Skip to main content

Stable Power Compression with Efficient Relativistic UV Channel Formation in Cluster Targets

  • Chapter
  • First Online:
Planar Waveguides and other Confined Geometries

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 189))

  • 1727 Accesses

Abstract

Comparative single-pulse studies of self-trapped plasma channel formation in Xe and Kr cluster targets produced with 1–2 TW femtosecond 248 nm pulses reveal energy-efficient (>90 %) power compression with formation of relativistic ultraviolet (248 nm) self-trapped plasma channels. A key observation is the highly robust stability of the channeled propagation characteristic of both materials. Images of the channel morphology produced by Thomson scattering from the electron density correlated with the direct visualization of the Xe(M) and Kr(L) X-ray emission from radiating ions illustrate (1) the channel formation, (2) the narrow region of confined trapped propagation, (3) the abrupt termination of the channel that occurs at the point the power falls below the critical power Pcr, and, in the case of Xe channels, (4) the presence of saturated absorption of Xe(M) radiation that generates an extended peripheral zone of ionization. These observations provide new quantitative information on the channeling mechanism and its ability to produce very high power densities under stable conditions. The measured rates for energy deposition per unit length are ∼1.46 J/cm and ∼0.82 J/cm for Xe and Kr targets, respectively, and the single-pulse Xe(M) energy yield is estimated to be >50 mJ, a value indicating an efficiency >20 % for ∼1 keV X-ray production from the incident 248 nm pulse. An efficiency of this magnitude heralds the future production of kiloelectronvolt X-ray pulses with energies of ∼1 J.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.M. Braams, P.E. Stott, Nuclear Fusion: Half a Century of Magnetic Confinement Fusion Research (Institute of Physics Publishing Ltd., Bristol, 2002)

    Book  Google Scholar 

  2. J.J. Bissell, C.P. Ridgers, R.J. Kingham, Field compressing magnetothermal instability in laser plasmas. Phys. Rev. Lett. 105, 175001 (2010)

    Article  ADS  Google Scholar 

  3. A.B. Borisov, A.V. Borovskiy, V.V. Korobkin, A.M. Prokhorov, O.B. Shiryaev, X.M. Shi, T.S. Luk, A. McPherson, J.C. Solem, K. Boyer, C.K. Rhodes, Observation of relativistic and charge-displacement self-channeling of intense subpicosecond ultraviolet (248 nm) radiation in plasmas. Phys. Rev. Lett. 68, 2309 (1992)

    Article  ADS  Google Scholar 

  4. A.B. Borisov, A.V. Borovskiy, O.B. Shiryaev, V.V. Korobkin, A.M. Prokhorov, J.C. Solem, T.S. Luk, K. Boyer, C.K. Rhodes, Relativistic and charge-displacement self-channeling of intense ultrashort laser pulses in plasmas. Phys. Rev. A 45, 5830 (1992)

    Article  ADS  Google Scholar 

  5. A.B. Borisov, X. Shi, V.B. Karpov, V.V. Korobkin, J.C. Solem, O.B. Shiryaev, A. McPherson, K. Boyer, C.K. Rhodes, Stable self-channeling of intense ultraviolet pulses in underdense plasma, producing channels exceeding 100 Rayleigh lengths. J. Opt. Soc. Am. B 11, 1941 (1994)

    Article  ADS  Google Scholar 

  6. A.B. Borisov, O.B. Shiryaev, A. McPherson, K. Boyer, C.K. Rhodes, Stability analysis of relativistic and charge-displacement self-channeling of intense laser pulses in underdense plasmas. Plasma Phys. Contr. Fusion 37, 569 (1995)

    Article  ADS  Google Scholar 

  7. P. Monot, T. Auguste, P. Gibbon, F. Jakober, G. Mainfray, A. Dulieu, M. Louis-Jacquet, G. Malka, J.L. Miquel, Experimental demonstration of relativistic self-channeling of a multiterawatt laser pulse in an underdense plasma. Phys. Rev. Lett. 74, 2953 (1995)

    Article  ADS  Google Scholar 

  8. A. Chiron, G. Bonnaud, A. Dulleu, J.L. Miquel, G. Malka, M. Louis-Jacquet, Experimental observations and simulations on relativistic self-guiding of an ultra-intense laser pulse in underdense plasmas. Phys. Plasmas 3, 1373 (1996)

    Article  ADS  Google Scholar 

  9. R. Wagner, S.-Y. Chen, A. Maksimchuk, D. Umstadter, Electron acceleration by a laser wakefield in a relativistically self-guided channel. Phys. Rev. Lett. 78, 3125 (1997)

    Article  ADS  Google Scholar 

  10. M. Borghesi, A.J. MacKinnon, L. Barringer, R. Gaillard, L.A. Gizzi, C. Meyer, O. Willi, A. Pukhov, J. Meyer-ter-Vehn, Relativistic channeling of a picosecond laser pulse in a near-critical preformed plasma. Phys. Rev. Lett. 78, 879 (1997)

    Article  ADS  Google Scholar 

  11. A.B. Borisov, J.W. Longworth, K. Boyer, C.K. Rhodes, Stable relativistic/charge-displacement channels in ultrahigh power density (1021 W/cm3) plasmas. Proc. Natl. Acad. Sci. USA 95, 7854 (1998)

    Article  ADS  Google Scholar 

  12. C.E. Clayton, K.-C. Tzeng, D. Gordon, P. Muggli, W.B. Mori, C. Joshi, V. Malka, Z. Najmudin, A. Modena, D. Neely, A.E. Dangor, Plasma wave generation in a self-focused channel of a relativistically intense laser pulse. Phys. Rev. Lett. 81, 100 (1998)

    Article  ADS  Google Scholar 

  13. A.B. Borisov, S. Cameron, Y. Dai, J. Davis, T. Nelson, W.A. Schroeder, J.W. Longworth, K. Boyer, C.K. Rhodes, Dynamics of optimized stable channel formation of intense laser pulses with the relativistic/charge-displacement mechanism. J. Phys. B At. Mol. Opt. Phys. 32, 3511 (1999)

    Article  ADS  Google Scholar 

  14. X. Wang, M. Krishnan, W. Saleh, H. Wang, D. Umstadter, Electron acceleration and the propagation of ultrashort high-intensity laser pulses in plasmas. Phys. Rev. Lett. 84, 5324 (2000)

    Article  ADS  Google Scholar 

  15. A.B. Borisov, S. Cameron, T.S. Luk, T.R. Nelson, A.J. Van Tassle, J. Santoro, W.A. Schroeder, Y. Dai, J.W. Longworth, K. Boyer, C.K. Rhodes, Bifurcation mode of relativistic and charge-displacement self-channeling. J. Phys. B At. Mol. Opt. Phys. 34, 2167 (2001)

    Article  ADS  Google Scholar 

  16. A. Pukhov, Strong field interaction of laser radiation. Rep. Prog. Phys. 66, 47 (2003)

    Article  ADS  Google Scholar 

  17. T. Esirkepov, M. Borghesi, S.V. Bulanov, G. Mourou, T. Tajima, Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003 (2004)

    Article  ADS  Google Scholar 

  18. J. Davis, A.B. Borisov, C.K. Rhodes, Optimization of power compression and stability of relativistic and ponderomotive self-channeling of 248 nm laser pulses in underdense plasmas. Phys. Rev. E 70, 066406 (2004)

    Article  ADS  Google Scholar 

  19. A. McPherson, B.D. Thompson, A.B. Borisov, K. Boyer, C.K. Rhodes, Multiphoton-induced X-ray emission at 4-5 keV from Xe atoms with multiple core vacancies. Nature 370, 631 (1994)

    Article  ADS  Google Scholar 

  20. A. McPherson, T.S. Luk, B.D. Thompson, A.B. Borisov, O.B. Shiryaev, X. Chen, K. Boyer, C.K. Rhodes, Multiphoton induced X-ray emission from Kr clusters on M-shell (100 Å) and L-shell (6 Å) transitions. Phys. Rev. Lett. 72, 1810 (1994)

    Article  ADS  Google Scholar 

  21. T. Ditmire, T. Donnelly, R.W. Falcone, M.D. Perry, Strong X-ray emission from high-temperature plasmas produced by intense irradiation of clusters. Phys. Rev. Lett. 75, 3122 (1995)

    Article  ADS  Google Scholar 

  22. H. Wabnitz, L. Bittner, A.R.B. de Castro, R. Döhrmann, P. Gürtler, T. Laarmann, W. Laasch, J. Schulz, A. Swiderski, K. von Haeften, T. Möller, B. Faatz, A. Fateev, J. Feldhaus, C. Gerth, U. Hahn, E. Saldin, E. Schneidmiller, K. Sytchev, K. Tiedtke, R. Treusch, M. Yurkov, Multiple ionization of atom clusters by intense soft X-rays from a free-electron laser. Nature 420, 482 (2002)

    Article  ADS  Google Scholar 

  23. U. Saalmann, C. Siedschlag, J.-M. Rost, Mechanisms of cluster ionization in strong laser pulses. J. Phys. B At. Mol. Opt. Phys. 39, R39 (2006)

    Article  ADS  Google Scholar 

  24. M. Arbeiter, T. Fennel, Ionization heating in rare-gas clusters under intense XUV laser pulses. Phys. Rev. A 82, 013201 (2010)

    Article  ADS  Google Scholar 

  25. T. Fennel, K.-H. Meiwes-Broer, J. Tiggesbäumker, P.-G. Reinhard, P.M. Dinh, E. Suraud, Laser-driven nonlinear cluster dynamics. Rev. Mod. Phys. 82, 1793 (2010)

    Article  ADS  Google Scholar 

  26. D. Mathur, F.A. Rajgara, Communication: ionization and coulomb explosion of xenon clusters by intense, few-cycle laser pulses. J. Chem. Phys. 133, 061101 (2010)

    Article  ADS  Google Scholar 

  27. M. Arbeiter, T. Fennel, Rare-gas clusters in intense VUV, XUV and soft X-ray pulses: signatures of the transition from nanoplasma-driven cluster expansion to coulomb explosion in ion and electron spectra. New J. Phys. 13, 053022 (2011)

    Article  ADS  Google Scholar 

  28. C. Gnodtke, U. Saalmann, J.-M. Rost, Massively parallel ionization of extended atomic systems. Phys. Rev. Lett. 108, 175003 (2012)

    Article  ADS  Google Scholar 

  29. M. Krikunova, M. Adolph, T. Gorkhover, D. Rupp, S. Schorb, C. Bostedt, S. Roling, B. Siemer, R. Mitzner, H. Zacharias, T. Möller, Ionization dynamics in expanding clusters studied by XUV pump-probe spectroscopy. J. Phys. B At. Mol. Opt. Phys. 45, 105101 (2012)

    Article  ADS  Google Scholar 

  30. A.B. Borisov, J.C. McCorkindale, S. Poopalasingam, J.W. Longworth, C.K. Rhodes, Demonstration of Kr(L) amplification at λ = 7.5 Å from Kr clusters in self-trapped plasma channels. J. Phys. B At. Mol. Opt. Phys. 46, 155601 (2013)

    Google Scholar 

  31. G. Gibson, T.S. Luk, C.K. Rhodes, Tunneling ionization in the multiphoton regime. Phys. Rev. A 41, 5049 (1990)

    Article  ADS  Google Scholar 

  32. A.B. Borisov, P. Zhang, E. Racz, J.C. McCorkindale, S.F. Khan, S. Poopalasingam, J. Zhao, C.K. Rhodes, Temperature enhancement of Xe(L) X-ray amplifier power (λ ∼ 2.9 Å) emission. J. Phys. B At. Mol. Opt. Phys. 40, F307 (2007)

    Article  ADS  Google Scholar 

  33. A.B. Borisov, J.W. Longworth, A. McPherson, K. Boyer, C.K. Rhodes, Dynamical orbital collapse drives super X-ray emission. J. Phys. B At. Mol. Opt. Phys. 29, 247 (1996)

    Article  ADS  Google Scholar 

  34. K. Boyer, B.D. Thompson, A. McPherson, C.K. Rhodes, Evidence for coherent electron motions in multiphoton X-ray production from Kr and Xe clusters. J. Phys. B At. Mol. Opt. Phys. 27, 4373 (1994)

    Article  ADS  Google Scholar 

  35. A.B. Borisov, A. McPherson, B.D. Thompson, K. Boyer, C.K. Rhodes, Ultrahigh power compression for X-ray amplification: multiphoton cluster excitation combined with non-linear channelled propagation. J. Phys. B At. Mol. Opt. Phys. 28, 2143 (1995)

    Article  ADS  Google Scholar 

  36. A.B. Borisov, X. Song, P. Zhang, J.C. McCorkindale, S.F. Khan, S. Poopalasingam, J. Zhao, Y. Dai, C.K. Rhodes, Double optimization of Xe(L) amplifier power scaling at λ ∼ 2.9 Å. J. Phys. B At. Mol. Opt. Phys. 40, F131 (2007)

    Article  ADS  Google Scholar 

  37. R.Y. Chiao, E. Garmine, C.H. Townes, Self-trapping of optical beams. Phys. Rev. Lett. 13, 479 (1964)

    Article  ADS  Google Scholar 

  38. T.A. Carlson, C.W. Nestor Jr., N. Wasserman, J.D. McDowell, Calculated ionization potentials for multiply charged ions. At. Data 2, 63 (1970)

    Article  ADS  Google Scholar 

  39. E.F. Plechaty, D.E. Cullen, R.J. Howerton, Tables and Graphs of Photon-Interaction Cross Sections from 0.1 keV to 100 MeV Derived from LLL Evaluated-Nuclear-Data Library, UCRL-50400, vol. 6, Rev. 3, November 1981, p. 268

    Google Scholar 

  40. A.B. Borisov, X. Song, F. Frigeni, Y. Koshman, Y. Dai, K. Boyer, C.K. Rhodes, Ultrabright multikilovolt coherent tunable X-ray source at λ ∼ 2.71–2.93 Å. J. Phys. B At. Mol. Opt. Phys. 36, 3433 (2003)

    Article  ADS  Google Scholar 

  41. A.C. Thompson, D.T. Attwood, E.M. Gullikson, M.R. Howells, K.-J. Kim, J. Kirz, J.B. Kortright, I. Lindau, P. Pianetta, A.L. Robinson, J.H. Scofield, J.H. Underwood, D. Vaughan, G.P. Williams, H. Winick, X-Ray Data Booklet, Center for X-ray Optics and Advanced Light Source, LBNL/PUB-490, Rev. 3, October 2009

    Google Scholar 

  42. R.D. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1955)

    MATH  Google Scholar 

  43. A. McPherson, A.B. Borisov, K. Boyer, C.K. Rhodes, Competition between multiphoton xenon cluster excitation and plasma wave Raman scattering at 248 nm. J. Phys. B At. Mol. Opt. Phys. 29, L291 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was funded by DARPA on contract no. DAAD 10-01-C-0068 through the Army Research Laboratory. We acknowledge the participation of John C. McCorkindale, Sankar Poopalasingam, and James W. Longworth in the performance of the experimental work. Charles K. Rhodes respectfully acknowledges many insightful conversations with C. Martin Stickley about these studies over a period of several years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles K. Rhodes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Borisov, A.B., Rhodes, C.K. (2015). Stable Power Compression with Efficient Relativistic UV Channel Formation in Cluster Targets. In: Marowsky, G. (eds) Planar Waveguides and other Confined Geometries. Springer Series in Optical Sciences, vol 189. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1179-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1179-0_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1178-3

  • Online ISBN: 978-1-4939-1179-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics