Advertisement

Stable Power Compression with Efficient Relativistic UV Channel Formation in Cluster Targets

  • Alex B. Borisov
  • Charles K. RhodesEmail author
Chapter
  • 1.4k Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 189)

Abstract

Comparative single-pulse studies of self-trapped plasma channel formation in Xe and Kr cluster targets produced with 1–2 TW femtosecond 248 nm pulses reveal energy-efficient (>90 %) power compression with formation of relativistic ultraviolet (248 nm) self-trapped plasma channels. A key observation is the highly robust stability of the channeled propagation characteristic of both materials. Images of the channel morphology produced by Thomson scattering from the electron density correlated with the direct visualization of the Xe(M) and Kr(L) X-ray emission from radiating ions illustrate (1) the channel formation, (2) the narrow region of confined trapped propagation, (3) the abrupt termination of the channel that occurs at the point the power falls below the critical power Pcr, and, in the case of Xe channels, (4) the presence of saturated absorption of Xe(M) radiation that generates an extended peripheral zone of ionization. These observations provide new quantitative information on the channeling mechanism and its ability to produce very high power densities under stable conditions. The measured rates for energy deposition per unit length are ∼1.46 J/cm and ∼0.82 J/cm for Xe and Kr targets, respectively, and the single-pulse Xe(M) energy yield is estimated to be >50 mJ, a value indicating an efficiency >20 % for ∼1 keV X-ray production from the incident 248 nm pulse. An efficiency of this magnitude heralds the future production of kiloelectronvolt X-ray pulses with energies of ∼1 J.

Keywords

Critical Power Channel Formation Plasma Channel Peak Electron Density Cluster Target 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was funded by DARPA on contract no. DAAD 10-01-C-0068 through the Army Research Laboratory. We acknowledge the participation of John C. McCorkindale, Sankar Poopalasingam, and James W. Longworth in the performance of the experimental work. Charles K. Rhodes respectfully acknowledges many insightful conversations with C. Martin Stickley about these studies over a period of several years.

References

  1. 1.
    C.M. Braams, P.E. Stott, Nuclear Fusion: Half a Century of Magnetic Confinement Fusion Research (Institute of Physics Publishing Ltd., Bristol, 2002)CrossRefGoogle Scholar
  2. 2.
    J.J. Bissell, C.P. Ridgers, R.J. Kingham, Field compressing magnetothermal instability in laser plasmas. Phys. Rev. Lett. 105, 175001 (2010)CrossRefADSGoogle Scholar
  3. 3.
    A.B. Borisov, A.V. Borovskiy, V.V. Korobkin, A.M. Prokhorov, O.B. Shiryaev, X.M. Shi, T.S. Luk, A. McPherson, J.C. Solem, K. Boyer, C.K. Rhodes, Observation of relativistic and charge-displacement self-channeling of intense subpicosecond ultraviolet (248 nm) radiation in plasmas. Phys. Rev. Lett. 68, 2309 (1992)CrossRefADSGoogle Scholar
  4. 4.
    A.B. Borisov, A.V. Borovskiy, O.B. Shiryaev, V.V. Korobkin, A.M. Prokhorov, J.C. Solem, T.S. Luk, K. Boyer, C.K. Rhodes, Relativistic and charge-displacement self-channeling of intense ultrashort laser pulses in plasmas. Phys. Rev. A 45, 5830 (1992)CrossRefADSGoogle Scholar
  5. 5.
    A.B. Borisov, X. Shi, V.B. Karpov, V.V. Korobkin, J.C. Solem, O.B. Shiryaev, A. McPherson, K. Boyer, C.K. Rhodes, Stable self-channeling of intense ultraviolet pulses in underdense plasma, producing channels exceeding 100 Rayleigh lengths. J. Opt. Soc. Am. B 11, 1941 (1994)CrossRefADSGoogle Scholar
  6. 6.
    A.B. Borisov, O.B. Shiryaev, A. McPherson, K. Boyer, C.K. Rhodes, Stability analysis of relativistic and charge-displacement self-channeling of intense laser pulses in underdense plasmas. Plasma Phys. Contr. Fusion 37, 569 (1995)CrossRefADSGoogle Scholar
  7. 7.
    P. Monot, T. Auguste, P. Gibbon, F. Jakober, G. Mainfray, A. Dulieu, M. Louis-Jacquet, G. Malka, J.L. Miquel, Experimental demonstration of relativistic self-channeling of a multiterawatt laser pulse in an underdense plasma. Phys. Rev. Lett. 74, 2953 (1995)CrossRefADSGoogle Scholar
  8. 8.
    A. Chiron, G. Bonnaud, A. Dulleu, J.L. Miquel, G. Malka, M. Louis-Jacquet, Experimental observations and simulations on relativistic self-guiding of an ultra-intense laser pulse in underdense plasmas. Phys. Plasmas 3, 1373 (1996)CrossRefADSGoogle Scholar
  9. 9.
    R. Wagner, S.-Y. Chen, A. Maksimchuk, D. Umstadter, Electron acceleration by a laser wakefield in a relativistically self-guided channel. Phys. Rev. Lett. 78, 3125 (1997)CrossRefADSGoogle Scholar
  10. 10.
    M. Borghesi, A.J. MacKinnon, L. Barringer, R. Gaillard, L.A. Gizzi, C. Meyer, O. Willi, A. Pukhov, J. Meyer-ter-Vehn, Relativistic channeling of a picosecond laser pulse in a near-critical preformed plasma. Phys. Rev. Lett. 78, 879 (1997)CrossRefADSGoogle Scholar
  11. 11.
    A.B. Borisov, J.W. Longworth, K. Boyer, C.K. Rhodes, Stable relativistic/charge-displacement channels in ultrahigh power density (1021 W/cm3) plasmas. Proc. Natl. Acad. Sci. USA 95, 7854 (1998)CrossRefADSGoogle Scholar
  12. 12.
    C.E. Clayton, K.-C. Tzeng, D. Gordon, P. Muggli, W.B. Mori, C. Joshi, V. Malka, Z. Najmudin, A. Modena, D. Neely, A.E. Dangor, Plasma wave generation in a self-focused channel of a relativistically intense laser pulse. Phys. Rev. Lett. 81, 100 (1998)CrossRefADSGoogle Scholar
  13. 13.
    A.B. Borisov, S. Cameron, Y. Dai, J. Davis, T. Nelson, W.A. Schroeder, J.W. Longworth, K. Boyer, C.K. Rhodes, Dynamics of optimized stable channel formation of intense laser pulses with the relativistic/charge-displacement mechanism. J. Phys. B At. Mol. Opt. Phys. 32, 3511 (1999)CrossRefADSGoogle Scholar
  14. 14.
    X. Wang, M. Krishnan, W. Saleh, H. Wang, D. Umstadter, Electron acceleration and the propagation of ultrashort high-intensity laser pulses in plasmas. Phys. Rev. Lett. 84, 5324 (2000)CrossRefADSGoogle Scholar
  15. 15.
    A.B. Borisov, S. Cameron, T.S. Luk, T.R. Nelson, A.J. Van Tassle, J. Santoro, W.A. Schroeder, Y. Dai, J.W. Longworth, K. Boyer, C.K. Rhodes, Bifurcation mode of relativistic and charge-displacement self-channeling. J. Phys. B At. Mol. Opt. Phys. 34, 2167 (2001)CrossRefADSGoogle Scholar
  16. 16.
    A. Pukhov, Strong field interaction of laser radiation. Rep. Prog. Phys. 66, 47 (2003)CrossRefADSGoogle Scholar
  17. 17.
    T. Esirkepov, M. Borghesi, S.V. Bulanov, G. Mourou, T. Tajima, Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003 (2004)CrossRefADSGoogle Scholar
  18. 18.
    J. Davis, A.B. Borisov, C.K. Rhodes, Optimization of power compression and stability of relativistic and ponderomotive self-channeling of 248 nm laser pulses in underdense plasmas. Phys. Rev. E 70, 066406 (2004)CrossRefADSGoogle Scholar
  19. 19.
    A. McPherson, B.D. Thompson, A.B. Borisov, K. Boyer, C.K. Rhodes, Multiphoton-induced X-ray emission at 4-5 keV from Xe atoms with multiple core vacancies. Nature 370, 631 (1994)CrossRefADSGoogle Scholar
  20. 20.
    A. McPherson, T.S. Luk, B.D. Thompson, A.B. Borisov, O.B. Shiryaev, X. Chen, K. Boyer, C.K. Rhodes, Multiphoton induced X-ray emission from Kr clusters on M-shell (100 Å) and L-shell (6 Å) transitions. Phys. Rev. Lett. 72, 1810 (1994)CrossRefADSGoogle Scholar
  21. 21.
    T. Ditmire, T. Donnelly, R.W. Falcone, M.D. Perry, Strong X-ray emission from high-temperature plasmas produced by intense irradiation of clusters. Phys. Rev. Lett. 75, 3122 (1995)CrossRefADSGoogle Scholar
  22. 22.
    H. Wabnitz, L. Bittner, A.R.B. de Castro, R. Döhrmann, P. Gürtler, T. Laarmann, W. Laasch, J. Schulz, A. Swiderski, K. von Haeften, T. Möller, B. Faatz, A. Fateev, J. Feldhaus, C. Gerth, U. Hahn, E. Saldin, E. Schneidmiller, K. Sytchev, K. Tiedtke, R. Treusch, M. Yurkov, Multiple ionization of atom clusters by intense soft X-rays from a free-electron laser. Nature 420, 482 (2002)CrossRefADSGoogle Scholar
  23. 23.
    U. Saalmann, C. Siedschlag, J.-M. Rost, Mechanisms of cluster ionization in strong laser pulses. J. Phys. B At. Mol. Opt. Phys. 39, R39 (2006)CrossRefADSGoogle Scholar
  24. 24.
    M. Arbeiter, T. Fennel, Ionization heating in rare-gas clusters under intense XUV laser pulses. Phys. Rev. A 82, 013201 (2010)CrossRefADSGoogle Scholar
  25. 25.
    T. Fennel, K.-H. Meiwes-Broer, J. Tiggesbäumker, P.-G. Reinhard, P.M. Dinh, E. Suraud, Laser-driven nonlinear cluster dynamics. Rev. Mod. Phys. 82, 1793 (2010)CrossRefADSGoogle Scholar
  26. 26.
    D. Mathur, F.A. Rajgara, Communication: ionization and coulomb explosion of xenon clusters by intense, few-cycle laser pulses. J. Chem. Phys. 133, 061101 (2010)CrossRefADSGoogle Scholar
  27. 27.
    M. Arbeiter, T. Fennel, Rare-gas clusters in intense VUV, XUV and soft X-ray pulses: signatures of the transition from nanoplasma-driven cluster expansion to coulomb explosion in ion and electron spectra. New J. Phys. 13, 053022 (2011)CrossRefADSGoogle Scholar
  28. 28.
    C. Gnodtke, U. Saalmann, J.-M. Rost, Massively parallel ionization of extended atomic systems. Phys. Rev. Lett. 108, 175003 (2012)CrossRefADSGoogle Scholar
  29. 29.
