Skip to main content

Laser Processed Photonic Devices

  • Chapter
  • First Online:
Planar Waveguides and other Confined Geometries

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 189))

Abstract

The last century was that of electronics; it is now one of photonics. As Richard Feynman (Nobel Prize, 1965) suggested in 1959, “Smaller, Faster, Cheaper” would lead the world, and in many ways he has proven to be correct. Over the past decades, photonics devices and integrated optics have been among the most revolutionary areas of research and advances. Although integrated optics devices are well advanced these days, there is still much to do and most of these components are still expensive to manufacture for mass deployment. In fact, most of these require clean room facilities, as well as several expensive manufacturing steps such as phase mask fabrication or photolithography. This chapter aims at explaining a potential solution to fast manufacturing of cheap integrated optics by laser writing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Laser-induced breakdown by impact ionization in Si02 with pulse widths from 7 ns to 150 fs. Appl. Phys. Lett. 64, 3071 (1994)

    ADS  Google Scholar 

  2. B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, M.D. Perry, Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett. 74, 2248 (1995)

    ADS  Google Scholar 

  3. A.P. Joglekar, H. Liu, E. Meyhofer, G. Mourou, A.J. Hunt, Optics at critical intensity: applications to nanomorphing. Proc. Natl. Acad. Sci. USA 101, 5856 (2004)

    ADS  Google Scholar 

  4. A.M. Streltsov, N.F. Borrelli, Study of femtosecond-laser-written waveguides in glasses. J. Opt. Soc. Am. B Opt. Phys. 19, 2496–2504 (2002)

    ADS  Google Scholar 

  5. G. Della Valle, R. Osellame, P. Laporta, Micromachining of photonic devices by femtosecond laser pulses. J Opt. A Pure Appl. Opt. 11, 013001 (2009)

    ADS  Google Scholar 

  6. R. Kashyap, Fiber Bragg Gratings, 2nd edn. (Academic, London, 2009)

    Google Scholar 

  7. F. Guay, L.C. Ozcan, R. Kashyap, Surface relief diffraction gratings fabricated in ZnSe by frequency doubled Nd:YAG laser micromachining. Opt. Comm. 281, 935–939 (2008)

    ADS  Google Scholar 

  8. L.Ç. Özcan, V. Tréanton, R. Kashyap, L. Martinu, High-quality flat-top micromachining of silica by a CW CO2 laser. IEEE Photon. Tech. Lett. 19, 459–461 (2007)

    ADS  Google Scholar 

  9. L.Ç. Özcan, F. Guay, R. Kashyap, L. Martinu, Fabrication of buried waveguides in planar silica films using a direct CW laser writing technique. J. Non-Cryst. Solids 354, 4833–4839 (2008)

    ADS  Google Scholar 

  10. M. Young, Optical fiber index profiles by the refracted-ray method (refracted near-field scanning). Appl. Opt. 20, 3415–3422 (1981)

    ADS  Google Scholar 

  11. Y. Young Chun, D.Y. Kim, Reflection-type optical waveguide index profiling technique. J. Opt. Soc. Korean 9, 49–53 (2005)

    Google Scholar 

  12. L.Ç. Özcan, F. Guay, L. Martinu, Investigation of refractive index modifications in CW CO2 laser written planar optical waveguides. Opt. Comm. 281, 3686–3690 (2008)

    ADS  Google Scholar 

  13. J. Burghoff, S. Nolte Unnermann, Origins of waveguiding in femtosecond laser-structured LiNbO3. Appl. Phys. A 89, 127–132 (2007)

    ADS  Google Scholar 

  14. R.R. Thomson, S. Campbell, I.J. Blewett, A.K. Kar, D.T. Reid, Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime. Appl. Phys. Lett. 88, 111109 (2006)

    ADS  Google Scholar 

  15. J. Burghoff, H. Hartung, S. Nolte, A. Tünnermann, Structural properties of femtosecond laser-induced modifications in LiNbO3. Appl. Phys. A Mater. Sci. Process. 86, 165–170 (2007)

    ADS  Google Scholar 

  16. M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, A. Ancona, Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate. Appl. Phys. Lett. 93, 101111 (2008)

    ADS  Google Scholar 

  17. A.M. Glass, D. Linde, T.J. Negran, High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl. Phys. Lett. 25, 233 (1974)

    ADS  Google Scholar 

  18. L. Arizmendi, Photonic applications of lithium niobate crystals. Phys. Stat. Sol. (a) 201, 253–283(2004)

    ADS  Google Scholar 

  19. A. Ruso, M. Aillerie, N. Fressengeas, M. Ferriol, Optical waveguide engraving in a LiNbO3 crystal fiber. Appl. Phys. B 95, 573–578 (2009)

    ADS  Google Scholar 

  20. H.T. Bookey, R.R. Thomson, N.D. Psaila, A.K. Kar, N. Chiodo, R. Osellame, G. Cerullo, Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate. IEEE Photon. Tech. Lett. 19, 892–894 (2007)

    ADS  Google Scholar 

  21. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, S. De Silvestri, Femtosecond micromachining of symmetric waveguides at 1.5 mm by astigmatic beam focusing. Opt. Lett. 27, 1938–1940 (2002)

    ADS  Google Scholar 

  22. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, Femtosecond writing of active optical waveguides with astigmatically shaped beams. J. Opt. Soc. Am. B 20, 1559–1567 (2003)

    ADS  Google Scholar 

  23. M. Ams, G.D. Marshall, D.J. Spence, M.J. Withford, Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt. Express 13, 5676–5681 (2005)

    ADS  Google Scholar 

  24. W. Yang, C. Corbari, P.G. Kazansky, K. Sakaguchi, I.C.S. Carvalho, Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing. Opt. Express 16, 16215–16226 (2008)

    ADS  Google Scholar 

  25. C.B. Schaffer, A. Brodeur, J.F. Garcia, E. Mazur, Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt. Lett. 26, 93 (2001)

    ADS  Google Scholar 

  26. K. Minoshima, A.M. Kowalevicz, I. Hartl, E.P. Ippen, J.G. Fujimoto, Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator. Opt. Lett. 26, 1516 (2001)

    ADS  Google Scholar 

  27. A.H. Nejadmalayeri, P.R. Herman, Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate. Opt. Express 15, 10842 (2007)

    ADS  Google Scholar 

  28. M.R. Tejerina, D. Jaque, G.A. Torchia, μ-Raman spectroscopy characterization of LiNbO3 femtosecond laser written waveguides. J. Appl. Phys. 112, 123108 (2012)

    ADS  Google Scholar 

  29. A. Boudrioua, Photonic Waveguides: Theory and Applications (Wiley, Hoboken, 2009), p. 322

    Google Scholar 

  30. D. Marcuse, Mode conversion by surface imperfection of a dielectric slab waveguide. Bell Syst. Tech. J. 48, 3187–3216 (1969)

    Google Scholar 

  31. R.V. Ramaswamy, R. Srivastava, Ion exchange glass waveguide: a review. J. Lightwave Tech. 6, 984–1002 (1988)

    ADS  Google Scholar 

  32. A.L.R. Brennend, Thermal poling of multioxide silicate glasses and ion exchanged waveguides. Ph.D. Thesis, ORC, Southampton, UK, 2002

    Google Scholar 

  33. C.C. Huang, D.W. Hewak, J.V. Badding, Deposition and characterization of germanium sulphite glass planar waveguides. Opt. Express 12, 2501–2506 (2004)

    ADS  Google Scholar 

  34. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729 (1996)

    ADS  Google Scholar 

  35. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl. Phys. Lett. 71, 3329 (1997)

    ADS  Google Scholar 

  36. B. McMillen, B. Zhang, K.P. Chen, A. Benayas, D. Jaque, Ultrafast laser fabrication of low-loss waveguides in chalcogenide glass with 0.65 dB∕cm loss. Opt. Lett. 37, 1418–1420 (2012)

    ADS  Google Scholar 

  37. N.D. Psaila, R.R. Thomson, H.T. Bookey, N. Chiodo, S. Shen, R. Osellame, G. Cerullo, A. Jha, A.K. Kar, Er: Yb-doped oxyfluoride silicate glass waveguide laser fabricated using ultrafast laser inscription. IEEE Photon. Tech. Lett. 20, 126–128 (2008)

    ADS  Google Scholar 

  38. S.-L. Li, P. Han, M. Shi, Y. Yao, B. Hu, M. Wang, X. Zhu, Low-loss channel optical waveguide fabrication in Nd3+-doped silicate glasses by femtosecond laser direct writing. Opt. Express 19, 23958–23964 (2011)

    ADS  Google Scholar 

  39. L.B. Fletcher, J.J. Witcher, N. Troy, S.T. Reis, R.K. Brow, R.M. Vazquez, R. Osellame, D.M. Krol, Femtosecond laser writing of waveguides in zinc phosphate glasses. Opt. Mater. Express 1, 845–855 (2011)

    Google Scholar 

  40. L.B. Fletcher, J.J. Witcher, N. Troy, S.T. Reis, R.K. Brow, D.M. Krol, Effects of rare-earth doping on femtosecond laser waveguide writing in zinc polyphosphate glass. J. Appl. Phys. 112, 023109 (2012)

    ADS  Google Scholar 

  41. K.C. Vishnubhatla, S.V. Rao, R.S.S. Kumar, R. Osellame, S.N.B. Bhaktha, S. Turrell, A. Chiappini, A. Chiasera, M. Ferrari, M. Mattarelli, M. Montagna, R. Ramponi, J.C. Righini, D.N. Rao, Femtosecond laser direct writing of gratings and waveguides in high quantum efficiency erbium-doped Baccarat glass. J. Phys. D. Appl. Phys. 42, 205106 (2009)

    ADS  Google Scholar 

  42. Y. Li, Z. He, H. Tang, L. Liu, L. Xu, W. Wang, The structural and refractive index changes in the waveguides written by femtosecond laser in Er-doped silicate glasses. J. Non-Cryst. Solids 354, 1216–1220 (2008)

    ADS  Google Scholar 

  43. L.B. Fletcher, J.J. Witcher, N. Troy, S.T. Reis, R.K. Brow, D.M. Krol, Direct femtosecond laser waveguide writing inside zinc phosphate glass. Opt. Express 19, 7929–7936 (2011)

    ADS  Google Scholar 

  44. K. Hirao, K. Miura, Writing waveguides and gratings in silica and related materials by a femtosecond laser. J. Non-Cryst. Solids 239, 91 (1998)

    ADS  Google Scholar 

  45. J.W. Chan, T.R. Huser, S.H. Risbud, J.S. Hayden, D.M. Krol, Waveguide fabrication in phosphate glasses using femtosecond laser pulses. Appl. Phys. Lett. 82, 2371 (2003)

    ADS  Google Scholar 

  46. V.R. Bhardwaj, E. Simova, P.B. Corkum, D.M. Rayner, C. Hnatovsky, R.S. Taylor, B. Schreder, M. Kluge, J. Zimmer, Femtosecond laser-induced refractive index modification in multicomponent glasses. J. Appl. Phys. 97, 083102 (2005)

    ADS  Google Scholar 

  47. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, R. Valle, Direct femtosecond laser writing of waveguides in As2S3 thin films. Opt. Lett. 29, 748 (2004)

    ADS  Google Scholar 

  48. A.M. Streltsov, N.F. Borrelli, Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses. Opt. Lett. 26, 42 (2001)

    ADS  Google Scholar 

  49. K. Minoshima, A.M. Kowalevicz, E.P. Ippen, J.G. Fujimoto, Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing. Opt. Express 10, 645 (2002)

    ADS  Google Scholar 

  50. W. Watanabe, T. Asano, K. Yamada, I. Kazuyoshi, J. Nishii, Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses. Opt. Lett. 28, 2491 (2003)

    ADS  Google Scholar 

  51. S.M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J.S. Aitchison, P.R. Herman, Telecom-band directional coupler written with femtosecond fiber laser. Photon. Tech. Lett. 18, 2174 (2006)

    ADS  Google Scholar 

  52. A.M. Kowalevicz, V. Sharma, E.P. Ippen, J.G. Fujimoto, K. Minoshima, Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator. Opt. Lett. 30, 1060 (2005)

    ADS  Google Scholar 

  53. K. Suzuki, V. Sharma, J.G. Fujimoto, E.P. Ippen, Y. Nasu, Characterization of symmetric [3 × 3] directional couplers fabricated by direct writing with a femtosecond laser oscillator. Opt. Express 14, 2335 (2006)

    ADS  Google Scholar 

  54. D. Homoelle, S. Wielandy, A.L. Gaeta, N.F. Borrelli, C. Smith, Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses. Opt. Lett. 24, 1311 (1999)

    ADS  Google Scholar 

  55. D.K.Y. Low, H. Xie, Z. Xiong, G.C. Lim, Femtosecond laser direct writing of embedded optical waveguides in aluminosilicate glass. Appl. Phys. A 81, 1633 (2005)

    ADS  Google Scholar 

  56. J. Liu, Z. Zhang, S. Chang, C. Flueraru, C.P. Grover, Directly writing of 1-to-N optical waveguide power splitters in fused silica glass using a femtosecond laser. Opt. Comm. 253, 315 (2005)

    ADS  Google Scholar 

  57. S. Nolte, M. Will, J. Burghoff, A. Tuennermann, Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics. Appl. Phys. A 77, 109 (2003)

    ADS  Google Scholar 

  58. R. Osellame, V. Maselli, N. Chiodo, D. Polli, R. Martinez Vazquez, R. Ramponi, G. Cerullo, Fabrication of 3D photonic devices at 1.55 μm wavelength by femtosecond Ti:Sapphire oscillator. Electron. Lett. 41, 315 (2005)

    Google Scholar 

  59. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, K. Hirao, Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam. Opt. Express 18, 12136–12143 (2010)

    ADS  Google Scholar 

  60. G.D. Marshall, M. Ams, M.J. Withford, Direct laser written waveguide-Bragg gratings in bulk fused silica. Opt. Lett. 31, 2690 (2006)

    ADS  Google Scholar 

  61. H. Zhang, S.M. Eaton, J. Li, P.R. Herman, Type II femtosecond laser writing of Bragg grating waveguides in bulk glass. Electron. Lett. 42, 1223 (2006)

    Google Scholar 

  62. H. Zhang, S.M. Eaton, J. Li, P.R. Herman, Femtosecond laser direct writing of multiwavelength Bragg grating waveguides in glass. Opt. Lett. 31, 3495 (2006)

    ADS  Google Scholar 

  63. H. Zhang, S.M. Eaton, J. Li, A.H. Nejadmalayeri, P.R. Herman, Type II high-strength Bragg grating waveguides photowritten with ultrashort laser pulses. Opt. Express 15, 4182 (2007)

    ADS  Google Scholar 

  64. H. Zhang, P.R. Herman, Proceedings of the Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2007), paper BTuD4

    Google Scholar 

  65. P.R. Herman, H. Zhang, Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2008), paper OThV4

    Google Scholar 

  66. H. Zhang, P.R. Herman, Chirped Bragg grating waveguides directly written inside fused silica glass with an externally modulated ultrashort fiber laser. IEEE Photon. Tech. Lett. 21, 277–279 (2009)

    ADS  Google Scholar 

  67. G. Li, K.A. Winick, A.A. Said, M. Dugan, P. Bado, Waveguide electro-optic modulator in fused silica fabricated by femtosecond laser direct writing and thermal poling. Opt. Lett. 31, 739 (2006)

    ADS  Google Scholar 

  68. T. Tony Fernandez, G. Della Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, P. Laporta, Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass. Opt. Express 16, 15198–15205 (2008)

    ADS  Google Scholar 

  69. G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, P. Laporta, 1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing. Opt. Express 15, 3190 (2007)

    ADS  Google Scholar 

  70. R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, G. Cerullo, Lasing in femtosecond laser written optical waveguides. Appl. Phys. A 93, 17 (2008)

    ADS  Google Scholar 

  71. L.B. Fletcher, J.J. Witcher, N. Troy, R.K. Brow, D.M. Krol, Single-pass waveguide amplifiers in Er-Yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses. Opt. Lett. 37, 1148–1150 (2012)

    ADS  Google Scholar 

  72. D.M. da Silva, L.R.P. Kassab, M. Olivero, T.B.N. Lemos, D.V. da Silva, A.S.L. Gomes, Er3+ doped waveguide amplifiers written with femtosecond laser in germanate glasses. Opt. Mater. 33, 1902–1906 (2011)

    ADS  Google Scholar 

  73. R.R. Thomson, N.D. Psaila, S.J. Beecher, A.K. Kar, Ultrafast laser inscription of a high-gain Er-doped bismuthate glass waveguide amplifier. Opt. Express 18, 13212–13219 (2010)

    ADS  Google Scholar 

  74. N.D. Psaila, R.R. Thomson, H.T. Bookey, A.K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, S. Shen, Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription. Appl. Phys. Lett. 90, 131102 (2007)

    ADS  Google Scholar 

  75. T.T. Fernandez, S.M. Eaton, G.D. Valle, R.M. Vazquez, M. Irannejad, G. Jose, A. Jha, G. Cerullo, R. Osellame, P. Laporta, Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass. Opt. Express 18, 20289–20297 (2010)

    ADS  Google Scholar 

  76. T. Sabapathy, A. Ayiriveetil, A.K. Kar, S. Asokan, S.J. Beecher, Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass. Opt. Mater. Express 2, 1556–1561 (2012)

    Google Scholar 

  77. S.M. Eaton, W.-J. Chen, H. Zhang, R. Iyer, J. Li, M.L. Ng, S. Ho, J.S. Aitchison, P.R. Herman, Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths. J. Lightwave Tech. 27, 1079–1085 (2009)

    Google Scholar 

  78. N.D. Psaila, R.R. Thomson, H.T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, A.K. Kar, Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide. Opt. Express 15, 15776–15781 (2007)

    ADS  Google Scholar 

  79. M.A. Hughes, W. Yang, D.W. Hewak, Spectral broadening in femtosecond laser written waveguides in chalcogenide glass. J. Opt. Soc. Am. B 26, 1370–1378 (2009)

    ADS  Google Scholar 

  80. K. Hirao, T. Mitsuyu, J. Si, J. Qiu, Active Glass for Photonic Devices (Springer, New York, 2000)

    Google Scholar 

  81. P.A. Franken et al., Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961)

    ADS  Google Scholar 

  82. I.H. Maiman, Stimulated optical radiation in ruby. Nature 187, 493–494 (1960)

    ADS  Google Scholar 

  83. D. Hofmann, G. Schreiber, C. Haase, H. Herrmann, W. Grundkötter, R. Ricken, W. Sohler, Quasi-phase-matched difference-frequency generation in periodically poled Ti:LiNbO3 channel waveguides. Opt. Lett. 24, 896 (1999)

    ADS  Google Scholar 

  84. M.P. De Micheli, Oscillateur paramétrique optique intégré: revue des réalisations sur niobate de lithium polarisé périodiquement. C. R. Acad. Sci. Paris 1(IV), 593–599 (2000)

    Google Scholar 

  85. E.L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeier, D. Maack, D.F. Attanasio, D.J. Fritz, G.J. McBrien, D.E. Bossi, A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quant. Electron. 6, 69 (2000)

    Google Scholar 

  86. K.R. Parameswaran, R.K. Route, J.R. Kurz, R.V. Roussev, M.M. Fejer, M. Fujimura, Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate. Opt. Lett. 27, 179 (2002)

    ADS  Google Scholar 

  87. J. Rams, J.M. Cabrera, Characterization of LiNbO3 waveguides fabricated by proton exchange in water. Appl. Phys. A 81, 205–208 (2005)

    ADS  Google Scholar 

  88. J.L. Jackel, C.E. Rice, J.J. Veselka, Proton exchange for high-index waveguides in LiNbO3. Appl. Phys. Lett. 41, 607–608 (1982)

    ADS  Google Scholar 

  89. D.N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, New York, 2005), p. 427

    Google Scholar 

  90. A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, New York, 1997)

    Google Scholar 

  91. K.K. Wong, Properties of Lithium Niobate (IEE, Londre, 2002)

    Google Scholar 

  92. J. Lapointe, Écriture de dispositifs photoniques par laser femtoseconde dans le niobate de lithium (LiNbO3). J. de Génie Phys. 3, 1–12 (2010)

    Google Scholar 

  93. R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H.T. Bookey, R.R. Thomson, N.D. Psaila, A.K. Kar, Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient. Appl. Phys. Lett. 90, 241107 (2007)

    ADS  Google Scholar 

  94. Z. Huang, C. Tu, S. Zhang, Y. Li, F. Lu, Y. Fan, E. Li, Femtosecond second harmonic generation in periodically poled lithium niobate waveguides written by femtosecond laser pulses. Opt. Lett. 35, 6 (2010)

    Google Scholar 

  95. J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, A. Tünnermann, Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate. Appl. Phys. Lett. 91, 151108 (2007)

    ADS  Google Scholar 

  96. S. Zhang, J. Yao, W. Liu, Z. Huang, J. Wang, Y. Li, C. Tu, F. Lu, Second harmonic generation of periodically poled potassium titanyl phosphate waveguide using femtosecond laser pulses. Opt. Express 16, 14180 (2008)

    ADS  Google Scholar 

  97. S. Zhang, J. Yao, Q. Shi, Y. Liu, W. Liu, Z. Huang, F. Lu, E. Li, Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses. Appl. Phys. Lett. 92, 231106 (2008)

    ADS  Google Scholar 

  98. L. Gui, B. Xu, T.C. Chong, Microstructure in lithium niobate by use of focused femtosecond laser pulses. IEEE Photon. Tech. Lett. 16, 1337 (2004)

    ADS  Google Scholar 

  99. C. Mendez, G.A. Torchia, D. Delgado, I. Arias, L. Roso, Proceedings of the IEEE/LEOS Workshop on Fibers and Optical Passive Components, 2005, p. 131

    Google Scholar 

  100. Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, K. Midorikawa, Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser. Opt. Lett. 33, 2281–2283 (2008)

    ADS  Google Scholar 

  101. A. Tehranchi, R. Kashyap, Design of novel unapodized and apodized step-chirped quasi-phase matched gratings for broadband frequency converters based on second-harmonic generation. J. Lightwave Tech. 26, 3 (2008)

    Google Scholar 

  102. A. Theranchi, R. Kashyap, Improved cascaded SFG + DFG wavelength converters in low-loss QPM lithium niobate waveguides. Appl. Opt. 48, G143–G147 (2009)

    ADS  Google Scholar 

  103. A. Ródenas, M. Maestro, M.O. Ramírez, G.A. Torchia, L. Roso, F. Chen, D. Jaque, Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides. J. Appl. Phys. 106, 013110 (2009)

    ADS  Google Scholar 

  104. L. Tsonev, Luminescent activation of planar optical waveguides in LiNbO3 with rare earth ions Ln3+ – a review. Opt. Mater. 30, 892–899 (2008)

    ADS  Google Scholar 

  105. B.E. Benkelfat, R. Ferrière, B. Wacogne, P. Mollier, Technological implementation of Bragg grating reflectors in Ti:LiNbO3 waveguides by proton exchange. IEEE Photon. Tech. Lett. 14, 1430 (2002)

    ADS  Google Scholar 

  106. R.C. Alferness, Waveguide eletrooptic modulators. IEEE Trans. Microwave Theory Tech. 30, 1121 (1982)

    ADS  Google Scholar 

  107. L. Arizmendi, Photonic applications of lithium niobate crystals. Phys. Stat. Sol. 201, 253–283 (2004)

    ADS  Google Scholar 

  108. J. Zhao, J. Sullivan, J. Zayac, T.D. Bennett, Structural modification of silica glass by laser scanning. J. Appl. Phys. 95, 5475–5482 (2004)

    ADS  Google Scholar 

  109. C. Ji-Yen, Y. Meng-Hua, W. Cheng-Wey, C. Yung-Chuan, Y. Tai-Horng, Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip. J. Micromech. Microeng. 15, 1147–1156 (2005)

    Google Scholar 

  110. Y. Meng-Hua, C. Ji-Yen, W. Cheng-Wey, C. Yung-Chuan, Y. Tai-Horng, Rapid cell-patterning and microfluidic chip fabrication by crack-free CO laser ablation on glass. J. Micromech. Microeng. 16, 1143–1153 (2006)

    Google Scholar 

  111. A. Osinsky, Y. Qiu, J. Mahan, H. Temkin, S.A. Gurevich, S.I. Nesterov, E.M. Tanklevskaia, V. Tretyakov, O.A. Lavrova, Novel wet chemical etch for nanostructures based on II-VI compounds. Appl. Phys. Lett. 71, 509 (1997)

    ADS  Google Scholar 

  112. J. Zhao, J. Sullivan, T.D. Bennett, Wet etching study of silica glass after CO laser treatment. Appl. Surface Sci. 225, 250–255 (2004)

    ADS  Google Scholar 

  113. G.V. Vázquez, A. Harhira, R. Kashyap, R.G. Bosisio, Micromachining by laser ablation: building blocks for a multiport integrated device. Opt. Comm. 283(14), 2824–2828 (2010)

    ADS  Google Scholar 

  114. G.V. Vázquez, A. Harhira, R. Bosisio, R. Kashyap, Complex optical microcomponents for integrated-optic applications fabricated by laser ablation. Proc. SPIE 7499, 749916 (2009)

    Google Scholar 

  115. T. Niemeier, R. Ulrich, Quadrature outputs from fiber interferometer with 4 × 4 coupler. Opt. Lett. 11, 677–679 (1986)

    ADS  Google Scholar 

  116. R. Adar, M.R. Serbin, V. Mizrahi, Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator. J. Lightwave Tech. 12, 1369 (1994)

    ADS  Google Scholar 

  117. M.A. Dugan et al., US Patent Application Publication 2002/0085824 A1,2002

    Google Scholar 

  118. Y. Nasu, M. Kohtoku, Y. Hibino, Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit. Opt. Lett. 30, 723 (2005)

    ADS  Google Scholar 

  119. A. Szameit, H. Hartung, F. Dreisow, S. Nolte, A. Tunnermann, Multi-waveguide excitation in fs laser written waveguide arrays. Appl. Phys. B 87, 17 (2007)

    ADS  Google Scholar 

  120. N. Chiodo, G. Della Valle, R. Osellame, S. Longhi, G. Cerullo, R. Ramponi, P. Laporta, U. Morgner, Imaging of Bloch oscillations in erbium-doped curved waveguide arrays. Opt. Lett. 31, 1651 (2006)

    ADS  Google Scholar 

  121. F. Dreisow, M. Heinrich, A. Szameit, S. Doring, S. Nolte, A. Tunnermann, S. Fahr, F. Lederer, Spectral resolved dynamic localization in curved fs laser written waveguide arrays. Opt. Express 16, 3474 (2008)

    ADS  Google Scholar 

  122. A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, J. Nishii, Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt. Lett. 26, 277 (2001)

    ADS  Google Scholar 

  123. Y. Bellouard, A.A. Said, P. Bado, Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica. Opt. Express 13, 6635 (2005)

    ADS  Google Scholar 

  124. R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, G. Cerullo, Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation. Appl. Phys. Lett. 90, 231118 (2007)

    ADS  Google Scholar 

  125. M. Will, S. Nolte, B.N. Chichkov, A. Tunnermann, Optical properties of waveguides fabricated in fused silica by femtosecond Laser pulses. Appl. Opt. 41, 4360 (2002)

    ADS  Google Scholar 

  126. R. Osellame, N. Chiodo, G. Della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, D. Kopf, Optical waveguide writing with a diode-pumped femtosecond oscillator. Opt. Lett. 29, 1900 (2004)

    ADS  Google Scholar 

  127. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, A. Arai, Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt. Express 13, 4708 (2005)

    ADS  Google Scholar 

  128. R. Osellame et al., Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator. Opt. Express 13, 612 (2005)

    ADS  Google Scholar 

  129. M. Hughes, W. Yang, D. Hewak, Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass. Appl. Phys. Lett. 90, 131113 (2007)

    ADS  Google Scholar 

  130. S.M. Eaton, M.L. Ng, J. Bonse, A. Mermillod-Blondin, H. Zhang, A. Rosenfeld, P.R. Herman, Low-loss waveguides fabricated in BK7 glass by high repetition rate femtosecond fiber laser. Appl. Opt. 47, 2098–2102 (2008)

    ADS  Google Scholar 

  131. T. Allsop, M. Dubov, V. Mezentsev, I. Bennion, Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800nm. Appl. Opt. 49, 1938–1950 (2010)

    Google Scholar 

  132. J.D. Dharmadhikari, A.K. Dharmadhikari, A. Bhatnagar, A. Mallik, P. Chandrakanta Singh, R.K. Dhaman, K. Chalapathi, D. Mathur, Writing low-loss waveguides in borosilicate (BK7) glass with a low-repetition-rate femtosecond laser. Opt. Comm. 284, 630–634 (2011)

    ADS  Google Scholar 

  133. A.H. Nejadmalayeri, P.R. Herman, Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width. Opt. Lett. 31, 2987 (2006)

    ADS  Google Scholar 

  134. Y.L. Lee et al., Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses. Appl. Phys. Lett. 89, 171103 (2006)

    ADS  Google Scholar 

  135. H.T. Bookey, R.R. Thomson, N.D. Psaila, A.K. Kar, N. Chiodo, R. Osellame, G. Cerullo, Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate. IEEE Photon. Tech. Lett. 19, 12 (2007)

    Google Scholar 

Download references

Acknowledgments

The JL acknowledges support from the Natural Science and Engineering Council of Canada’s Alexander Graham Bell Scholarship for doctoral studies, and RK acknowledges support from the Government of Canada’s Canada Research Chairs program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raman Kashyap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lapointe, J., Kashyap, R. (2015). Laser Processed Photonic Devices. In: Marowsky, G. (eds) Planar Waveguides and other Confined Geometries. Springer Series in Optical Sciences, vol 189. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1179-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1179-0_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1178-3

  • Online ISBN: 978-1-4939-1179-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics