Advertisement

Fabrication of Channel Waveguides in Chalcogenide Glass Films by a Focused Laser Beam

  • K. Shemesh
  • Yu. Kaganovskii
  • M. RosenbluhEmail author
Chapter
  • 1.4k Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 189)

Abstract

We demonstrate a simple optical method for the fabrication of micrometer-width channel waveguides in chalcogenide glass (ChG) films, which does not require lift-off lithography. The method is based on photo-induced mass transport. For our experiments we use 400–600-nm-thick amorphous films of As2S3 and As10Se90 deposited in vacuum onto glass substrates. The waveguides are fabricated by a focused Ar ion laser beam (λ = 514 nm) with a waist diameter of ~0.7 μm. The positioning of the film in x-y-z-directions is controlled by computerized motor-driven stages whereby complex waveguide configurations can be drawn. For coupling of light (λ = 1.55 μm) between an optical fiber and the waveguide we used gratings, fabricated in the ChG, with a period of 0.8–1.5 μm and amplitude of 50–100 nm. The gratings are fabricated in an in-plane taper by laser illumination of the selected film area by two crossing p-polarized laser beams. We discuss mechanisms and kinetics of photo-induced mass transport in ChG films and possible contribution of viscous flow induced by a temperature gradient caused by the local heating of the film by the focused laser beam.

Keywords

Chalcogenide Glass Channel Waveguide Grating Coupler Waveguide Fabrication Stage Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Israel Science Foundation (Grant # 894/10).

References

  1. 1.
    A. Greer, N. Mathur, Nature 437, 1246 (2005)CrossRefADSGoogle Scholar
  2. 2.
    P. Lucas, J. Phys. Condens. Matter 18, 5629 (2006)CrossRefADSGoogle Scholar
  3. 3.
    N. Carlie, J.D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L.C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, K. Richardson, Opt. Express 18, 26728 (2010)CrossRefADSGoogle Scholar
  4. 4.
    R.G. DeCorby, N. Ponnampalam, M.M. Pai, H.T. Nguyen, P.K. Dwivedi, T.J. Clement, C.J. Haugen, J.N. McMullin, S.O. Kasap, IEEE J. Sel. Top. Quant. Electron. 11, 539 (2005)CrossRefGoogle Scholar
  5. 5.
    J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, L. Kimerling, Opt. Lett. 33, 2500 (2008)CrossRefADSGoogle Scholar
  6. 6.
    A. Saliminia, T.V. Galstian, A. Villeneuve, Phys. Rev. Lett. 85, 4112 (2000)CrossRefADSGoogle Scholar
  7. 7.
    M.L. Trunov, P.M. Lytvyn, P.M. Nagy, O.M. Dyachyns’ka, Appl. Phys. Lett. 96, 111908 (2010)CrossRefADSGoogle Scholar
  8. 8.
    Y. Kaganovskii, D.L. Beke, S. Kökényesi, Appl. Phys. Lett. 97, 061906 (2010)CrossRefADSGoogle Scholar
  9. 9.
    M.L. Trunov, P.M. Nagy, V. Takats, P.M. Lytvyn, S. Kokenyesi, E. Kalman, J. Non-Cryst. Solids 355, 1993 (2009)CrossRefADSGoogle Scholar
  10. 10.
    A. Yariv, P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th edn. (Oxford University Press, New York, Oxford, 2007)Google Scholar
  11. 11.
    N.J. Harrick, Appl. Optics 10, 2344 (1971)CrossRefADSGoogle Scholar
  12. 12.
    R. Swanepoel, J. Phys. E Sci. Instrum. 16, 1214 (1983)CrossRefADSGoogle Scholar
  13. 13.
    J.A. Pradeep, P. Agarwal, J. Appl. Phys. 108, 043515 (2010)CrossRefADSGoogle Scholar
  14. 14.
    Y. Kaganovskii, D.L. Beke, S. Charnovych, S. Kökényesi, M.L. Trunov, J. Appl. Phys. 110, 063502 (2011)CrossRefADSGoogle Scholar
  15. 15.
    W. Roosbroeck, Phys. Rev. B 91, 282 (1953)CrossRefGoogle Scholar
  16. 16.
    C. Thomas, I. Joachimsthaler, R. Heiderhoff, L.J. Balk, J. Phys. D Appl. Phys. 37, 2785 (2004)CrossRefADSGoogle Scholar
  17. 17.
    S.R. Elliott, J. Non-Cryst. Solids 81, 71 (1986)CrossRefADSGoogle Scholar
  18. 18.
    H. Fritzsche, Semiconductors 32, 850 (1998)CrossRefADSGoogle Scholar
  19. 19.
    Y. Kaganovskii, M.L. Trunov, D.L. Beke, S. Kökényesi, Mater. Lett. 66, 159 (2011)CrossRefGoogle Scholar
  20. 20.
    M.L. Trunov, C. Cserhati, P.M. Lytvyn, Y. Kaganovskii, S. Kökényesi, J. Phys. D Appl. Phys. 46, 245303 (2013)CrossRefADSGoogle Scholar
  21. 21.
    U.C. Paek, A. Kestenbaum, J. Appl. Phys. 44, 2260 (1973)CrossRefADSGoogle Scholar
  22. 22.
    S.Y. Suh, D.L. Anderson, Appl. Optics 23, 3965 (1984)CrossRefADSGoogle Scholar
  23. 23.
    H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Oxford University Press, New York, 1954)Google Scholar
  24. 24.
    M. Lax, J. Appl. Phys. 48, 3919 (1977)CrossRefADSGoogle Scholar
  25. 25.
    K. Tanaka, K. Shimakawa, Amorphous Chalcogenide Semiconductors and Related Materials (Springer, New York, 2011)CrossRefGoogle Scholar
  26. 26.
    G. Chaussemy, J. Fornazero, J.-M. Mackowski, J. Non-Cryst. Solids 58, 219 (1983)CrossRefADSGoogle Scholar
  27. 27.
    T. Schwarz-Selinger, D.G. Cahill, S.-C. Chen, S.-J. Moon, C.P. Grigoropoulos, Phys. Rev. B 64, 155323 (2001)CrossRefADSGoogle Scholar
  28. 28.
    V. Kolevzon, J. Exp. Theor. Phys. 87, 1105 (1998)CrossRefADSGoogle Scholar
  29. 29.
    D.-Y. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, B. Luther-Davies, J. Appl. Phys. 107, 053106 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of PhysicsBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations