Advanced Coupling Technologies for Planar and Strip Waveguides

  • Thomas Fricke-BegemannEmail author
  • Jürgen Ihlemann
Part of the Springer Series in Optical Sciences book series (SSOS, volume 189)


Grating couplers are frequently used to couple free-space beams to thin-film waveguides on planar substrates. We use finite element method (FEM) simulations to analyze the effect of experimental parameters on coupling efficiency and to optimize the grating design for specific applications. Grating fabrication is demonstrated by direct laser ablation using a UV-laser processing system at 157 nm wavelength. As a novel coupling technique, we propose to use external gratings fabricated on the end face of a collimating micro lens or immediately on the exit face of an optical fiber to couple light from a single-mode fiber directly to planar or strip waveguides. FEM simulations and experimental results show that the new technique can provide similar coupling efficiencies as common internal grating couplers. The external couplers can be repeatedly reused and eliminate the need for conventional internal grating couplers, which induce a major part of the production costs and impose certain restrictions on the waveguide devices.


Coupling Efficiency Transversal Electric Evanescent Field Total Internal Reflection Fluorescence Grating Coupler 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank A. Selle for conducting some parts of the FEM calculations and acknowledge financial support by the German Ministry of Economics and Technology.


  1. 1.
    S. Sinzinger, J. Jahns, Microoptics (Wiley-VCH, Weinheim, 1999)Google Scholar
  2. 2.
    B.C. Kress, P. Meyrueis, Applied Digital Optics (Wiley, Chichester, 2009)CrossRefGoogle Scholar
  3. 3.
    B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, 2nd edn. (Wiley, Hoboken, 2007)Google Scholar
  4. 4.
    F. de Fornel, Evanescent Waves: From Newtonian Optics to Atomic Optics. Optical Sciences, vol. 73 (Springer, Berlin, 2001)Google Scholar
  5. 5.
    K. Schmitt, K. Oehse, G. Sulz, C. Hoffmann, Evanescent field sensors based on tantalum pentoxide waveguides: a review. Sensors 8, 711–738 (2008)CrossRefGoogle Scholar
  6. 6.
    G.L. Duveneck, A.P. Abel, M.A. Bopp, G.M. Kresbach, M. Ehrat, Planar waveguides for ultrahigh sensitivity of the analysis of nucleic acids. Anal. Chim. Acta 469, 49–61 (2002)CrossRefGoogle Scholar
  7. 7.
    W. Lukosz, K. Tiefenthaler, Embossing technique for fabricating integrated optical components in hard inorganic waveguiding materials. Opt. Lett. 8, 537–539 (1983)CrossRefADSGoogle Scholar
  8. 8.
    F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, D. Anselmetti, Sub-micron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation. Appl. Surf. Sci. 138–139, 107–110 (1999)CrossRefGoogle Scholar
  9. 9.
    S. Pissadakis, M.N. Zervas, L. Reekie, J.S. Wilkinson, High-reflectivity Bragg gratings fabricated by 248-nm excimer laser holographic ablation in thin Ta2O5 films overlaid on glass waveguides. Appl. Phys. A 79, 1093–1096 (2004)CrossRefADSGoogle Scholar
  10. 10.
    M. Wiesner, J. Ihlemann, H.M. Müller, E. Lankenau, G. Hüttmann, Optical coherence tomography for process control of laser machining. Rev. Sci. Instrum. 81, 033705 (2010)CrossRefADSGoogle Scholar
  11. 11.
    R. Ulrich, Efficiency of optical-grating couplers. J. Opt. Soc. Am. 63, 1419–1431 (1973)CrossRefADSGoogle Scholar
  12. 12.
    D. Pascal, R. Orobtchouk, A. Layadi, A. Koster, S. Laval, Optimized coupling of a Gaussian beam into an optical waveguide with a grating coupler: comparison of experimental and theoretical results. Appl. Opt. 36, 2443–2447 (1997)CrossRefADSGoogle Scholar
  13. 13.
    A. Kocabas, F. Ay, A. Dâna, A. Aydinli, An elastomeric grating coupler. J. Opt. A, Pure Appl. Opt. 8(1), 85–87 (2006)CrossRefADSGoogle Scholar
  14. 14.
    T. Fricke-Begemann, J. Ihlemann, Direct light-coupling to thin-film waveguides using a grating-structured GRIN lens. Opt. Exp. 18(19), 19860–19866 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of NanostructuresLaser-Laboratorium Göttingen e.V.GöttingenGermany

Personalised recommendations