Laser Processed Photonic Devices

  • Jerome Lapointe
  • Raman KashyapEmail author
Part of the Springer Series in Optical Sciences book series (SSOS, volume 189)


The last century was that of electronics; it is now one of photonics. As Richard Feynman (Nobel Prize, 1965) suggested in 1959, “Smaller, Faster, Cheaper” would lead the world, and in many ways he has proven to be correct. Over the past decades, photonics devices and integrated optics have been among the most revolutionary areas of research and advances. Although integrated optics devices are well advanced these days, there is still much to do and most of these components are still expensive to manufacture for mass deployment. In fact, most of these require clean room facilities, as well as several expensive manufacturing steps such as phase mask fabrication or photolithography. This chapter aims at explaining a potential solution to fast manufacturing of cheap integrated optics by laser writing.


Propagation Loss Lithium Niobate Photonic Device Heat Accumulation Lithium Niobate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The JL acknowledges support from the Natural Science and Engineering Council of Canada’s Alexander Graham Bell Scholarship for doctoral studies, and RK acknowledges support from the Government of Canada’s Canada Research Chairs program.


  1. 1.
    D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Laser-induced breakdown by impact ionization in Si02 with pulse widths from 7 ns to 150 fs. Appl. Phys. Lett. 64, 3071 (1994)ADSGoogle Scholar
  2. 2.
    B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, M.D. Perry, Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett. 74, 2248 (1995)ADSGoogle Scholar
  3. 3.
    A.P. Joglekar, H. Liu, E. Meyhofer, G. Mourou, A.J. Hunt, Optics at critical intensity: applications to nanomorphing. Proc. Natl. Acad. Sci. USA 101, 5856 (2004)ADSGoogle Scholar
  4. 4.
    A.M. Streltsov, N.F. Borrelli, Study of femtosecond-laser-written waveguides in glasses. J. Opt. Soc. Am. B Opt. Phys. 19, 2496–2504 (2002)ADSGoogle Scholar
  5. 5.
    G. Della Valle, R. Osellame, P. Laporta, Micromachining of photonic devices by femtosecond laser pulses. J Opt. A Pure Appl. Opt. 11, 013001 (2009)ADSGoogle Scholar
  6. 6.
    R. Kashyap, Fiber Bragg Gratings, 2nd edn. (Academic, London, 2009)Google Scholar
  7. 7.
    F. Guay, L.C. Ozcan, R. Kashyap, Surface relief diffraction gratings fabricated in ZnSe by frequency doubled Nd:YAG laser micromachining. Opt. Comm. 281, 935–939 (2008)ADSGoogle Scholar
  8. 8.
    L.Ç. Özcan, V. Tréanton, R. Kashyap, L. Martinu, High-quality flat-top micromachining of silica by a CW CO2 laser. IEEE Photon. Tech. Lett. 19, 459–461 (2007)ADSGoogle Scholar
  9. 9.
    L.Ç. Özcan, F. Guay, R. Kashyap, L. Martinu, Fabrication of buried waveguides in planar silica films using a direct CW laser writing technique. J. Non-Cryst. Solids 354, 4833–4839 (2008)ADSGoogle Scholar
  10. 10.
    M. Young, Optical fiber index profiles by the refracted-ray method (refracted near-field scanning). Appl. Opt. 20, 3415–3422 (1981)ADSGoogle Scholar
  11. 11.
    Y. Young Chun, D.Y. Kim, Reflection-type optical waveguide index profiling technique. J. Opt. Soc. Korean 9, 49–53 (2005)Google Scholar
  12. 12.
    L.Ç. Özcan, F. Guay, L. Martinu, Investigation of refractive index modifications in CW CO2 laser written planar optical waveguides. Opt. Comm. 281, 3686–3690 (2008)ADSGoogle Scholar
  13. 13.
    J. Burghoff, S. Nolte Unnermann, Origins of waveguiding in femtosecond laser-structured LiNbO3. Appl. Phys. A 89, 127–132 (2007)ADSGoogle Scholar
  14. 14.
    R.R. Thomson, S. Campbell, I.J. Blewett, A.K. Kar, D.T. Reid, Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime. Appl. Phys. Lett. 88, 111109 (2006)ADSGoogle Scholar
  15. 15.
    J. Burghoff, H. Hartung, S. Nolte, A. Tünnermann, Structural properties of femtosecond laser-induced modifications in LiNbO3. Appl. Phys. A Mater. Sci. Process. 86, 165–170 (2007)ADSGoogle Scholar
  16. 16.
    M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, A. Ancona, Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate. Appl. Phys. Lett. 93, 101111 (2008)ADSGoogle Scholar
  17. 17.
    A.M. Glass, D. Linde, T.J. Negran, High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl. Phys. Lett. 25, 233 (1974)ADSGoogle Scholar
  18. 18.
    L. Arizmendi, Photonic applications of lithium niobate crystals. Phys. Stat. Sol. (a) 201, 253–283(2004)ADSGoogle Scholar
  19. 19.
    A. Ruso, M. Aillerie, N. Fressengeas, M. Ferriol, Optical waveguide engraving in a LiNbO3 crystal fiber. Appl. Phys. B 95, 573–578 (2009)ADSGoogle Scholar
  20. 20.
    H.T. Bookey, R.R. Thomson, N.D. Psaila, A.K. Kar, N. Chiodo, R. Osellame, G. Cerullo, Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate. IEEE Photon. Tech. Lett. 19, 892–894 (2007)ADSGoogle Scholar
  21. 21.
    G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, S. De Silvestri, Femtosecond micromachining of symmetric waveguides at 1.5 mm by astigmatic beam focusing. Opt. Lett. 27, 1938–1940 (2002)ADSGoogle Scholar
  22. 22.
    R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, Femtosecond writing of active optical waveguides with astigmatically shaped beams. J. Opt. Soc. Am. B 20, 1559–1567 (2003)ADSGoogle Scholar
  23. 23.
    M. Ams, G.D. Marshall, D.J. Spence, M.J. Withford, Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt. Express 13, 5676–5681 (2005)ADSGoogle Scholar
  24. 24.
    W. Yang, C. Corbari, P.G. Kazansky, K. Sakaguchi, I.C.S. Carvalho, Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing. Opt. Express 16, 16215–16226 (2008)ADSGoogle Scholar
  25. 25.
    C.B. Schaffer, A. Brodeur, J.F. Garcia, E. Mazur, Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt. Lett. 26, 93 (2001)ADSGoogle Scholar
  26. 26.
    K. Minoshima, A.M. Kowalevicz, I. Hartl, E.P. Ippen, J.G. Fujimoto, Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator. Opt. Lett. 26, 1516 (2001)ADSGoogle Scholar
  27. 27.
    A.H. Nejadmalayeri, P.R. Herman, Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate. Opt. Express 15, 10842 (2007)ADSGoogle Scholar
  28. 28.
    M.R. Tejerina, D. Jaque, G.A. Torchia, μ-Raman spectroscopy characterization of LiNbO3 femtosecond laser written waveguides. J. Appl. Phys. 112, 123108 (2012)ADSGoogle Scholar
  29. 29.
    A. Boudrioua, Photonic Waveguides: Theory and Applications (Wiley, Hoboken, 2009), p. 322Google Scholar
  30. 30.
    D. Marcuse, Mode conversion by surface imperfection of a dielectric slab waveguide. Bell Syst. Tech. J. 48, 3187–3216 (1969)Google Scholar
  31. 31.
    R.V. Ramaswamy, R. Srivastava, Ion exchange glass waveguide: a review. J. Lightwave Tech. 6, 984–1002 (1988)ADSGoogle Scholar
  32. 32.
    A.L.R. Brennend, Thermal poling of multioxide silicate glasses and ion exchanged waveguides. Ph.D. Thesis, ORC, Southampton, UK, 2002Google Scholar
  33. 33.
    C.C. Huang, D.W. Hewak, J.V. Badding, Deposition and characterization of germanium sulphite glass planar waveguides. Opt. Express 12, 2501–2506 (2004)ADSGoogle Scholar
  34. 34.
    K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729 (1996)ADSGoogle Scholar
  35. 35.
    K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl. Phys. Lett. 71, 3329 (1997)ADSGoogle Scholar
  36. 36.
    B. McMillen, B. Zhang, K.P. Chen, A. Benayas, D. Jaque, Ultrafast laser fabrication of low-loss waveguides in chalcogenide glass with 0.65 dB∕cm loss. Opt. Lett. 37, 1418–1420 (2012)ADSGoogle Scholar
  37. 37.
    N.D. Psaila, R.R. Thomson, H.T. Bookey, N. Chiodo, S. Shen, R. Osellame, G. Cerullo, A. Jha, A.K. Kar, Er: Yb-doped oxyfluoride silicate glass waveguide laser fabricated using ultrafast laser inscription. IEEE Photon. Tech. Lett. 20, 126–128 (2008)ADSGoogle Scholar
  38. 38.
    S.-L. Li, P. Han, M. Shi, Y. Yao, B. Hu, M. Wang, X. Zhu, Low-loss channel optical waveguide fabrication in Nd3+-doped silicate glasses by femtosecond laser direct writing. Opt. Express 19, 23958–23964 (2011)ADSGoogle Scholar
  39. 39.
    L.B. Fletcher, J.J. Witcher, N. Troy, S.T. Reis, R.K. Brow, R.M. Vazquez, R. Osellame, D.M. Krol, Femtosecond laser writing of waveguides in zinc phosphate glasses. Opt. Mater. Express 1, 845–855 (2011)Google Scholar
  40. 40.
    L.B. Fletcher, J.J. Witcher, N. Troy, S.T. Reis, R.K. Brow, D.M. Krol, Effects of rare-earth doping on femtosecond laser waveguide writing in zinc polyphosphate glass. J. Appl. Phys. 112, 023109 (2012)ADSGoogle Scholar
  41. 41.
    K.C. Vishnubhatla, S.V. Rao, R.S.S. Kumar, R. Osellame, S.N.B. Bhaktha, S. Turrell, A. Chiappini, A. Chiasera, M. Ferrari, M. Mattarelli, M. Montagna, R. Ramponi, J.C. Righini, D.N. Rao, Femtosecond laser direct writing of gratings and waveguides in high quantum efficiency erbium-doped Baccarat glass. J. Phys. D. Appl. Phys. 42, 205106 (2009)ADSGoogle Scholar
  42. 42.
    Y. Li, Z. He, H. Tang, L. Liu, L. Xu, W. Wang, The structural and refractive index changes in the waveguides written by femtosecond laser in Er-doped silicate glasses. J. Non-Cryst. Solids 354, 1216–1220 (2008)ADSGoogle Scholar
  43. 43.
    L.B. Fletcher, J.J. Witcher, N. Troy, S.T. Reis, R.K. Brow, D.M. Krol, Direct femtosecond laser waveguide writing inside zinc phosphate glass. Opt. Express 19, 7929–7936 (2011)ADSGoogle Scholar
  44. 44.
    K. Hirao, K. Miura, Writing waveguides and gratings in silica and related materials by a femtosecond laser. J. Non-Cryst. Solids 239, 91 (1998)ADSGoogle Scholar
  45. 45.
    J.W. Chan, T.R. Huser, S.H. Risbud, J.S. Hayden, D.M. Krol, Waveguide fabrication in phosphate glasses using femtosecond laser pulses. Appl. Phys. Lett. 82, 2371 (2003)ADSGoogle Scholar
  46. 46.
    V.R. Bhardwaj, E. Simova, P.B. Corkum, D.M. Rayner, C. Hnatovsky, R.S. Taylor, B. Schreder, M. Kluge, J. Zimmer, Femtosecond laser-induced refractive index modification in multicomponent glasses. J. Appl. Phys. 97, 083102 (2005)ADSGoogle Scholar
  47. 47.
    A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, R. Valle, Direct femtosecond laser writing of waveguides in As2S3 thin films. Opt. Lett. 29, 748 (2004)ADSGoogle Scholar
  48. 48.
    A.M. Streltsov, N.F. Borrelli, Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses. Opt. Lett. 26, 42 (2001)ADSGoogle Scholar
  49. 49.
    K. Minoshima, A.M. Kowalevicz, E.P. Ippen, J.G. Fujimoto, Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing. Opt. Express 10, 645 (2002)ADSGoogle Scholar
  50. 50.
    W. Watanabe, T. Asano, K. Yamada, I. Kazuyoshi, J. Nishii, Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses. Opt. Lett. 28, 2491 (2003)ADSGoogle Scholar
  51. 51.
    S.M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J.S. Aitchison, P.R. Herman, Telecom-band directional coupler written with femtosecond fiber laser. Photon. Tech. Lett. 18, 2174 (2006)ADSGoogle Scholar
  52. 52.
    A.M. Kowalevicz, V. Sharma, E.P. Ippen, J.G. Fujimoto, K. Minoshima, Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator. Opt. Lett. 30, 1060 (2005)ADSGoogle Scholar
  53. 53.
    K. Suzuki, V. Sharma, J.G. Fujimoto, E.P. Ippen, Y. Nasu, Characterization of symmetric [3 × 3] directional couplers fabricated by direct writing with a femtosecond laser oscillator. Opt. Express 14, 2335 (2006)ADSGoogle Scholar
  54. 54.
    D. Homoelle, S. Wielandy, A.L. Gaeta, N.F. Borrelli, C. Smith, Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses. Opt. Lett. 24, 1311 (1999)ADSGoogle Scholar
  55. 55.
    D.K.Y. Low, H. Xie, Z. Xiong, G.C. Lim, Femtosecond laser direct writing of embedded optical waveguides in aluminosilicate glass. Appl. Phys. A 81, 1633 (2005)ADSGoogle Scholar
  56. 56.
    J. Liu, Z. Zhang, S. Chang, C. Flueraru, C.P. Grover, Directly writing of 1-to-N optical waveguide power splitters in fused silica glass using a femtosecond laser. Opt. Comm. 253, 315 (2005)ADSGoogle Scholar
  57. 57.
    S. Nolte, M. Will, J. Burghoff, A. Tuennermann, Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics. Appl. Phys. A 77, 109 (2003)ADSGoogle Scholar
  58. 58.
    R. Osellame, V. Maselli, N. Chiodo, D. Polli, R. Martinez Vazquez, R. Ramponi, G. Cerullo, Fabrication of 3D photonic devices at 1.55 μm wavelength by femtosecond Ti:Sapphire oscillator. Electron. Lett. 41, 315 (2005)Google Scholar
  59. 59.
    M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, K. Hirao, Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam. Opt. Express 18, 12136–12143 (2010)ADSGoogle Scholar
  60. 60.
    G.D. Marshall, M. Ams, M.J. Withford, Direct laser written waveguide-Bragg gratings in bulk fused silica. Opt. Lett. 31, 2690 (2006)ADSGoogle Scholar
  61. 61.
    H. Zhang, S.M. Eaton, J. Li, P.R. Herman, Type II femtosecond laser writing of Bragg grating waveguides in bulk glass. Electron. Lett. 42, 1223 (2006)Google Scholar
  62. 62.
    H. Zhang, S.M. Eaton, J. Li, P.R. Herman, Femtosecond laser direct writing of multiwavelength Bragg grating waveguides in glass. Opt. Lett. 31, 3495 (2006)ADSGoogle Scholar
  63. 63.
    H. Zhang, S.M. Eaton, J. Li, A.H. Nejadmalayeri, P.R. Herman, Type II high-strength Bragg grating waveguides photowritten with ultrashort laser pulses. Opt. Express 15, 4182 (2007)ADSGoogle Scholar
  64. 64.
    H. Zhang, P.R. Herman, Proceedings of the Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2007), paper BTuD4Google Scholar
  65. 65.
    P.R. Herman, H. Zhang, Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2008), paper OThV4Google Scholar
  66. 66.
    H. Zhang, P.R. Herman, Chirped Bragg grating waveguides directly written inside fused silica glass with an externally modulated ultrashort fiber laser. IEEE Photon. Tech. Lett. 21, 277–279 (2009)ADSGoogle Scholar
  67. 67.
    G. Li, K.A. Winick, A.A. Said, M. Dugan, P. Bado, Waveguide electro-optic modulator in fused silica fabricated by femtosecond laser direct writing and thermal poling. Opt. Lett. 31, 739 (2006)ADSGoogle Scholar
  68. 68.
    T. Tony Fernandez, G. Della Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, P. Laporta, Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass. Opt. Express 16, 15198–15205 (2008)ADSGoogle Scholar
  69. 69.
    G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, P. Laporta, 1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing. Opt. Express 15, 3190 (2007)ADSGoogle Scholar
  70. 70.
    R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, G. Cerullo, Lasing in femtosecond laser written optical waveguides. Appl. Phys. A 93, 17 (2008)ADSGoogle Scholar
  71. 71.
    L.B. Fletcher, J.J. Witcher, N. Troy, R.K. Brow, D.M. Krol, Single-pass waveguide amplifiers in Er-Yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses. Opt. Lett. 37, 1148–1150 (2012)ADSGoogle Scholar
  72. 72.
    D.M. da Silva, L.R.P. Kassab, M. Olivero, T.B.N. Lemos, D.V. da Silva, A.S.L. Gomes, Er3+ doped waveguide amplifiers written with femtosecond laser in germanate glasses. Opt. Mater. 33, 1902–1906 (2011)ADSGoogle Scholar
  73. 73.
    R.R. Thomson, N.D. Psaila, S.J. Beecher, A.K. Kar, Ultrafast laser inscription of a high-gain Er-doped bismuthate glass waveguide amplifier. Opt. Express 18, 13212–13219 (2010)ADSGoogle Scholar
  74. 74.
    N.D. Psaila, R.R. Thomson, H.T. Bookey, A.K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, S. Shen, Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription. Appl. Phys. Lett. 90, 131102 (2007)ADSGoogle Scholar
  75. 75.
    T.T. Fernandez, S.M. Eaton, G.D. Valle, R.M. Vazquez, M. Irannejad, G. Jose, A. Jha, G. Cerullo, R. Osellame, P. Laporta, Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass. Opt. Express 18, 20289–20297 (2010)ADSGoogle Scholar
  76. 76.
    T. Sabapathy, A. Ayiriveetil, A.K. Kar, S. Asokan, S.J. Beecher, Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass. Opt. Mater. Express 2, 1556–1561 (2012)Google Scholar
  77. 77.
    S.M. Eaton, W.-J. Chen, H. Zhang, R. Iyer, J. Li, M.L. Ng, S. Ho, J.S. Aitchison, P.R. Herman, Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths. J. Lightwave Tech. 27, 1079–1085 (2009)Google Scholar
  78. 78.
    N.D. Psaila, R.R. Thomson, H.T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, A.K. Kar, Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide. Opt. Express 15, 15776–15781 (2007)ADSGoogle Scholar
  79. 79.
    M.A. Hughes, W. Yang, D.W. Hewak, Spectral broadening in femtosecond laser written waveguides in chalcogenide glass. J. Opt. Soc. Am. B 26, 1370–1378 (2009)ADSGoogle Scholar
  80. 80.
    K. Hirao, T. Mitsuyu, J. Si, J. Qiu, Active Glass for Photonic Devices (Springer, New York, 2000)Google Scholar
  81. 81.
    P.A. Franken et al., Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961)ADSGoogle Scholar
  82. 82.
    I.H. Maiman, Stimulated optical radiation in ruby. Nature 187, 493–494 (1960)ADSGoogle Scholar
  83. 83.
    D. Hofmann, G. Schreiber, C. Haase, H. Herrmann, W. Grundkötter, R. Ricken, W. Sohler, Quasi-phase-matched difference-frequency generation in periodically poled Ti:LiNbO3 channel waveguides. Opt. Lett. 24, 896 (1999)ADSGoogle Scholar
  84. 84.
    M.P. De Micheli, Oscillateur paramétrique optique intégré: revue des réalisations sur niobate de lithium polarisé périodiquement. C. R. Acad. Sci. Paris 1(IV), 593–599 (2000)Google Scholar
  85. 85.
    E.L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeier, D. Maack, D.F. Attanasio, D.J. Fritz, G.J. McBrien, D.E. Bossi, A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quant. Electron. 6, 69 (2000)Google Scholar
  86. 86.
    K.R. Parameswaran, R.K. Route, J.R. Kurz, R.V. Roussev, M.M. Fejer, M. Fujimura, Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate. Opt. Lett. 27, 179 (2002)ADSGoogle Scholar
  87. 87.
    J. Rams, J.M. Cabrera, Characterization of LiNbO3 waveguides fabricated by proton exchange in water. Appl. Phys. A 81, 205–208 (2005)ADSGoogle Scholar
  88. 88.
    J.L. Jackel, C.E. Rice, J.J. Veselka, Proton exchange for high-index waveguides in LiNbO3. Appl. Phys. Lett. 41, 607–608 (1982)ADSGoogle Scholar
  89. 89.
    D.N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, New York, 2005), p. 427Google Scholar
  90. 90.
    A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, New York, 1997)Google Scholar
  91. 91.
    K.K. Wong, Properties of Lithium Niobate (IEE, Londre, 2002)Google Scholar
  92. 92.
    J. Lapointe, Écriture de dispositifs photoniques par laser femtoseconde dans le niobate de lithium (LiNbO3). J. de Génie Phys. 3, 1–12 (2010)Google Scholar
  93. 93.
    R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H.T. Bookey, R.R. Thomson, N.D. Psaila, A.K. Kar, Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient. Appl. Phys. Lett. 90, 241107 (2007)ADSGoogle Scholar
  94. 94.
    Z. Huang, C. Tu, S. Zhang, Y. Li, F. Lu, Y. Fan, E. Li, Femtosecond second harmonic generation in periodically poled lithium niobate waveguides written by femtosecond laser pulses. Opt. Lett. 35, 6 (2010)Google Scholar
  95. 95.
    J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, A. Tünnermann, Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate. Appl. Phys. Lett. 91, 151108 (2007)ADSGoogle Scholar
  96. 96.
    S. Zhang, J. Yao, W. Liu, Z. Huang, J. Wang, Y. Li, C. Tu, F. Lu, Second harmonic generation of periodically poled potassium titanyl phosphate waveguide using femtosecond laser pulses. Opt. Express 16, 14180 (2008)ADSGoogle Scholar
  97. 97.
    S. Zhang, J. Yao, Q. Shi, Y. Liu, W. Liu, Z. Huang, F. Lu, E. Li, Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses. Appl. Phys. Lett. 92, 231106 (2008)ADSGoogle Scholar
  98. 98.
    L. Gui, B. Xu, T.C. Chong, Microstructure in lithium niobate by use of focused femtosecond laser pulses. IEEE Photon. Tech. Lett. 16, 1337 (2004)ADSGoogle Scholar
  99. 99.
    C. Mendez, G.A. Torchia, D. Delgado, I. Arias, L. Roso, Proceedings of the IEEE/LEOS Workshop on Fibers and Optical Passive Components, 2005, p. 131Google Scholar
  100. 100.
    Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, K. Midorikawa, Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser. Opt. Lett. 33, 2281–2283 (2008)ADSGoogle Scholar
  101. 101.
    A. Tehranchi, R. Kashyap, Design of novel unapodized and apodized step-chirped quasi-phase matched gratings for broadband frequency converters based on second-harmonic generation. J. Lightwave Tech. 26, 3 (2008)Google Scholar
  102. 102.
    A. Theranchi, R. Kashyap, Improved cascaded SFG + DFG wavelength converters in low-loss QPM lithium niobate waveguides. Appl. Opt. 48, G143–G147 (2009)ADSGoogle Scholar
  103. 103.
    A. Ródenas, M. Maestro, M.O. Ramírez, G.A. Torchia, L. Roso, F. Chen, D. Jaque, Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides. J. Appl. Phys. 106, 013110 (2009)ADSGoogle Scholar
  104. 104.
    L. Tsonev, Luminescent activation of planar optical waveguides in LiNbO3 with rare earth ions Ln3+ – a review. Opt. Mater. 30, 892–899 (2008)ADSGoogle Scholar
  105. 105.
    B.E. Benkelfat, R. Ferrière, B. Wacogne, P. Mollier, Technological implementation of Bragg grating reflectors in Ti:LiNbO3 waveguides by proton exchange. IEEE Photon. Tech. Lett. 14, 1430 (2002)ADSGoogle Scholar
  106. 106.
    R.C. Alferness, Waveguide eletrooptic modulators. IEEE Trans. Microwave Theory Tech. 30, 1121 (1982)ADSGoogle Scholar
  107. 107.
    L. Arizmendi, Photonic applications of lithium niobate crystals. Phys. Stat. Sol. 201, 253–283 (2004)ADSGoogle Scholar
  108. 108.
    J. Zhao, J. Sullivan, J. Zayac, T.D. Bennett, Structural modification of silica glass by laser scanning. J. Appl. Phys. 95, 5475–5482 (2004)ADSGoogle Scholar
  109. 109.
    C. Ji-Yen, Y. Meng-Hua, W. Cheng-Wey, C. Yung-Chuan, Y. Tai-Horng, Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip. J. Micromech. Microeng. 15, 1147–1156 (2005)Google Scholar
  110. 110.
    Y. Meng-Hua, C. Ji-Yen, W. Cheng-Wey, C. Yung-Chuan, Y. Tai-Horng, Rapid cell-patterning and microfluidic chip fabrication by crack-free CO laser ablation on glass. J. Micromech. Microeng. 16, 1143–1153 (2006)Google Scholar
  111. 111.
    A. Osinsky, Y. Qiu, J. Mahan, H. Temkin, S.A. Gurevich, S.I. Nesterov, E.M. Tanklevskaia, V. Tretyakov, O.A. Lavrova, Novel wet chemical etch for nanostructures based on II-VI compounds. Appl. Phys. Lett. 71, 509 (1997)ADSGoogle Scholar
  112. 112.
    J. Zhao, J. Sullivan, T.D. Bennett, Wet etching study of silica glass after CO laser treatment. Appl. Surface Sci. 225, 250–255 (2004)ADSGoogle Scholar
  113. 113.
    G.V. Vázquez, A. Harhira, R. Kashyap, R.G. Bosisio, Micromachining by laser ablation: building blocks for a multiport integrated device. Opt. Comm. 283(14), 2824–2828 (2010)ADSGoogle Scholar
  114. 114.
    G.V. Vázquez, A. Harhira, R. Bosisio, R. Kashyap, Complex optical microcomponents for integrated-optic applications fabricated by laser ablation. Proc. SPIE 7499, 749916 (2009)Google Scholar
  115. 115.
    T. Niemeier, R. Ulrich, Quadrature outputs from fiber interferometer with 4 × 4 coupler. Opt. Lett. 11, 677–679 (1986)ADSGoogle Scholar
  116. 116.
    R. Adar, M.R. Serbin, V. Mizrahi, Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator. J. Lightwave Tech. 12, 1369 (1994)ADSGoogle Scholar
  117. 117.
    M.A. Dugan et al., US Patent Application Publication 2002/0085824 A1,2002Google Scholar
  118. 118.
    Y. Nasu, M. Kohtoku, Y. Hibino, Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit. Opt. Lett. 30, 723 (2005)ADSGoogle Scholar
  119. 119.
    A. Szameit, H. Hartung, F. Dreisow, S. Nolte, A. Tunnermann, Multi-waveguide excitation in fs laser written waveguide arrays. Appl. Phys. B 87, 17 (2007)ADSGoogle Scholar
  120. 120.
    N. Chiodo, G. Della Valle, R. Osellame, S. Longhi, G. Cerullo, R. Ramponi, P. Laporta, U. Morgner, Imaging of Bloch oscillations in erbium-doped curved waveguide arrays. Opt. Lett. 31, 1651 (2006)ADSGoogle Scholar
  121. 121.
    F. Dreisow, M. Heinrich, A. Szameit, S. Doring, S. Nolte, A. Tunnermann, S. Fahr, F. Lederer, Spectral resolved dynamic localization in curved fs laser written waveguide arrays. Opt. Express 16, 3474 (2008)ADSGoogle Scholar
  122. 122.
    A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, J. Nishii, Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt. Lett. 26, 277 (2001)ADSGoogle Scholar
  123. 123.
    Y. Bellouard, A.A. Said, P. Bado, Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica. Opt. Express 13, 6635 (2005)ADSGoogle Scholar
  124. 124.
    R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, G. Cerullo, Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation. Appl. Phys. Lett. 90, 231118 (2007)ADSGoogle Scholar
  125. 125.
    M. Will, S. Nolte, B.N. Chichkov, A. Tunnermann, Optical properties of waveguides fabricated in fused silica by femtosecond Laser pulses. Appl. Opt. 41, 4360 (2002)ADSGoogle Scholar
  126. 126.
    R. Osellame, N. Chiodo, G. Della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, D. Kopf, Optical waveguide writing with a diode-pumped femtosecond oscillator. Opt. Lett. 29, 1900 (2004)ADSGoogle Scholar
  127. 127.
    S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, A. Arai, Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt. Express 13, 4708 (2005)ADSGoogle Scholar
  128. 128.
    R. Osellame et al., Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator. Opt. Express 13, 612 (2005)ADSGoogle Scholar
  129. 129.
    M. Hughes, W. Yang, D. Hewak, Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass. Appl. Phys. Lett. 90, 131113 (2007)ADSGoogle Scholar
  130. 130.
    S.M. Eaton, M.L. Ng, J. Bonse, A. Mermillod-Blondin, H. Zhang, A. Rosenfeld, P.R. Herman, Low-loss waveguides fabricated in BK7 glass by high repetition rate femtosecond fiber laser. Appl. Opt. 47, 2098–2102 (2008)ADSGoogle Scholar
  131. 131.
    T. Allsop, M. Dubov, V. Mezentsev, I. Bennion, Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800nm. Appl. Opt. 49, 1938–1950 (2010)Google Scholar
  132. 132.
    J.D. Dharmadhikari, A.K. Dharmadhikari, A. Bhatnagar, A. Mallik, P. Chandrakanta Singh, R.K. Dhaman, K. Chalapathi, D. Mathur, Writing low-loss waveguides in borosilicate (BK7) glass with a low-repetition-rate femtosecond laser. Opt. Comm. 284, 630–634 (2011)ADSGoogle Scholar
  133. 133.
    A.H. Nejadmalayeri, P.R. Herman, Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width. Opt. Lett. 31, 2987 (2006)ADSGoogle Scholar
  134. 134.
    Y.L. Lee et al., Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses. Appl. Phys. Lett. 89, 171103 (2006)ADSGoogle Scholar
  135. 135.
    H.T. Bookey, R.R. Thomson, N.D. Psaila, A.K. Kar, N. Chiodo, R. Osellame, G. Cerullo, Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate. IEEE Photon. Tech. Lett. 19, 12 (2007)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Fabulas Laboratory, Department of Engineering PhysicsPolytechnique MontrealMontrealCanada
  2. 2.Fabulas Laboratory, Department of Electrical EngineeringPolytechnique MontrealMontrealCanada

Personalised recommendations