    M. Krikunova, M. Adolph, T. Gorkhover, D. Rupp, S. Schorb, C. Bostedt, S. Roling, B. Siemer, R. Mitzner, H. Zacharias, T. Möller, Ionization dynamics in expanding clusters studied by XUV pump-probe spectroscopy. J. Phys. B At. Mol. Opt. Phys. 45, 105101 (2012)CrossRefADSGoogle Scholar
  30. 30.
    A.B. Borisov, J.C. McCorkindale, S. Poopalasingam, J.W. Longworth, C.K. Rhodes, Demonstration of Kr(L) amplification at λ = 7.5 Å from Kr clusters in self-trapped plasma channels. J. Phys. B At. Mol. Opt. Phys. 46, 155601 (2013)Google Scholar
  31. 31.
    G. Gibson, T.S. Luk, C.K. Rhodes, Tunneling ionization in the multiphoton regime. Phys. Rev. A 41, 5049 (1990)CrossRefADSGoogle Scholar
  32. 32.
    A.B. Borisov, P. Zhang, E. Racz, J.C. McCorkindale, S.F. Khan, S. Poopalasingam, J. Zhao, C.K. Rhodes, Temperature enhancement of Xe(L) X-ray amplifier power (λ ∼ 2.9 Å) emission. J. Phys. B At. Mol. Opt. Phys. 40, F307 (2007)CrossRefADSGoogle Scholar
  33. 33.
    A.B. Borisov, J.W. Longworth, A. McPherson, K. Boyer, C.K. Rhodes, Dynamical orbital collapse drives super X-ray emission. J. Phys. B At. Mol. Opt. Phys. 29, 247 (1996)CrossRefADSGoogle Scholar
  34. 34.
    K. Boyer, B.D. Thompson, A. McPherson, C.K. Rhodes, Evidence for coherent electron motions in multiphoton X-ray production from Kr and Xe clusters. J. Phys. B At. Mol. Opt. Phys. 27, 4373 (1994)CrossRefADSGoogle Scholar
  35. 35.
    A.B. Borisov, A. McPherson, B.D. Thompson, K. Boyer, C.K. Rhodes, Ultrahigh power compression for X-ray amplification: multiphoton cluster excitation combined with non-linear channelled propagation. J. Phys. B At. Mol. Opt. Phys. 28, 2143 (1995)CrossRefADSGoogle Scholar
  36. 36.
    A.B. Borisov, X. Song, P. Zhang, J.C. McCorkindale, S.F. Khan, S. Poopalasingam, J. Zhao, Y. Dai, C.K. Rhodes, Double optimization of Xe(L) amplifier power scaling at λ ∼ 2.9 Å. J. Phys. B At. Mol. Opt. Phys. 40, F131 (2007)CrossRefADSGoogle Scholar
  37. 37.
    R.Y. Chiao, E. Garmine, C.H. Townes, Self-trapping of optical beams. Phys. Rev. Lett. 13, 479 (1964)CrossRefADSGoogle Scholar
  38. 38.
    T.A. Carlson, C.W. Nestor Jr., N. Wasserman, J.D. McDowell, Calculated ionization potentials for multiply charged ions. At. Data 2, 63 (1970)CrossRefADSGoogle Scholar
  39. 39.
    E.F. Plechaty, D.E. Cullen, R.J. Howerton, Tables and Graphs of Photon-Interaction Cross Sections from 0.1 keV to 100 MeV Derived from LLL Evaluated-Nuclear-Data Library, UCRL-50400, vol. 6, Rev. 3, November 1981, p. 268Google Scholar
  40. 40.
    A.B. Borisov, X. Song, F. Frigeni, Y. Koshman, Y. Dai, K. Boyer, C.K. Rhodes, Ultrabright multikilovolt coherent tunable X-ray source at λ ∼ 2.71–2.93 Å. J. Phys. B At. Mol. Opt. Phys. 36, 3433 (2003)CrossRefADSGoogle Scholar
  41. 41.
    A.C. Thompson, D.T. Attwood, E.M. Gullikson, M.R. Howells, K.-J. Kim, J. Kirz, J.B. Kortright, I. Lindau, P. Pianetta, A.L. Robinson, J.H. Scofield, J.H. Underwood, D. Vaughan, G.P. Williams, H. Winick, X-Ray Data Booklet, Center for X-ray Optics and Advanced Light Source, LBNL/PUB-490, Rev. 3, October 2009Google Scholar
  42. 42.
    R.D. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1955)zbMATHGoogle Scholar
  43. 43.
    A. McPherson, A.B. Borisov, K. Boyer, C.K. Rhodes, Competition between multiphoton xenon cluster excitation and plasma wave Raman scattering at 248 nm. J. Phys. B At. Mol. Opt. Phys. 29, L291 (1996)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Laboratory for X-ray Microimaging and Bioinformatics, Department of PhysicsUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations