan real-time PCR assay for quantification of Fusarium graminearum clade 7 and comparison of fungal biomass determined by PCR with deoxynivalenol content in wheat and barley. Int J Food Microbiol 141:45–50

    CAS  PubMed  Google Scholar 

  • Desjardins AE (2008) Natural product chemistry meets genetics: when is a genotype a chemotype? J Agric Food Chem 56:7587–7592

    CAS  PubMed  Google Scholar 

  • Desmond OJ, Edgar CI, Manners JM, Maclean DJ, Schenk PM, Kazan K (2005) Methyl jasmonate induced gene expression in wheat delays symptom development by the crown rot pathogen Fusarium pseudograminearum. Physiol Mol Plant Pathol 67:171–179

    CAS  Google Scholar 

  • Dill-Macky R, Jones RK (2000) The effect of previous crop residues and tillage on Fusarium head blight of wheat. Plant Dis 84:71–76

    Google Scholar 

  • Ding J-Q, Wang X-M, Chander S, Yan J-B, Li J-S (2008) QTL mapping of resistance to Fusarium ear rot using a RIL population in maize. Mol Breed 22:395–403

    Google Scholar 

  • Dokken-Bouchard FL, Banniza S, Bassendowski KA, Chant S, Cruise D, Gross G et al (2011) Survey of field pea diseases in Saskatchewan, 2010. Can Plant Dis Surv 91:133–135

    Google Scholar 

  • Domijan A-M, Abramov AY (2011) Fumonisin B1 inhibits mitochondrial respiration and deregulates calcium homeostasis—implication to mechanism of cell toxicity. Int J Biochem Cell Biol 43:897–904

    CAS  PubMed  Google Scholar 

  • Dorokhin D, Haasnoot W, Franssen MR, Zuilhof H, Nielen MF (2011) Imaging surface plasmon resonance for multiplex microassay sensing of mycotoxins. Anal Bioanal Chem 400:3005–3011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Efetha A (2008) FHB and irrigation management—frequently asked questions. Alberta Agriculture, Food and Rural Development, Lethbridge. http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/faq6824?opendocument

  • Eller MS, Robertson-Hoyt LA, Payne GA, Holland JB (2008) Grain yield and Fusarium ear rot of maize hybrids developed from lines with varying levels of resistance. Maydica 53:231–237

    Google Scholar 

  • Eriksen GS, Pettersson H (2004) Toxicological evaluation of trichothecenes in animal feed. Anim Feed Sci Technol 114:205–239

    CAS  Google Scholar 

  • Eriksen-Hamel NS, Speratti AB, Whalen JK, Légère A, Madramootoo CA (2009) Earthworm populations and growth rates related to long-term crop residue and tillage management. Soil Tillage Res 104:311–316

    Google Scholar 

  • Esmaeili Taheri A, Hamel C, Gan Y, Vujanovic V (2011) First report of Fusarium redolens from Saskatchewan and its comparative pathogenicity. Can J Plant Pathol 33:559–564

    Google Scholar 

  • Eudes F, Comeau A, Rioux S, Collin J (2001) Impact of trichothecenes on Fusarium head blight (Fusarium graminearum) development in spring wheat (Triticum aestivum). Can J Plant Pathol 23:318–322

    Google Scholar 

  • Farrar JJ, Davis RM (1991) Relationships among ear morphology, western flower thrips, and Fusarium ear rot of corn. Phytopathology 81:661–666

    Google Scholar 

  • Feng J, Hwang R, Chang KF, Hwang SF, Strelkov SE, Gossen BD et al (2010) Genetic variation in Fusarium avenaceum causing root rot on field pea. Plant Pathol 59:845–852

    CAS  Google Scholar 

  • Feng J, Hwang R, Chang KF, Conner RL, Hwang SF, Strelkov SE et al (2011) Identification of microsatellite markers linked to quantitative trait loci controlling resistance to Fusarium root rot in field pea. Can J Plant Sci 91:199–204

    Google Scholar 

  • Fernandez MR (2007) Fusarium populations in roots of oilseed and pulse crops grown in eastern Saskatchewan. Can J Plant Sci 87:945–952

    Google Scholar 

  • Fernandez MR (2009) Common root rot of barley in Saskatchewan and north—central Alberta. Can J Plant Pathol 31:96

    Google Scholar 

  • Fernandez MR, Stolhandske-Dale S, Zentner RP, Pearse P (2001) Progress in management of Fusarium head blight in Saskatchewan. In: Fedak G, Choo A (eds) Proceedings Canadian workshop on Fusarium head blight, Ottawa, ON

    Google Scholar 

  • Fernandez MR, Huber D, Basnyat P, Zentner RP (2008) Impact of agronomic practices on populations of Fusarium and other fungi in cereal and noncereal crop residues on the Canadian Prairies. Soil Tillage Res 100:60–71

    Google Scholar 

  • Fernandez MR, Zentner RP, Basnyat P, Gehl D, Selles F, Huber D (2009) Glyphosate associations with cereal diseases caused by Fusarium spp. in the Canadian Prairies. Eur J Agron 31: 133–143

    CAS  Google Scholar 

  • Fernandez MR, Ulrich D, Brandt SA, Zentner RP, Wang H, Thomas AG et al (2011) Crop management effects on root and crown rot of wheat in west-central Saskatchewan, Canada. Agron J 103:756–765

    Google Scholar 

  • Fernando WGD, Paulitz TC, Seaman WL, Dutilleul P, Miller JD (1997) Head blight gradients caused by Gibberella zeae from area sources of inoculum in wheat field plots. Phytopathology 87:414–421

    CAS  PubMed  Google Scholar 

  • Fernando WGD, Miller JD, Seaman WL, Seifert K, Paulitz TC (2000) Daily and seasonal dynamics of airborne spores of Fusarium graminearum and other Fusarium species sampled over wheat plots. Can J Bot 78:497–505

    Google Scholar 

  • Foley DC (1959) Systemic infection of corn by Fusarium moniliforme. Phytopathology 49:538

    Google Scholar 

  • Foroud NA (2011) Investigating the molecular mechanisms of Fusarium head blight resistance in wheat [Thesis]. Dissertation, The University of British Columbia, Vancouver, BC

    Google Scholar 

  • Foroud NA, Eudes F (2009) Trichothecenes in cereal grains. Int J Mol Sci 10:147–173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Foroud NA, McCormick SP, MacMillan T, Badea A, Kendra DF, Ellis BE et al (2012a) Greenhouse studies reveal increased aggressiveness of emergent Canadian Fusarium graminearum chemotypes in wheat. Plant Dis 96:1271–1279

    CAS  Google Scholar 

  • Foroud NA, Ouellet T, Laroche A, Oosterveen B, Jordan MC, Ellis BE et al (2012b) Differential transcriptome analyses of three wheat genotypes reveal different host response pathways associated with Fusarium head blight and trichothecene resistance. Plant Pathol 61:296–314

    CAS  Google Scholar 

  • Francl L, Bergstrom G, Gilbert J, Pedersen W, Dill-Macky R, Sweets L et al (1999) Daily inoculum levels of Gibberella zeae on wheat spikes. Plant Dis 83:662–666

    Google Scholar 

  • Fredlund E, Gidlund A, Pettersson H, Olsen M, Börjesson T (2010) Real-time PCR detection of Fusarium species in Swedish oats and correlation to T-2 and HT-2 toxin content. World Mycotoxin J 3:77–88

    CAS  Google Scholar 

  • Fredlund E, Gidlund A, Sulyok M, Borjesson T, Krska R, Olsen M et al (2013) Deoxynivalenol and other selected Fusarium toxins in Swedish oats—occurrence and correlation to specific Fusarium species. Int J Food Microbiol 167:276–283

    CAS  PubMed  Google Scholar 

  • Gale LR, Harrison SA, Ward TJ, O’Donnell K, Milus EA, Gale SW et al (2011) Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in Southern Louisiana. Phytopathology 101:124–134

    CAS  PubMed  Google Scholar 

  • Garcia D, Ramos AJ, Sanchis V, Marín S (2009) Predicting mycotoxins in foods: a review. Food Microbiol 26:757–769

    CAS  PubMed  Google Scholar 

  • Geddes J, Eudes F, Laroche A, Selinger LB (2008) Differential expression of proteins in response to the interaction between the pathogen Fusarium graminearum and its host, Hordeum vulgare. Proteomics 8:545–554

    CAS  PubMed  Google Scholar 

  • Geiser DM, Aoki T, Bacon CW, Baker SE, Bhattacharyya MK, Brandt ME et al (2013) One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. Phytopathology 103:400–408

    PubMed  Google Scholar 

  • Gelderblom WC, Jaskiewicz K, Marasas WF, Thiel PG, Horak RM, Vleggaar R et al (1988) Fumonisins—novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl Environ Microbiol 54:1806–1811

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gilbert J, Haber S (2013) Overview of some recent research developments in Fusarium head blight of wheat. Can J Plant Pathol 35:149–174

    Google Scholar 

  • Gilbert J, Tekauz A (1993) Effects of delayed harvest on Manitoba wheat. In: Proceedings of the 1993 regional scab forum, Moorhead, MN

    Google Scholar 

  • Gilbert J, Tekauz A (2000) Review: recent developments in research on Fusarium head blight of wheat in Canada. Can J Plant Pathol 22:1–8

    Google Scholar 

  • Gilbert J, Tekauz A (2011) Strategies for management of Fusarium head blight (FHB) in cereals. Prairie Soils Crops J 4:97–104

    Google Scholar 

  • Gillespie ME, Brandt AS, Scofield SR (2012) Ethylene-signaling is essential for basal resistance to Fusarium head blight in wheat. In: Proceedings of the national Fusarium head blight forum, Orlando, FL

    Google Scholar 

  • Gilmore SR, Grafenhan T, Louis-Seize G, Seifert KA (2009) Multiple copies of cytochrome oxidase 1 in species of the fungal genus Fusarium. Mol Ecol Resour 9(suppl s1):90–98

    CAS  PubMed  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF et al (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    CAS  PubMed  Google Scholar 

  • Golinski P, Waskiewicz A, Wisniewska H, Kiecana I, Mielniczuk E, Gromadzka K et al (2010) Reaction of winter wheat (Triticum aestivum L.) cultivars to infection with Fusarium spp.: mycotoxin contamination in grain and chaff. Food Addit Contam Part A 27:1015–1024

    CAS  Google Scholar 

  • Golkari S, Gilbert J, Prashar S, Procunier JD (2007) Microarray analysis of Fusarium graminearum-induced wheat genes: identification of organ-specific and differentially expressed genes. Plant Biotechnol J 5:38–49

    Google Scholar 

  • Golkari S, Gilbert J, Ban T, Procunier JD (2009) QTL-specific microarray gene expression analysis of wheat resistance to Fusarium head blight in Sumai-3 and two susceptible NILs. Genome 52:409–418

    CAS  PubMed  Google Scholar 

  • Golrnski P, Kosteckt M, Lasocka I, Wisniewska H, Chelkowski J, Kaczmarek Z (1996) Moniliformin accumulation and other effects of Fusarium avenaceum (Fr.) Sacc. on kernels of winter wheat cultivars. J Phytopathol 144:495–499

    Google Scholar 

  • Gordon WL (1954) The occurrence of Fusarium species in Canada. IV Taxonomy and prevalence of Fusarium species in the soil of cereal plots. Can J Bot 32:622–629

    Google Scholar 

  • Gordon WL (1956) The occurrence of Fusarium species in Canada. V Taxonomy and geographic distribution of Fusarium species in soil. Can J Bot 34:833–846

    Google Scholar 

  • Goswami RS, Matthew F, Gambhir A, Barasubiye T, Lamppa RS, Bradley C et al (2008) Fusarium species associated with root rots of pulse crops in North Dakota. In: The proceedings of the seventh Canadian pulse research workshop, Winnipeg, MB, 5–7 Nov 2008

    Google Scholar 

  • Gräfenhan T, Patrick SK, Roscoe M, Trelka R, Gaba D, Chan JM et al (2013) Fusarium damage in cereal grains from Western Canada. 1. Phylogenetic analysis of moniliformin-producing Fusarium species and their natural occurrence in mycotoxin-contaminated wheat, oats, and rye. J Agric Food Chem 61:5425–5437

    PubMed  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grünwald NJ, Coffman VA, Kraft JM (2003) Sources of partial resistance to Fusarium root rot in the Pisum core collection. Plant Dis 87:1197–1200

    Google Scholar 

  • Gunawardena U, Rodriguez M, Straney D, Romeo JT, VanEtten HD, Hawes MC (2005) Tissue-specific localization of pea root infection by Nectria haematococca. Mechanisms and consequences. Plant Physiol 137:1363–1374

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gunnar L (2001) Cutting length of straw by combine harvesting—technical possibilities and biological effects. In: Reports Agriculture and Industry, TI—Swedish Institute of Agricultural and Environmental Engineering. Report 282. http://www.jti.se/index.php?page=publicationinfo&publicationid=229

  • Hadwiger LA (2008) Pea-Fusarium solani interactions contributions of a system toward understanding disease resistance. Phytopathology 98:372–379

    CAS  PubMed  Google Scholar 

  • Halstensen AS, Nordby KC, Eduard W, Klemsdal SS (2006) Real-time PCR detection of toxigenic Fusarium in airborne and settled grain dust and associations with trichothecene mycotoxins. J Environ Monit 8:1235–1241

    CAS  PubMed  Google Scholar 

  • Harris LJ, Saparno A, Johnston A, Prisic S, Xu M, Allard S et al (2005) The maize An2 gene is induced by Fusarium attack and encodes an ent-copalyl diphosphate synthase. Plant Mol Biol 59:881–894

    CAS  PubMed  Google Scholar 

  • Harrison LR, Colvin BM, Greene JT, Newman LE, Cole JR (1990) Pulmonary edema and hydrothorax in swine produced by fumonisin B1, a toxic metabolite of Fusarium moniliforme. J Vet Diagn Invest 2:217–221

    CAS  PubMed  Google Scholar 

  • He QH, Xu Y, Wang D, Kang M, Huang ZB, Li YP (2012) Simultaneous multiresidue determination of mycotoxins in cereal samples by polyvinylidene fluoride membrane based dot immunoassay. Food Chem 134:507–512

    CAS  Google Scholar 

  • Headrick JM, Pataky JK (1991) Maternal influence of the resistance of sweet corn lines to kernels infection by Fusarium moniliforme. Phytopathology 81:268–274

    Google Scholar 

  • Health Canada (2011) Canadian standards (maximum levels) for various chemical contaminants in food. www.hc-sc.gc.ca/fn-an/securit/chem-chim/contaminants-guidelines-directives-eng.php. Accessed 18 March 2013

  • Henriquez MA, McLaren DL, Conner RL, Balasubramanian PB, Chang KF (2012a) The proceedings of the ninth Canadian pulse research workshop, Niagara Falls, ON, 6–9 Nov 2012

    Google Scholar 

  • Henriquez MA, McLaren DL, Conner RL, Penner WC, Kerley T (2012b) Diseases of field bean in Manitoba in 2011. Can Plant Dis Surv 92:120–121

    Google Scholar 

  • Hoenisch RW, Davis RM (1994) Relationship between kernel pericarp thickness and susceptibility to Fusarium ear rot in field corn. Plant Dis 78:517–519

    Google Scholar 

  • Hogg AC, Johnston RH, Johnston JA, Klouser L, Kephart KD, Dyer AT (2010) Monitoring Fusarium crown rot populations in spring wheat residues using quantitative real-time polymerase chain reaction. Phytopathology 100:49–57

    CAS  PubMed  Google Scholar 

  • Hohn TM, McCormick SP, Desjardins AE (1993) Evidence for a gene cluster involving trichothecene-pathway biosynthetic genes in Fusarium sporotrichioides. Curr Genet 24:291–295

    CAS  PubMed  Google Scholar 

  • House GJ, Parmelee RW (1985) Comparison of soil arthropods and earthworms from conventional and no-tillage agroecosystems. Soil Tillage Res 5:351–360

    Google Scholar 

  • Hwang SF, Howard RJ, Chang KF, Park B, Burnett PA (1994) Etiology and severity of Fusarium root rot of lentil in Alberta. Can J Plant Pathol 16:295–303

    Google Scholar 

  • Hwang SF, Howard RJ, Chang KF, Park B, Lopetinsky K, McAndrew DW (1995) Screening of field pea cultivars for resistance to Fusarium root rot under field conditions in Alberta. Can Plant Dis Surv 75:51–56

    Google Scholar 

  • Hwang SF, Gossen BD, Turnbull GD, Chang KF, Howard RJ, Thomas AG (2000) Effect of temperature, seeding date, fungicide seed treatment and inoculation with Fusarium avenaceum on seedling survival, root rot severity and yield of lentil. Can J Plant Sci 80:899–907

    Google Scholar 

  • Igawa T, Takahashi-Ando N, Ochiai N, Ohsato S, Shimizu T, Kudo T et al (2007) Reduced contamination by the Fusarium mycotoxin zearalenone in maize kernels through genetic modification with a detoxification gene. Appl Environ Microbiol 73:1622–1629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iglesias J, Presello DA, Botta G, Lori GA, Fauguel CM (2010) Aggressiveness of Fusarium section Liseola isolates causing maize ear rot in Argentina. J Plant Pathol 92:205–211

    Google Scholar 

  • Ilgen P, Hadeler B, Maier FJ, Schäfer W (2009) Developing kernel and rachis node induce the trichothecene pathway of Fusarium graminearum during wheat head infection. Mol Plant Microbe Interact 22:899–908

    CAS  PubMed  Google Scholar 

  • Inch S, Gilbert J (1999) Survival of Fusarium graminearum on Fusarium damaged kernels. In: Clear R (ed) Proceedings Canadian workshop on Fusarium head blight, Winnipeg, MB

    Google Scholar 

  • Infantino A, Kharrat M, Riccioni L, Coyne CJ, McPhee KE, Grünwald NJ (2006) Screening techniques and sources of resistance to root diseases in cool season food legumes. Euphytica 147:201–221

    Google Scholar 

  • International Agency for Research on Cancer (ICARC) (1993) Monograph 56: some naturally occurring substances: some food items and constituents heterocyclic amines and mycotoxins. IARC, Lyon, France

    Google Scholar 

  • Jansen C, von Wettstein D, Schaefer W, Kogel KH, Felk A, Maier FJ (2005) Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proc Natl Acad Sci U S A 102:16892–16897

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jenczmionka NJ, Schäfer W (2005) The Gpmk1 MAP kinase of Fusarium graminearum regulates the induction of specific secreted enzymes. Curr Genet 47:29–36

    CAS  PubMed  Google Scholar 

  • Jensen ES, Ambus P (1998) Plant litter particle size—effects on decomposition and nitrogen dynamics in soil. In: Proceedings of the 16th International Soil Science Society Congress, CD-ROM, Montpellier, France, August 1998. http://natres.psu.ac.th/Link/SoilCongress/bdd/symp41/482-t.pdf

  • Jia H, Cho S, Muehlbauer GJ (2009) Transcriptome analysis of a wheat near-isogenic line pair carrying Fusarium head blight-resistant and -susceptible alleles. Mol Plant Microbe Interact 22:1366–1378

    CAS  PubMed  Google Scholar 

  • Jiménez-Fernández D, Navas-Cortés JA, Montes-Borrego M, Jiménez-Díaz RM, Landa BB (2011) Molecular and pathogenic characterization of Fusarium redolens, a new causal agent of Fusarium yellows in Chickpea. Plant Dis 95:860–870

    Google Scholar 

  • Josephs RD, Schuhmacher R, Krska R (2001) International interlaboratory study for the determination of the Fusarium mycotoxins zearalenone and deoxynivalenol in agricultural commodities. Food Addit Contam 18:417–430

    CAS  PubMed  Google Scholar 

  • Kang Z, Buchenauer H (1999) Immunocytochemical localization of Fusarium toxins in infected wheat spikes by Fusarium culmorum. Physiol Mol Plant Pathol 55:275–288

    CAS  Google Scholar 

  • Kang Z, Buchenauer H (2000a) Cytology and ultrastructure of the infection of wheat spikes by Fusarium culmorum. Mycol Res 104:1083–1093

    Google Scholar 

  • Kang Z, Buchenauer H (2000b) Ultrastructural and cytochemical studies on cellulose, xylan and pectin degradation in wheat spikes infected by Fusarium culmorum. J Phytopathol 148:263–275

    CAS  Google Scholar 

  • Kang Z, Buchenauer H (2000c) Ultrastructural and immunocytochemical investigation of pathogen development and host responses in resistant and susceptible wheat spikes infected by Fusarium culmorum. Physiol Mol Plant Pathol 57:255–268

    CAS  Google Scholar 

  • Kang Z, Buchenauer H (2002a) Immunocytochemical localization of β-1,3-glucanase and chitinase in Fusarium culmorum-infected wheat spikes. Physiol Mol Plant Pathol 60:141–153

    CAS  Google Scholar 

  • Kang Z, Buchenauer H (2002b) Studies on the infection process of Fusarium culmorum in wheat spikes: degradation of host cell wall components and localization of trichothecene toxins in infected tissue. Eur J Plant Pathol 108:653–660

    CAS  Google Scholar 

  • Kang Z, Buchenauer H (2003) Immunocytochemical localization of cell wall-bound thionins and hydroxyproline-rich glycoproteins in Fusarium culmorum infected wheat spikes. J Phytopathol 151:120–129

    CAS  Google Scholar 

  • Kang Z, Zingen-Sell I, Buchenauer H (2005) Infection of wheat spikes by Fusarium avenaceum and alterations of cell wall components in the infected tissue. Eur J Plant Pathol 111:19–28

    Google Scholar 

  • Keller MD, Waxman KD, Bergstrom GC, Schmale DG III (2010) Local distance of wheat spike infection by released clones of Gibberella zeae disseminated from infested corn residue. Plant Dis 94:1151–1155

    Google Scholar 

  • Kellerman TS, Marasas WF, Thiel PG, Gelderblom WC, Cawood M, Coetzer JA (1990) Leukoencephalomalacia in two horses induced by oral dosing of fumonisin B1. Onderstepoort J Vet Res 57:269–275

    CAS  PubMed  Google Scholar 

  • Khonga EB, Sutton JC (1988) Inoculum production and survival of Gibberella zeae in maize and wheat residues. Can J Plant Pathol 10:232–239

    Google Scholar 

  • Kim H-S, Lee T, Dawlatana M, Yun S-H, Lee Y-W (2003) Polymorphism of trichothecene biosynthesis genes in deoxynivalenol-and nivalenol-producing Fusarium graminearum isolates. Mycol Res 107:190–197

    CAS  PubMed  Google Scholar 

  • Kladivko EJ, Akhouri NM, Weesies G (1997) Earthworm populations and species distributions under no-till and conventional tillage in Indiana and Illinois. Soil Biol Biochem 29:613–615

    CAS  Google Scholar 

  • Koehler B (1942) Natural mode of entrance of fungi into Corn ears and some symptoms that indicate infection. J Agric Res 64:421–442

    Google Scholar 

  • Koehler B (1957) Prevalence in dent corn and relation to seedling blights. Univ Illinois Ill Agric Exp Stn Bull 617:1–72

    Google Scholar 

  • Koehler B (1959) Corn ear rots in Illinois. Univ Illinois Ill Agric Exp Stn Bull 639:1–72

    Google Scholar 

  • Köhl J, de Haas BH, Kastelein P, Burgers SLGE, Waalwijk C (2007) Population dynamics of Fusarium spp. and Microdochium nivale in crops and crop residues of winter wheat. Phytopathology 97:971–978

    PubMed  Google Scholar 

  • Kommedahl T, Windels CE (1985) The changing nature of stalk rot of maize caused by Gibberella zeae. In: Parker CA, Rovira AD, Moore KJ, Wong PTW, Kollmorgen JF (eds) Ecology and management of soilborne plant pathogens. American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Kovács K, Kovács G Jr, Mesterházy Á (1994) Expression of resistance to fusarial ear blight in corn inbreds and their hybrids. Maydica 39:187–190

    Google Scholar 

  • Kraft JM, Boge W (2001) Root characteristics in pea in relation to compaction and Fusarium root rot. Plant Dis 85:936–940

    Google Scholar 

  • Kulik T (2011) Development of TaqMan assays for 3ADON, 15ADON and NIV Fusarium genotypes based on Tri12 gene. Cereal Res Commun 39:200–214

    CAS  Google Scholar 

  • Langevin F, Eudes F, Comeau A (2004) Effect of trichothecenes produced by Fusarium graminearum during Fusarium head blight development in six cereal species. Eur J Plant Pathol 110:735–746

    Google Scholar 

  • Langseth W, Rundberget T (1999) The occurrence of HT-2 toxin and other trichothecenes in Norwegian cereals. Mycopathologia 147:157–165

    CAS  PubMed  Google Scholar 

  • Lanubile A, Pasini L, Marocco A (2010) Differential gene expression in kernels and silks of maize lines with contrasting levels of ear rot resistance after Fusarium verticillioides infection. J Plant Physiol 167:1398–1406

    PubMed  Google Scholar 

  • Lattanzio VMT, Nivarlet N, Lippolis V, Gatta SD, Huet AC, Delahaut P et al (2012) Multiplex dipstick immunoassay for semi-quantitative determination of Fusarium mycotoxins in cereals. Anal Chim Acta 718:99–108

    CAS  PubMed  Google Scholar 

  • Leach CM, Anderson AJ (1982) Radiation quality and plant diseases. In: Hatfield J, Thomason IJ (eds) Proceedings of a conference on biometeorology in integrated pest management. Academic, New York

    Google Scholar 

  • Lee T, Oh D-W, Kim H-S, Lee J, Kim Y-H, Yun S-H et al (2001) Identification of deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae by using PCR. Appl Environ Microbiol 67:2966–2972

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee T, Han YK, Kim KH, Yun SH, Lee YW (2002) Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. Appl Environ Microbiol 68:2148–2154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lemmens M, Scholz U, Berthiller F, Dall’Asta C, Koutnik A, Schuhmacher R et al (2005) The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol Plant Microbe Interact 18:1318–1324

    CAS  PubMed  Google Scholar 

  • Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell, Ames, IA

    Google Scholar 

  • Li G, Yen Y (2008) Jasmonate and ethylene signaling pathway may mediate Fusarium head blight resistance in wheat. Crop Sci 48:1888–1896

    Google Scholar 

  • Li D, Sirakova T, Rogers L, Ettinger WF, Kolattukudy PE (2002) Regulation of constitutively expressed and induced cutinase genes by different zinc finger transcription factors in Fusarium solani f. sp. pisi (Nectria haematococca). J Biol Chem 277:7905–7912

    CAS  PubMed  Google Scholar 

  • Li H, Xie G, Ma J, Liu G, Wen S, Ban T et al (2010) Genetic relationships between resistances to Fusarium head blight and crown rot in bread wheat (Triticum aestivum L.). Theor Appl Genet 121:941–950

    PubMed  Google Scholar 

  • Li WJ, Feng J, Chang KF, Conner RL, Hwang SF, Strelkov SE et al (2012) Microsatellite DNA markers indicate quantitative trait loci controlling resistance to pea root rot caused by Fusarium avenaceum (Corda ex Fries) Sacc. Plant Pathol J 11:114–119

    CAS  Google Scholar 

  • Liddell CM (2003) Systematics of Fusarium species and allies associated with Fusarium head blight. In: Leonard KJ, Bushnell WR (eds) Fusarium head blight of wheat and barley. The American Phytopathological Society, St. Paul, MN, pp 35–43

    Google Scholar 

  • Lindblad M, Gidlund A, Sulyok M, Borjesson T, Krska R, Olsen M et al (2013) Deoxynivalenol and other selected Fusarium toxins in Swedish wheat—occurrence and correlation to specific Fusarium species. Int J Food Microbiol 167:284–291

    CAS  PubMed  Google Scholar 

  • Links MG, Dumonceaux TJ, Hemmingsen SM, Hill JE (2012) The chaperonin-60 universal target is a barcode for bacteria that enables de novo assembly of metagenomic sequence data. PLoS One 7:e49755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Logrieco A, Mulè G, Moretti A, Bottalico A (2002) Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. Eur J Plant Pathol 108:597–609

    CAS  Google Scholar 

  • Lowe CN, Butt KR (2003) Influence of food particle size on inter- and intra-specific interactions of Allolobophora chlorotica (Savigny) and Lumbricus terrestris (L.). Pedobiologia 47:574–577

    Google Scholar 

  • Lutsky I, Mor N, Yagen B, Joffe AZ (1978) The role of T-2 toxin in experimental alimentary toxic aleukia: a toxicity study in cats. Toxicol Appl Pharmacol 43:111–124

    CAS  PubMed  Google Scholar 

  • Ma Z, Steffenson BJ, Prom LK, Lapitan NL (2000) Mapping of quantitative trait loci for Fusarium head blight resistance in barley. Phytopathology 90:1079–1088

    CAS  PubMed  Google Scholar 

  • Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, Di Pietro A et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maier FJ, Miedaner T, Hadeler B, Felk A, Salomon S, Lemmens M et al (2006) Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence. Mol Plant Pathol 7:449–461

    CAS  PubMed  Google Scholar 

  • Makandar R, Nalam V, Chaturvedi R, Jeannotte R, Sparks AA, Shah J (2010) Involvement of salicylate and jasmonate signaling pathways in Arabidopsis interaction with Fusarium graminearum. Mol Plant Microbe Interact 23:861–870

    CAS  PubMed  Google Scholar 

  • Malachova A, Varga E, Schwartz H, Krska R, Berthiller F (2012) Development, validation and application of an LC-MS/MS based method for the determination of deoxynivalenol and its conjugates in different types of beer. World Mycotoxin J 5:261–270

    CAS  Google Scholar 

  • Maldonado-Ramirez SL, Schmale Iii DG, Shields EJ, Bergstrom GC (2005) The relative abundance of viable spores of Gibberella zeae in the planetary boundary layer suggests the role of long-distance transport in regional epidemics of Fusarium head blight. Agr Forest Meteorol 132:20–27

    Google Scholar 

  • Markell SG, Francl LJ (2003) Fusarium head blight inoculum: species prevalence and Gibberella zeae spore type. Plant Dis 87:814–820

    Google Scholar 

  • Marshall J, Bissonnette K, Chen J (2012) The re-emergence of Fusarium head blight in Idaho. Impact: University of Idaho, Extension, Idaho Falls Research and Extension Center, Idaho Falls, ID. http://www.extension.uidaho.edu/impacts/Pdf_12/30-12jmarshall-fusarium.pdf

  • Martin M, Miedaner T, Dhillon BS, Ufermann U, Kessel B, Ouzunova M et al (2011) Colocalization of QTL for Gibberella ear rot resistance and low mycotoxin contamination in early European maize. Crop Sci 51:1935–1945

    Google Scholar 

  • Massman J, Cooper B, Horsley R, Neate S, Dill-Macky R, Chao S et al (2011) Genome-wide association mapping of Fusarium head blight resistance in contemporary barley breeding germplasm. Mol Breed 27:439–454

    Google Scholar 

  • Mathre DE (1997) Compendium of barley diseases, 2nd edn. APS Press, St. Paul, MN

    Google Scholar 

  • McLaren DL, Irvine RB, Turkington TK (2003) Irrigation management strategies to reduce Fusarium head blight and deoxynivalenol. Can J Plant Pathol 25:117–118 (Abstr.)

    Google Scholar 

  • McLaren DL, Conner RL, Hausermann DJ, Henderson TL, Penner WC, Kerley TJ (2010) Field pea diseases in Manitoba in 2009. Can Plant Dis Surv 90:148–149

    Google Scholar 

  • McLaren DL, Hausermann DJ, Henderson TL, Kerley TJ (2011) Field pea diseases in Manitoba in 2010. Can Plant Dis Surv 91:140–141

    Google Scholar 

  • McLaren DL, Hausermann DJ, Henriquez MA, Kerley TJ, Chang KF (2012) Field pea disease in Manitoba in 2011. Can Plant Dis Surv 92:150–151

    Google Scholar 

  • McLaughlin CS, Vaughn MH, Campbell JM, Wei CM, Stafford ME (1977) Inhibition of protein synthesis by trichothecenes. In: Rodricks JV, Hesseltine CW, Mehlman MA (eds) Mycotoxins in human and health. Pathotox Publishers, Park Forest South, IL, pp 263–275

    Google Scholar 

  • McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: a re-emerging disease of devasting impact. Plant Dis 81:1340–1348

    Google Scholar 

  • McMullen M, Halley S, Schatz B, Meyer S, Jordahl J, Ransom J (2008) Integrated strategies for Fusarium head blight management in the United States. Cereal Res Commun 36:563–568

    CAS  Google Scholar 

  • McMullen MP, Bergstrom GC, De Wolf E, Dill-Macky R, Hershman DE, Shaner G et al (2012) A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Dis 96:1712–1728

    Google Scholar 

  • Meneely JP, Ricci F, van Egmond HP, Elliott CT (2011) Current methods of analysis for the determination of trichothecene mycotoxins in food. Trends Analyt Chem 30:192–203

    CAS  Google Scholar 

  • Meneely JP, Quinn JG, Flood EM, Hajšlová J, Elliott CT (2012) Simultaneous screening for T-2/HT-2 and deoxynivalenol in cereals using a surface plasmon resonance immunoassay. World Mycotoxin J 5:117–126

    CAS  Google Scholar 

  • Mesterházy Á (1995) Types and components of resistance to Fusarium head blight of wheat. Plant Breed 114:377–386

    Google Scholar 

  • Mesterházy Á (2002) Role of deoxynivalenol in aggressiveness of Fusarium graminearum and F. culmorum and in resistance to Fusarium head blight. Eur J Plant Pathol 108:675–684

    Google Scholar 

  • Mesterházy Á (2003a) Breeding wheat for Fusarium head blight resistance in Europe. In: Leonard KJ, Bushnell WR (eds) Fusarium head blight of wheat and barley. The American Phytopathological Society, St. Paul, MN, pp 211–240

    Google Scholar 

  • Mesterházy Á (2003b) Control of Fusarium head blight of wheat by fungicides. In: Leonard KJ, Bushnell WR (eds) Fusarium head blight of wheat and barley. The American Phytopathological Society, St. Paul, MN, pp 363–380

    Google Scholar 

  • Mesterházy Á, Kovács K (1988) Breeding corn against fusarial stalk rot, ear rot and seedling blight. Acta Phytopathol Acad Sci Hung 21:231–249

    Google Scholar 

  • Mesterházy Á, Lemmens M, Reid LM (2012) Breeding for resistance to ear rots caused by Fusarium spp. in maize—a review. Plant Breed 131:1–19

    Google Scholar 

  • Miedaner T, Reinbrecht C, Lauber U, Schollenberger M, Geiger HH (2001) Effects of genotype and genotype-environment interaction on deoxynivalenol accumulation and resistance to Fusarium head blight in rye, triticale, and wheat. Plant Breed 120:97–105

    CAS  Google Scholar 

  • Miedaner T, Schilling A, Geiger HH (2004) Competition effects among isolates of Fusarium culmorum differing in aggressiveness and mycotoxin production on heads of winter rye. Eur J Plant Pathol 110:63–70

    CAS  Google Scholar 

  • Miedaner T, Bolduan C, Melchinger AE (2010) Aggressiveness and mycotoxin production of eight isolates each of Fusarium graminearum and Fusarium verticillioides for ear rot on susceptible and resistant early maize inbred lines. Eur J Plant Pathol 127:113–123

    CAS  Google Scholar 

  • Miller JD, Young JC, Sampson DR (1985) Deoxynivalenol and Fusarium head blight resistance in spring cereals. Phytopathol Z 113:359–367

    CAS  Google Scholar 

  • Miller JD, Miles M, Fielder DA (1997) Kernel concentrations of 4-acetylbenzoxazolin-2-one and diferuloylputrescine in maize genotypes and Gibberella ear rot. J Agric Food Chem 45:4456–4459

    CAS  Google Scholar 

  • Miller JD, Culley J, Fraser K, Hubbard S, Meloche F, Ouellet T et al (1998) Effect of tillage practice on fusarium head blight of wheat. Can J Plant Pathol 20:95–103

    Google Scholar 

  • Miller SS, Reid LM, Butler G, Winter SP, McGoldrick NJ (2003) Long chain alkanes in silk extracts of maize genotypes with varying resistance to Fusarium graminearum. J Agric Food Chem 51:6702–6708

    CAS  PubMed  Google Scholar 

  • Miller SG, Dokken-Bouchard FL, Cruise D, Ippolito J, Schemenauer I (2012) Survey of lentil diseases in Saskatchewan, 2010 and 2011. Can Plant Dis Surv 92:136–137

    Google Scholar 

  • Mondal SN, Kageyama K, Hyakumachi M (1996) Chlamydospore formation in Fusarium solani f. sp. phaseoli in root extracts of crop plants and their virulence to kidney beans (Phaseolus vulgaris L.). Soil Biol Biochem 28:539–543

    CAS  Google Scholar 

  • Morcia C, Rattotti E, Stanca AM, Tumino G, Rossi V, Ravaglia S et al (2013) Fusarium genetic traceability: role for mycotoxin control in small grain cereals agro-food chains. J Cereal Sci 57:175–182

    CAS  Google Scholar 

  • Mudge AM, Dill-Macky R, Dong Y, Gardiner DM, White RG, Manners JM (2006) A role for the mycotoxin deoxynivalenol in stem colonisation during crown rot disease of wheat caused by Fusarium graminearum and Fusarium pseudograminearum. Physiol Mol Plant Pathol 69:73–85

    CAS  Google Scholar 

  • Müller S, Dekant W, Mally A (2012) Fumonisin B1 and the kidney: modes of action for renal tumor formation by fumonisin B1 in rodents. Food Chem Toxicol 50:3833–3846

    PubMed  Google Scholar 

  • Munkvold GP, Hellmich RL, Showers WB (1997a) Reduced Fusarium ear rot and symptomless infection in kernels of maize genetically engineered for European corn borer resistance. Phytopathology 87:1071–1077

    CAS  PubMed  Google Scholar 

  • Munkvold GP, McGee DC, Carlton WM (1997b) Importance of different pathways for maize kernel infection by Fusarium moniliforme. Phytopathology 87:209–217

    CAS  PubMed  Google Scholar 

  • Murillo-Williams A, Munkvold GP (2008) Systemic infection by Fusarium verticillioides in maize plants grown under three temperature regimes. Plant Dis 92:1695–1700

    Google Scholar 

  • Musser SM, Gay ML, Mazzola EP, Plattner RD (1996) Identification of a new series of fumonisins containing 3-hydroxypyridine. J Nat Prod 59:970–972

    CAS  PubMed  Google Scholar 

  • Muthomi JM, Schuetze A, Dehne HW, Mutitu EW, Oerke EC (2000) Characterization of Fusarium culmorum isolates by mycotoxin production and aggressiveness to winter wheat. J Plant Dis Prot 107:113–123

    CAS  Google Scholar 

  • Naseri B, Marefat A (2011) Large-scale assessment of agricultural practices affecting Fusarium root rot and common bean yield. Eur J Plant Pathol 131:179–195

    Google Scholar 

  • Nelson EB (2004) Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol 42:271–309

    CAS  PubMed  Google Scholar 

  • Nicolaisen M, Supronienė S, Nielsen LK, Lazzaro I, Spliid NH, Justesen AF (2009) Real-time PCR for quantification of eleven individual Fusarium species in cereals. J Microbiol Methods 76:234–240

    CAS  PubMed  Google Scholar 

  • Nielsen LK, Jensen JD, Rodriguez A, Jorgensen LN, Justesen AF (2012) TRI12 based quantitative real-time PCR assays reveal the distribution of trichothecene genotypes of F. graminearum and F. culmorum isolates in Danish small grain cereals. Int J Food Microbiol 157:384–392

    CAS  PubMed  Google Scholar 

  • O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116

    PubMed  Google Scholar 

  • O’Donnell K, Kistler HC, Tacke BK, Casper HH (2000) Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc Natl Acad Sci U S A 97:7905–7910

    PubMed Central  PubMed  Google Scholar 

  • Obanor F, Neate S, Simpfendorfer S, Sabburg R, Wilson P, Chakraborty S (2013) Fusarium graminearum and Fusarium pseudograminearum caused the 2010 head blight epidemics in Australia. Plant Pathol 62:79–91

    CAS  Google Scholar 

  • Oldenburg E, Kramer S, Schrader S, Weinert J (2008) Impact of the earthworm Lumbricus terrestris on the degradation of Fusarium-infected and deoxynivalenol-contaminated wheat straw. Soil Biol Biochem 40:3049–3053

    CAS  Google Scholar 

  • Oyarzun PJ (1993) Bioassay to assess root rot in pea and effect of root rot on yield. Netherlands J Plant Pathol 99:61–75

    Google Scholar 

  • Oyarzun P, Gerlagh M, Hoogland AE (1993) Pathogenic fungi involved in root rot of peas in the Netherlands and their physiological specialization. Netherlands J Plant Pathol 99:23–33

    Google Scholar 

  • Oyarzun PJ, Gerlagh M, Zadoks JC (1998) Factors associated with soil receptivity to some fungal root rot pathogens of peas. Appl Soil Ecol 10:151–169

    Google Scholar 

  • Palacios SA, Ramirez ML, Cabrera Zalazar M, Farnochi MC, Zappacosta D, Chiacchiera SM et al (2011) Occurrence of Fusarium spp. and fumonisin in durum wheat grains. J Agric Food Chem 59:12264–12269

    CAS  PubMed  Google Scholar 

  • Paper JM, Scott-Craig JS, Adhikari ND, Cuomo CA, Walton JD (2007) Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum. Proteomics 7:3171–3183

    CAS  PubMed  Google Scholar 

  • Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathol 44:207–238

    Google Scholar 

  • Parsons MW, Munkvold GP (2010a) Associations of planting date, drought stress, and insects with Fusarium ear rot and fumonisin B1 contamination in California maize. Food Addit Contam Part A 27:591–607

    CAS  Google Scholar 

  • Parsons MW, Munkvold GP (2010b) Relationships of immature and adult thrips with silk-cut, Fusarium ear rot and fumonisin B1 contamination of maize in California and Hawaii. Plant Pathol 59:1099–1106

    Google Scholar 

  • Pascale M, Visconti A, Prończuk M, Wiśniewska H, Chelkowski J (1997) Accumulation of fumonisins in maize hybrids inoculated under field conditions with Fusarium moniliforme Sheldon. J Sci Food Agric 74:1–6

    CAS  Google Scholar 

  • Paul PA, Lipps PE, Hershman DE, McMullen MP, Draper MA, Madden LV (2008) Efficacy of triazole-based fungicides for Fusarium head blight and deoxynivalenol control in wheat: a multivariate meta-analysis. Phytopathology 98:999–1011

    CAS  PubMed  Google Scholar 

  • Paulitz TC (1996) Diurnal release of ascospores by Gibberella zeae in inoculated wheat plots. Plant Dis 80:674–678

    Google Scholar 

  • Peraica M, Radić B, Lucić A, Pavlović M (1999) Toxic effects of mycotoxins in humans. Bull World Health Organ 77:754–766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pérez-Brito D, Jeffers D, González-de-León D, Khairallah M, Cortés-Cruz M, Velázquez-Cardelas G et al (2001) QTL mapping of Fusarium moniliforme ear-rot resistance in highland maize, Mexico. Agrosciencia 35:181–196

    Google Scholar 

  • Perkowski J, Proñczuk M, Chelkowski J (1997) Deoxynivalenol and acetyldeoxynivalenol accumulation in field maize inoculated with Fusarium graminearum. J Phytopathol 145:113–116

    CAS  Google Scholar 

  • Persson L, Bødker L, Larsson-Wikström M (1997) Prevalence and pathogenicity of foot and root rot pathogens of pea in southern Scandinavia. Plant Dis 81:171–174

    Google Scholar 

  • Pestka J (2010) Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. World Mycotoxin J 3:323–347

    CAS  Google Scholar 

  • Pestka JJ, Bondy GS (1994) Immunotoxic effects of mycotoxins. In: Miller JD, Trenholm HL (eds) Mycotoxins in grain: compounds other than aflatoxin. American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Phalip V, Delalande F, Carapito C, Goubet F, Hatsch D, Leize-Wagner E et al (2005) Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall. Curr Genet 48:366–379

    CAS  PubMed  Google Scholar 

  • Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R et al (2003) Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J Biol Chem 278:47905–47914

    CAS  PubMed  Google Scholar 

  • Prelusky DB, Rotter BA, Rotter RG (1994) Toxicology of mycotoxins. In: Miller JD, Trenholm HL (eds) Mycotoxins in grain: compounds other than aflatoxin. American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Pritsch C, Muehlbauer GJ, Bushnell WR, Somers DA, Vance CP (2000) Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum. Mol Plant Microbe Interact 13:159–169

    CAS  PubMed  Google Scholar 

  • Pritsch C, Vance CP, Bushnell WR, Somers DA, Hohn TM, Muehlbauer GJ (2001) Systemic expression of defense response genes in wheat spikes as a response to Fusarium graminearum infection. Physiol Mol Plant Pathol 58:1–12

    CAS  Google Scholar 

  • Proctor RH, Hohn TM, McCormick SP (1995) Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microbe Interact 8:593–601

    CAS  PubMed  Google Scholar 

  • Proctor RH, Brown DW, Plattner RD, Desjardins AE (2003) Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genet Biol 38:237–249

    CAS  PubMed  Google Scholar 

  • Proctor RH, Plattner RD, Desjardins AE, Busman M, Butchko RA (2006) Fumonisin production in the maize pathogen Fusarium verticillioides: genetic basis of naturally occurring chemical variation. J Agric Food Chem 54:2424–2430

    CAS  PubMed  Google Scholar 

  • Prussin AJ II (2013) Monitoring and predicting the long distance transport of Fusarium graminearum, causal agent of Fusarium head blight in wheat and barley [Thesis]. Virginia Polytechnic Institute and State University, Blacksburg, VA

    Google Scholar 

  • Puri KD, Zhong S (2010) The 3ADON population of Fusarium graminearum found in North Dakota is more aggressive and produces a higher level of DON than the prevalent 15ADON population in spring wheat. Phytopathology 100:1007–1014

    CAS  PubMed  Google Scholar 

  • Rampitsch C, Day J, Subramaniam R, Walkowiak S (2013) Comparative secretome analysis of Fusarium graminearum and two of its non-pathogenic mutants upon deoxynivalenol induction in vitro. Proteomics 13:1913–1921

    Google Scholar 

  • Reid LM (1996) Screening maize for resistance to Gibberella ear rot. Agric Agri Food Can Tech Bull Publ 196-5E:1–40

    Google Scholar 

  • Reid LM, Sinha RC (1998) Maize maturity and the development of Giberrella ear rot symptoms and deoxynivalenol after inoculation. Eur J Plant Pathol 104:147–154

    CAS  Google Scholar 

  • Reid LM, Bolton AT, Hamilton RI, Woldemariam T, Mather DE (1992a) Effect of silk age on resistance of maize to Fusarium graminearum. Can J Plant Pathol 14:293–298

    Google Scholar 

  • Reid LM, Mather DE, Hamilton RI, Bolton AT (1992b) Genotypic differences in the resistance of maize silk to Fusarium graminearum. Can J Plant Pathol 14:211–214

    Google Scholar 

  • Reid LM, Stewart DW, Hamilton RI (1996) A 4-year study of the association between Gibberella ear rot severity and deoxynivalenol concentration. J Phytopathol 144:431–436

    CAS  Google Scholar 

  • Reid LM, Nicol RW, Ouellet T, Savard M, Miller JD, Young JC et al (1999) Interaction of Fusarium graminearum and F. moniliforme in maize ears: disease progress, fungal biomass, and mycotoxin accumulation. Phytopathology 89:1028–1037

    CAS  PubMed  Google Scholar 

  • Reid LM, Zhu X, Savard ME, Sinha RC, Vigier B (2000) Pre-harvest accumulation of deoxynivalenol in sweet corn ears inoculated with Fusarium graminearum. Food Addit Contam 17:689–701

    CAS  PubMed  Google Scholar 

  • Reid LM, McDiarmid G, Parker AJ, Woldemariam T, Hamilton RI (2001a) CO388 and CO389 corn inbred lines. Can J Plant Sci 81:457–459

    Google Scholar 

  • Reid LM, McDiarmid G, Parker AJ, Woldemariam T, Hamilton RI (2001b) CO430, CO431 and CO432 corn inbred lines. Can J Plant Sci 81:283–284

    Google Scholar 

  • Reid LM, Woldemariam T, Zhu X, Stewart DW, Schaafsma AW (2002) Effect of inoculation time and point of entry on disease severity in Fusarium graminearum, Fusarium verticillioides, or Fusarium subglutinans inoculated maize ears. Can J Plant Pathol 24:162–167

    Google Scholar 

  • Reid LM, McDiarmid G, Parker AJ, Woldemariam T (2003) CO441 corn inbred line. Can J Plant Sci 83:79–80

    Google Scholar 

  • Reid LM, Zhu X, Parker A, Yan W (2009) Increased resistance to Ustilago zeae and Fusarium verticillioides in maize inbred lines bred for Fusarium graminearum resistance. Euphytica 165:567–578

    Google Scholar 

  • Reinprecht Y, Wu X, Yan S, Labey L, Dasilva E, Martin J, Pauls K (2008) A microarray-based approach for identifying genes for resistance to Fusarium graminearum in maize (Zea Mays L.). Cereal Res Commun 36:253–259

    Google Scholar 

  • Reynoso MM, Ramirez ML, Torres AM, Chulze SN (2011) Trichothecene genotypes and chemotypes in Fusarium graminearum strains isolated from wheat in Argentina. Int J Food Microbiol 145:444–448

    CAS  PubMed  Google Scholar 

  • Rheeder JP, Marasas WFO, Vismer HF (2002) Production of fumonisin analogs by Fusarium species. Appl Environ Microbiol 68:2101–2105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robertson-Hoyt LA, Jines MP, Balint-Kurti PJ, Kleinschmidt CE, White DG, Payne GA et al (2006) QTL mapping for Fusarium ear rot and fumonisin contamination resistance in two maize populations. Crop Sci 46:1734–1743

    CAS  Google Scholar 

  • Rocha O, Ansari K, Doohan FM (2005) Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit Contam 22:369–378

    CAS  PubMed  Google Scholar 

  • Román-Avilés B, Kelly JD (2005) Identification of quantitative trait loci conditioning resistance to Fusarium root rot in common bean. Crop Sci 45:1881–1890

    Google Scholar 

  • Ronquillo-López MG, Grau CR, Nienhuis J (2010) Variation in reaction to Fusarium spp. identified in a common bean (Phaseolus vulgaris L.) population developed for field-based resistance to root rot and wilt. Crop Sci 50:2303–2309

    Google Scholar 

  • Rotem J, Aust HJ (1991) The effect of ultraviolet and solar radiation and temperature on survival of fungal propagules. J Phytopathol 133:76–84

    Google Scholar 

  • Rotem J, Wooding B, Aylor DE (1985) The role of solar radiation, especially ultraviolet, in the mortality of fungal spores. Phytopathology 75:510–514

    Google Scholar 

  • Rubert J, James KJ, Mañes J, Soler C (2012) Study of mycotoxin calibration approaches on the example of trichothecenes analysis from flour. Food Chem Toxicol 50:2034–2041

    CAS  PubMed  Google Scholar 

  • Salas B, Dill-Macky R (2003) Previous crop affecting soil populations of Fusarium head blight pathogens in Minnesota. In: Canty SM, Lewis J, Ward RW (eds) Proceedings of 2003 national Fusarium head blight forum, Bloomington, MN, p 171

    Google Scholar 

  • Salas B, Dill-Macky R (2004) Incidence of Fusarium graminearum in pre-harvest and overwintered residues of wheat cultivars differing in Fusarium head blight resistance. In: Canty SM, Boring T, Versdahl K, Wardwell J, Ward RW (eds) Proceedings of second international symposium on Fusarium head blight, incorporating the eighth European Fusarium seminar, Orlando, FL, pp 502–503

    Google Scholar 

  • Salas B, Dill-Macky R (2005) Effect of residue management and host resistance on the epidemiology of Fusarium head blight. Phytopathology 95:952 (Abstr.)

    Google Scholar 

  • Salgado JD, Wallhead M, Madden LV, Paul PA (2011) Grain harvesting strategies to minimize grain quality losses due to Fusarium head blight in wheat. Plant Dis 95:1448–1457

    Google Scholar 

  • Sampietro DA, Vattuone MA, Presello DA, Fauguel CM, Catalán CAN (2009) The pericarp and its surface wax layer in maize kernels as resistance factors to fumonisin accumulation by Fusarium verticillioides. Crop Prot 28:196–200

    CAS  Google Scholar 

  • Santiago R, Reid LM, Arnason JT, Zhu X, Martinez N, Malvar RA (2007) Phenolics in maize genotypes differing in susceptibility to Gibberella stalk rot (Fusarium graminearum Schwabe). J Agric Food Chem 55:5186–5193

    CAS  PubMed  Google Scholar 

  • Schaafsma AW, Ilinic LT, Miller JD, Hooker DC (2001) Agronomic considerations for reducing deoxynivalenol in wheat grain. Can J Plant Pathol 23:279–285

    Google Scholar 

  • Schenzel J, Forrer H-R, Vogelgsang S, Bucheli T (2012) Development, validation and application of a multi-mycotoxin method for the analysis of whole wheat plants. Mycotoxin Res 28:135–147

    CAS  PubMed  Google Scholar 

  • Schmale DG III, Bergstrom GC (2007) Aerobiology of Gibberella zeae: Whence come the spores for Fusarium head blight? In: 2007 national Fusarium head blight forum, Kansas City, MO, p 70

    Google Scholar 

  • Schneider KA, Grafton KF, Kelly JD (2001) QTL analysis of resistance to Fusarium root rot in bean. Crop Sci 41:535–542

    CAS  Google Scholar 

  • Schollenberger M, Drochner W, Müller H-M (2007) Fusarium toxins of the scirpentriol subgroup: a review. Mycopathologia 164:101–118

    CAS  PubMed  Google Scholar 

  • Schrader S, Kramer S, Oldenburg E, Weinert J (2009) Uptake of deoxynivalenol by earthworms from Fusarium-infected wheat straw. Mycotoxin Res 25:53–58

    CAS  PubMed  Google Scholar 

  • Schroeder HW, Christensen JJ (1963) Factors affecting resistance of wheat to scab by Gibberella zeae. Phytopathology 53:831–838

    Google Scholar 

  • Schwartz HF, Steadman JR, Hall R, Forster RL (2005) Compendium of bean disease, 2nd edn. APS Press, St. Paul, MN

    Google Scholar 

  • Scott PM (1997) Multi‐year monitoring of Canadian grains and grain‐based foods for trichothecenes and zearalenone. Food Addit Contam 14:333–339

    CAS  PubMed  Google Scholar 

  • Seaman WL (1982) Epidemiology and control of mycotoxigenic fusaria on cereal grains. Can J Plant Pathol 4:187–190

    Google Scholar 

  • Seifert KA, Aoki T, Baayen RP, Brayford D, Burgess LW, Chulze S et al (2003) The name Fusarium moniliforme should no longer be used. Mycol Res 107:643–644

    Google Scholar 

  • Sekhon RS, Kuldau G, Mansfield M, Chopra S (2006) Characterization of Fusarium-induced expression of flavonoids and PR genes in maize. Physiol Mol Plant Pathol 69:109–117

    CAS  Google Scholar 

  • Shank RA, Foroud NA, Hazendonk P, Eudes F, Blackwell BA (2011) Current and future experimental strategies for structural analysis of trichothecene mycotoxins—a prospectus. Toxins 3:1518–1553

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shephard GS, Berthiller F, Burdaspal PA, Crews C, Jonker MA, Krska R et al (2012) Developments in mycotoxin analysis: an update for 2010–2011. World Mycotoxin J 5:3–30

    CAS  Google Scholar 

  • Shier WT (1992) Sphingosine analogs: an emerging new class of toxins that includes the fumonisins. Toxin Rev 11:241–257

    CAS  Google Scholar 

  • Sims JL, Frederick LR (1970) Nitrogen immobilization and decomposition of corn residue in soil and sand as affected by residue particle size. Soil Sci 109:355–361

    Google Scholar 

  • Singh SP, Schwartz HF (2010) Breeding common bean for resistance to diseases: a review. Crop Sci 50:2199–2223

    Google Scholar 

  • Sinha RC, Savard ME (1997) Concentration of deoxynivalenol in single kernels and various tissues of wheat heads. Can J Plant Pathol 19:8–12

    CAS  Google Scholar 

  • Siranidou E, Kang Z, Buchenauer H (2002) Studies on symptom development, phenolic compounds and morphological defence responses in wheat cultivars differing in resistance to Fusarium head blight. J Phytopathol 150:200–208

    Google Scholar 

  • Smiley RW, Gourlie JA, Easley SA, Patterson L-M, Whittaker RG (2005) Crop damage estimates for crown rot of wheat and barley in the Pacific Northwest. Plant Dis 89:595–604

    Google Scholar 

  • Somers DJ, Fedak G, Clarke J, Cao W (2006) Mapping of FHB resistance QTLs in tetraploid wheat. Genome 49:1586–1593

    CAS  PubMed  Google Scholar 

  • Stack RW (1997) Gradients of Fusarium head blight in wheat along transects away from a concentrated source of Gibberella zeae ascospore inoculum. In: Dill-Macky R, Jones RK (eds) National Fusarium head blight forum, St. Paul, MN

    Google Scholar 

  • Stack RW (2000) Return of an old problem: Fusarium head blight of small grains. APSnet Plant Health Reviews. http://www.apsnet.org/publications/apsnetfeatures/Pages/headblight.aspx

  • Stack RW, Elias EM, Fetch JM, Miller JD, Joppa LR (2002) Fusarium head blight reaction of Langdon durum-Triticum dicoccoides chromosome substitution lines. Crop Sci 42:637–642

    Google Scholar 

  • Stahl DJ, Theuerkauf A, Heitefuss R, Schäfer W (1994) Cutinase of Nectria haematococca (Fusarium solani f. sp. pisi) is not required for fungal virulence or organ specificity on pea. Mol Plant Microbe Interact 7:713–725

    Google Scholar 

  • Starkey DE, Ward TJ, Aoki T, Gale LR, Kistler HC, Geiser DM et al (2007) Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet Biol 44:1191–1204

    CAS  PubMed  Google Scholar 

  • Statistics Canada. Table 001-0010 - Estimated areas, yield, production and average farm price of principal field crops, in metric units, annual, CANSIM (database). (accessed: 2014-07–02)

    Google Scholar 

  • Steffenson BJ (2003) Fusarium head blight of barley: impact, epidemics, management, and strategies for identifying and utilizating genetic resistance. In: Leonard KJ, Bushnell WR (eds) Fusarium head blight of wheat and barley. The American Phytopathological Society, St. Paul, Minnesota, pp 241–295

    Google Scholar 

  • Steiner B, Kurz H, Lemmens M, Buerstmayr H (2009) Differential gene expression of related wheat lines with contrasting levels of head blight resistance after Fusarium graminearum inoculation. Theor Appl Genet 118:753–764

    CAS  PubMed Central  PubMed  Google Scholar 

  • Strausbaugh CA, Maloy OC (1986) Fusarium scab of irrigated wheat in central Washington. Plant Dis 70:1104–1106

    Google Scholar 

  • Suga H, Gale LR, Kistler HC (2004) Development of VNTR markers for two Fusarium graminearum clade species. Mol Ecol Notes 4:468–470

    CAS  Google Scholar 

  • Sutton JC (1982) Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Can J Plant Pathol 4:195–209

    Google Scholar 

  • Tang Y, Lin H, Chen Y, Su W, Wang S, Chiueh L et al (2012) Development of a quantitative multi-mycotoxin method in rice, maize, wheat and peanut using UPLC-MS/MS. Food Anal Methods 6:727–736

    Google Scholar 

  • Tangni EK, Motte J-C, Callebaut A, Pussemier L (2010) Cross-reactivity of antibodies in some commercial deoxynivalenol test kits against some fusariotoxins. J Agric Food Chem 58:12625–12633

    CAS  PubMed  Google Scholar 

  • Tangni E, Motte J-C, Callebaut A, Chandelier A, Schrijver M, Pussemier L (2011) Deoxynivalenol loads in matched pair wheat samples in Belgium: comparison of ELISA VERATOX kit against liquid chromatography. Mycotoxin Res 27:105–113

    CAS  PubMed  Google Scholar 

  • Teich AH (1989) Epidemiology of wheat (Triticum aestivum L.) scab caused by Fusarium spp. In: Chelkowski J (ed) Topics in secondary metabolism 2: Fusarium—mycotoxins, taxonomy, and pathogenicity. Elsevier Science, New York, NY, pp 269–282

    Google Scholar 

  • Teich AH, Hamilton JR (1985) Effect of cultural practices, soil phosphorus, potassium, and pH on the incidence of Fusarium head blight and deoxynivalenol levels in wheat. Appl Environ Microbiol 49:1429–1431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teich AH, Nelson K (1984) Survey of Fusarium head blight and possible effects of cultural practices in wheat fields in Lambton County in 1983. Can Plant Dis Surv 64:11–13

    Google Scholar 

  • Tekauz A, McCallum B, Gilbert J (2000) Review: Fusarium head blight of barley in western Canada. Can J Plant Pathol 22:9–16

    Google Scholar 

  • Tekauz A, McCallum B, Ames N, Fetch JM (2004) Fusarium head blight of oat—current status in western Canada. Can J Plant Pathol 26:473–479

    Google Scholar 

  • Tekauz A, Mitchell Fetch JW, Rossnagel BG, Savard ME (2008) Progress in assessing the impact of Fusarium head blight on oat in western Canada and screening of avena germplasm for resistance. Cereal Res Commun 36:49–56

    Google Scholar 

  • Terzi V, Morcia C, Faccioli P, Faccini N, Rossi V, Cigolini M et al (2007) Fusarium DNA traceability along the bread production chain. Int J Food Sci Technol 42:1390–1396

    CAS  Google Scholar 

  • Tittlemier SA, Roscoe M, Drul D, Blagden R, Kobialka C, Chan J et al (2013a) Single laboratory evaluation of a planar waveguide-based system for a simple simultaneous analysis of four mycotoxins in wheat. Mycotoxin Res 29:55–62

    CAS  Google Scholar 

  • Tittlemier SA, Roscoe M, Trelka M, Gaba D, Chan J, Patrick S et al (2013b) Fusarium damage in cereal grains from western Canada. Part II: occurrence of mycotoxins and their source organisms in Fusarium damaged durum wheat harvested in 2010. J Agric Food Chem 61:5438–5448

    Google Scholar 

  • Tittlemier SA, Roscoe M, Trelka R, Patrick SK, Bamforth JM, Gräfenhan T et al (2014) Fate of moniliformin during milling of Canadian durum wheat, processing, and cooking of spaghetti. Can J Plant Sci 94:555–563

    Google Scholar 

  • Tkachuk R, Dexter JE, Tipples KH, Nowicki W (1991) Removal by specific gravity table of tombstone kernels and associated trichothecenes from wheat infected with Fusarium head blight. Cereal Chem 68:428–431

    CAS  Google Scholar 

  • Tóth B, Mesterházy Á, Horvath Z, Bartók T, Varga M, Varga J (2005) Genetic variability of central European isolates of the Fusarium graminearum species complex. Eur J Plant Pathol 113:35–45

    Google Scholar 

  • Trail F, Xu H, Loranger R, Gadoury D (2002) Physiological and environmental aspects of ascospore discharge in Gibberella zeae (anamorph Fusarium graminearum). Mycologia 94:181–189

    PubMed  Google Scholar 

  • Turkington TK, Clear RM, Patrick SK (2005) Characteristics of wheat fields positive for Fusarium graminearum in Alberta, in 2002 and 2003. Can J Plant Pathol 27:479 (Abstr.)

    Google Scholar 

  • Turkington TK, Kuzyk A, Dunn R, McLaren D, Irvine B, Clear RM et al. (2006) Irrigation and plant disease management. In: Proceedings of the irrigated crop production update: 2006 conference, Lethbridge, AB. http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/ind10759

  • Ueno Y (1983) Trichothecenes: chemical, biological and toxicological aspects. Elsevier Scientific, Amsterdam

    Google Scholar 

  • Ueno Y, Hosoya M, Morita Y, Ueno I, Tatsuno T (1968) Inhibition of the protein synthesis in rabbit reticulocyte by nivalenol, a toxic principle isolated from Fusarium nivale-growing rice. J Biochem 64:479–485

    CAS  PubMed  Google Scholar 

  • van der Fels-Klerx HJ, de Rijk TC, Booij CJH, Goedhart PW, Boers EAM, Zhao C et al (2012) Occurrence of Fusarium head blight species and Fusarium mycotoxins in winter wheat in the Netherlands in 2009. Food Addit Contam Part A 29:1716–1726

    Google Scholar 

  • Vesonder RF, Ellis JJ, Rohwedder WK (1981) Elaboration of vomitoxin and zearalenone by Fusarium isolates and the biological activity of Fusarium-produced toxins. Appl Environ Microbiol 42:1132–1134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vishwanath V, Sulyok M, Labuda R, Bicker W, Krska R (2009) Simultaneous determination of 186 fungal and bacterial metabolites in indoor matrices by liquid chromatography/tandem mass spectrometry. Anal Bioanal Chem 395:1355–1372

    CAS  PubMed  Google Scholar 

  • Voigt CA, Schafer W, Salomon S (2005) A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant J 42:364–375

    CAS  PubMed  Google Scholar 

  • Volpi C, Janni M, Lionetti V, Bellincampi D, Favaron F, D’Ovidio R (2011) The ectopic expression of a pectin methyl esterase inhibitor increases pectin methyl esterification and limits fungal diseases in wheat. Mol Plant Microbe Interact 24:1012–1019

    CAS  PubMed  Google Scholar 

  • von der Ohe C, Gauthier V, Tamburic-Ilincic L, Brule-Babel A, Fernando W, Clear R et al (2010) A comparison of aggressiveness and deoxynivalenol production between Canadian Fusarium graminearum isolates with 3-acetyl and 15-acetyldeoxynivalenol chemotypes in field-grown spring wheat. Eur J Plant Pathol 127:407–417

    CAS  Google Scholar 

  • Voss KA, Gelineau-van Waes JB, Riley RT (2006) Fumonisins: current research trends in developmental toxicology. Mycotoxin Res 22:61–69

    CAS  PubMed  Google Scholar 

  • Voss KA, Smith GW, Haschek WM (2007) Fumonisins: toxicokinetics, mechanism of action and toxicity. Anim Feed Sci Technol 137:299–325

    CAS  Google Scholar 

  • Waalwijk C, van der Heide R, de Vries I, van der Lee T, Schoen C, Costrel-de Corainville G et al (2004) Quantitative detection of Fusarium species in wheat using TaqMan. Eur J Plant Pathol 110:481–494

    CAS  Google Scholar 

  • Waalwijk C, Koch S, Ncube E, Allwood J, Flett B, de Vries I et al (2008) Quantitative detection of Fusarium spp. and its correlation with fumonisin content in maize from South African subsistence farmers. World Mycotoxin J 1:39–47

    CAS  Google Scholar 

  • Waggoner PE, Green JSA, Smith FB (1983) The aerial dispersal of the pathogens of plant disease. Philos Trans R Soc Lond B Biol Sci 302:451–462

    Google Scholar 

  • Wang Y, Yang L, Xu H, Li Q, Ma Z, Chu C (2005) Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics 5:4496–4503

    CAS  PubMed  Google Scholar 

  • Wanjiru MW, Kang Z, Buchenauer H (2002) Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat heads. Eur J Plant Pathol 108:803–810

    CAS  Google Scholar 

  • Ward TJ, Bielawski JP, Kistler HC, Sullivan E, O’Donnell K (2002) Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc Natl Acad Sci U S A 99:9278–9283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ward TJ, Clear RM, Rooney AP, O’Donnell K, Gaba D, Patrick S et al (2008) An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet Biol 45:473–484

    PubMed  Google Scholar 

  • Wardle DA (1995) Impacts of disturbance on detritus food webs in agro-ecosystems of contrasting tillage and weed management practices. In: Begon M, Fitter AH (eds) Advances in ecological research, vol 26. Academic, New York, pp 105–185

    Google Scholar 

  • Warren HL, Kommedahl T (1973) Fertilization and wheat refuse effects on Fusarium species associated with wheat roots in Minnesota. Phytopathology 63:103–108

    Google Scholar 

  • Warth B, Parich A, Atehnkeng J, Bandyopadhyay R, Schuhmacher R, Sulyok M et al (2012) Quantitation of mycotoxins in food and feed from Burkina Faso and Mozambique using a modern LC-MS/MS multitoxin method. J Agric Food Chem 60:9352–9363

    CAS  PubMed  Google Scholar 

  • Wearing AH, Burgess LW (1977) Distribution of Fusarium roseum ‘Graminearum’ Group 1 and its mode of survival in eastern Australian wheat belt soils. Trans Br Mycol Soc 69:429–442

    Google Scholar 

  • Whitaker TB, Hagler WM Jr, Giesbrecht FG, Johannson AS (2002) Sampling wheat for deoxynivalenol. In: DeVries JW, Trucksess M, Jackson LS (eds) Mycotoxins and food safety. Kluwer, New York, NY, pp 73–83

    Google Scholar 

  • White DG (1999) Compendium of corn diseases, 3rd edn. APS Press, St. Paul, MN

    Google Scholar 

  • Wiese MV (1987) Compendium of wheat diseases, 2nd edn. APS Press, St. Paul, MN

    Google Scholar 

  • Windels CE, Kommedahl T (1984) Late-season colonization and survival of Fusarium graminearum Group II in cornstalks in Minnesota. Plant Dis 68:791–793

    Google Scholar 

  • Windels CE, Kommedahl T, Stienstra WC, Burnes PM (1988) Occurrence of Fusarium species in symptom-free and overwintered cornstalks in northwestern Minnesota. Plant Dis 72:990–993

    Google Scholar 

  • Wolfarth F, Schrader S, Oldenburg E, Weinert J, Brunotte J (2011) Earthworms promote the reduction of Fusarium biomass and deoxynivalenol content in wheat straw under field conditions. Soil Biol Biochem 43:1858–1865

    CAS  Google Scholar 

  • Wolf-Hall CE (2007) Mold and mycotoxin problems encountered during malting and brewing. Int J Food Microbiol 119:89–94

    CAS  PubMed  Google Scholar 

  • Wu W, Bates MA, Bursian SJ, Link JE, Flannery BM, Sugita-Konishi Y et al (2013) Comparison of emetic potencies of the 8-ketotrichothecenes deoxynivalenol, 15-acetyldeoxynivalenol, 3-acetyldeoxynivalenol, fusarenon X, and nivalenol. Toxicol Sci 131:279–291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiang K, Reid LM, Zhu X (2010a) Relationship among kernel drydown rates, environmental factors and resistance to Gibberella ear rot, Fusarium ear rot and common smut of corn. In: Joint annual meeting of the Canadian Phytopathological Society and the Pacific Division of the American Phytopathological Society, Vancouver, BC

    Google Scholar 

  • Xiang K, Zhang ZM, Reid LM, Zhu XY, Yuan GS, Pan GT (2010b) A meta-analysis of QTL associated with ear rot resistance in maize. Maydica 55:281–290

    Google Scholar 

  • Xue AG (2003) Efficacy of Clonostachys rosea strain ACM941 and fungicide seed treatments for controlling the root rot complex of field pea. Can J Plant Sci 83:519–524

    CAS  Google Scholar 

  • Yi C, Kaul HP, Kübler E, Schwadorf K, Aufhammer W (2001) Head blight (Fusarium graminearum) and deoxynivalenol concentration in winter wheat as affected by pre-crop, soil tillage and nitrogen fertilization. J Plant Dis Protect 108:217–230

    CAS  Google Scholar 

  • Yli-Mattila T, Gagkaeva T (2010) Molecular chemotyping of Fusarium graminearum, F. culmorum, and F. cerealis isolates from Finland and Russia. In: Gherbawy Y, Voigt K (eds) Molecular identification of fungi. Springer, Berlin, pp 159–177

    Google Scholar 

  • Yli-Mattila T, Paavanen-Huhtala S, Parikka P, Jestoi M, Klemsdal SS, Rizzo A (2006) Genetic variation, real-time PCR, metabolites and mycotoxins of Fusarium avenaceum and related species. Mycotoxin Res 22:79–86

    CAS  PubMed  Google Scholar 

  • Yu GT, Franckowiak JD, Neate SM, Zhang B, Horsley RD (2010) A native QTL for Fusarium head blight resistance in North American barley (Hordeum vulgare L.) independent of height, maturity, and spike type loci. Genome 53:111–118

    CAS  PubMed  Google Scholar 

  • Yuan J, Ali ML, Taylor J, Liu J, Sun G, Liu W et al (2008) A guanylyl cyclase-like gene is associated with Gibberella ear rot resistance in maize (Zea mays L.). Theor Appl Genet 116:465–479

    CAS  PubMed  Google Scholar 

  • Zhang Y, Choi Y-E, Zou X, Xu J-R (2011) The FvMK1 mitogen-activated protein kinase gene regulates conidiation, pathogenesis, and fumonisin production in Fusarium verticillioides. Fungal Genet Biol 48:71–79

    CAS  PubMed  Google Scholar 

  • Zhang H, Van der Lee T, Waalwijk C, Chen W, Xu J, Xu J et al (2012) Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates. PLoS One 7:e31722

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou W, Kolb FL, Riechers DE (2005) Identification of proteins induced or upregulated by Fusarium head blight infection in the spikes of hexaploid wheat (Triticum aestivum). Genome 48:770–780

    CAS  PubMed  Google Scholar 

  • Zhou W, Eudes F, Laroche A (2006) Identification of differentially regulated proteins in response to a compatible interaction between the pathogen Fusarium graminearum and its host, Triticum aestivum. Proteomics 6:4599–4609

    CAS  PubMed  Google Scholar 

  • Zhu H, Gilchrist L, Hayes P, Kleinhofs A, Kudrna D, Liu Z et al (1999) Does function follow form? Principal QTLs for Fusarium head blight (FHB) resistance are coincident with QTLs for inflorescence traits and plant height in a doubled-haploid population of barley. Theor Appl Genet 99:1221–1232

    CAS  Google Scholar 

  • Zhuang Y, Gala A, Yen Y (2013) Identification of functional genic components of major Fusarium head blight resistance quantitative trait loci in wheat cultivar Sumai 3. Mol Plant Microbe Interact 26:442–450

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora A. Foroud Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Foroud, N.A., Chatterton, S., Reid, L.M., Turkington, T.K., Tittlemier, S.A., Gräfenhan, T. (2014). Fusarium Diseases of Canadian Grain Crops: Impact and Disease Management Strategies. In: Goyal, A., Manoharachary, C. (eds) Future Challenges in Crop Protection Against Fungal Pathogens. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1188-2_10

Download citation

Publish with us

Policies and ethics