Skip to main content

Nanoplasmonic Metal–Insulator–Metal Waveguides

  • Chapter
  • First Online:
Planar Waveguides and other Confined Geometries

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 189))

Abstract

The exceptional ability of plasmonic structures to confine light into deep subwavelength volumes has fashioned rapid expansion of interest from both fundamental and applicative perspectives. Surface plasmon nanophotonics enables to investigate light–matter interaction in deep nanoscale and harness the electromagnetic and quantum properties of materials, thus opening pathways of tremendous potential applications. Predominantly, metal–insulator–metal (MIM) plasmonic waveguides are of special attentiveness as they enable to confine and manipulate light in deep nanometer scale. This work includes two sections with state-of-the-art work in the field of MIM nanoplasmonic waveguides. The first section describes novel engineerable interferometry architecture with extremely compact dimensions of λ3/15,500, which can be used to realize a variety of plasmonic logic functionalities. We use this architecture to realize the smallest reported plasmonic XOR logic gate. In the second section we use Kelvin probe force microscopy (KPFM) under optical illumination to image plasmonic waves, achieving spatial resolution of 2 nm. We fabricate a series of plasmonic MIM waveguides with gap width varied by 2 nm and experimentally resolve their propagation properties. By comparing experimentally obtained images with theoretical calculation results, we show that KPFM maps provide valuable information on the direction of optical near field. Additionally, we propose a theoretical model for the relation between surface plasmons and the material work function measured by KPFM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.L. Brongersma, V.M. Shalaev, The case for plasmonics. Science 328, 440–441 (2010). doi:10.1126/science.1186905

    Article  ADS  Google Scholar 

  2. J.A. Dionne, L.A. Sweatlock, M.T. Sheldon et al., Silicon-based plasmonics for on-chip photonics. IEEE J. Sel. Top. Quant. Electron. 16, 295–306 (2010). doi:10.1109/JSTQE.2009.2034983

    Article  Google Scholar 

  3. E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006). doi:10.1126/science.1114849

    Article  ADS  Google Scholar 

  4. J.A. Schuller, E.S. Barnard, W. Cai et al., Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010). doi:10.1038/nmat2630

    Article  ADS  Google Scholar 

  5. N. Engheta, Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317, 1698–1702 (2007). doi:10.1126/science.1133268

    Article  ADS  Google Scholar 

  6. R. Kirchain, L. Kimerling, A roadmap for nanophotonics. Nat. Photonics 1, 303–305 (2007). doi:10.1038/nphoton.2007.84

    Article  ADS  Google Scholar 

  7. V.R. Almeida, C.A. Barrios, R.R. Panepucci, M. Lipson, All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004). doi:10.1038/nature02921

    Article  ADS  Google Scholar 

  8. L. Bi, J. Hu, P. Jiang et al., On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photonics 5, 758–762 (2011). doi:10.1038/nphoton.2011.270

    Article  ADS  Google Scholar 

  9. C. Koos, P. Vorreau, T. Vallaitis et al., All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nat. Photonics 3, 216–219 (2009). doi:10.1038/nphoton.2009.25

    Article  ADS  Google Scholar 

  10. H. Wei, Z. Wang, X. Tian et al., Cascaded logic gates in nanophotonic plasmon networks. Nat. Comm. 2, 387 (2011). doi:10.1038/ncomms1388

    Article  ADS  Google Scholar 

  11. A.G. Curto, G. Volpe, T.H. Taminiau et al., Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010). doi:10.1126/science.1191922

    Article  ADS  Google Scholar 

  12. A. Kinkhabwala, Z. Yu, S. Fan et al., Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 3, 654–657 (2009). doi:10.1038/nphoton.2009.187

    Article  ADS  Google Scholar 

  13. S. Lal, S. Link, N.J. Halas, Nano-optics from sensing to waveguiding. Nat. Photonics 1, 641–648 (2007). doi:10.1038/nphoton.2007.223

    Article  ADS  Google Scholar 

  14. M. Schnell, A. García-Etxarri, A.J. Huber et al., Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat. Photonics 3, 287–291 (2009). doi:10.1038/nphoton.2009.46

    Article  ADS  Google Scholar 

  15. T. Kosako, Y. Kadoya, H.F. Hofmann, Directional control of light by a nano-optical Yagi–Uda antenna. Nat. Photonics 4, 312–315 (2010). doi:10.1038/nphoton.2010.34

    Article  Google Scholar 

  16. T. Pakizeh, M. Käll, Unidirectional ultracompact optical nanoantennas. Nano Lett. 9, 2343–2349 (2009). doi:10.1021/nl900786u

    Article  ADS  Google Scholar 

  17. T. Shegai, S. Chen, V.D. Miljković et al., A bimetallic nanoantenna for directional colour routing. Nat. Comm. 2, 481 (2011). doi:10.1038/ncomms1490

    Article  ADS  Google Scholar 

  18. S.I. Bozhevolnyi, V.S. Volkov, E. Devaux et al., Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006). doi:10.1038/nature04594

    Article  ADS  Google Scholar 

  19. J.A. Dionne, L.A. Sweatlock, H.A. Atwater, A. Polman, Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73, 035407 (2006). doi:10.1103/PhysRevB.73.035407

    Article  ADS  Google Scholar 

  20. J.R. Krenn, Nanoparticle waveguides: watching energy transfer. Nat. Mater. 2, 210–211 (2003). doi:10.1038/nmat865

    Article  ADS  Google Scholar 

  21. R.F. Oulton, V.J. Sorger, D.A. Genov et al., A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2, 496–500 (2008). doi:10.1038/nphoton.2008.131

    Article  Google Scholar 

  22. P. Berini, I.D. Leon, Surface plasmon-polariton amplifiers and lasers. Nat. Photonics 6, 16–24 (2012). doi:10.1038/nphoton.2011.285

    Article  ADS  Google Scholar 

  23. H. Yan, X. Li, B. Chandra et al., Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotech. 7, 330–334 (2012). doi:10.1038/nnano.2012.59

    Article  ADS  Google Scholar 

  24. N.I. Zheludev, Photonic–plasmonic devices: a 7-nm light pen makes its mark. Nat. Nanotech. 5, 10–11 (2010). doi:10.1038/nnano.2009.460

    Article  ADS  Google Scholar 

  25. Y. Fu, X. Hu, C. Lu et al., All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett. 12, 5784–5790 (2012). doi:10.1021/nl303095s

    Article  ADS  Google Scholar 

  26. E. Abbe, Beiträge zur theorie des mikroskops und der mikroskopischen Wahrnehmung. Arch. ür Mikrosk. Anat. 9, 413–418 (1873). doi:10.1007/BF02956173

    Article  Google Scholar 

  27. W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Für Phys. 43, 172–198 (1927). doi:10.1007/BF01397280

    Article  MATH  ADS  Google Scholar 

  28. A. Sommerfeld, Ueber die Fortpflanzung elektrodynamischer Wellen längs eines Drahtes. Ann. Phys. 303, 233–290 (1899). doi:10.1002/andp.18993030202

    Article  Google Scholar 

  29. E. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Für Mikrosk. Anat. 9, 413–418 (1873). doi:10.1007/BF02956173

    Article  Google Scholar 

  30. E. Betzig, A. Lewis, A. Harootunian et al., Near field scanning optical microscopy (NSOM). Biophys. J. 49, 269–279 (1986). doi:10.1016/S0006-3495(86)83640-2

    Article  Google Scholar 

  31. J. Chen, M. Badioli, P. Alonso-González et al., Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012). doi:10.1038/nature11254

    ADS  Google Scholar 

  32. R. Esteban, R. Vogelgesang, J. Dorfmüller et al., Direct near-field optical imaging of higher order plasmonic resonances. Nano Lett. 8, 3155–3159 (2008). doi:10.1021/nl801396r

    Article  ADS  Google Scholar 

  33. Z. Fei, A.S. Rodin, G.O. Andreev et al., Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012). doi:10.1038/nature11253

    ADS  Google Scholar 

  34. R. Hillenbrand, T. Taubner, F. Keilmann, Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159–162 (2002). doi:10.1038/nature00899

    Article  ADS  Google Scholar 

  35. Y. Inouye, S. Kawata, Near-field scanning optical microscope with a metallic probe tip. Opt. Lett. 19, 159–161 (1994). doi:10.1364/OL.19.000159

    Article  ADS  Google Scholar 

  36. M. Schnell, P. Alonso-González, L. Arzubiaga et al., Nanofocusing of mid-infrared energy with tapered transmission lines. Nat. Photonics 5, 283–287 (2011). doi:10.1038/nphoton.2011.33

    Article  ADS  Google Scholar 

  37. P.E. Batson, Plasmonic modes revealed. Science 335, 47–48 (2012). doi:10.1126/science.1215588

    Article  ADS  Google Scholar 

  38. H. Duan, A.I. Fernández-Domínguez, M. Bosman et al., Nanoplasmonics: classical down to the nanometer scale. Nano Lett. 12, 1683–1689 (2012). doi:10.1021/nl3001309

    Article  ADS  Google Scholar 

  39. V. Iberi, N. Mirsaleh-Kohan, J.P. Camden, understanding plasmonic properties in metallic nanostructures by correlating photonic and electronic excitations. J. Phys. Chem. Lett. 4, 1070–1078 (2013). doi:10.1021/jz302140h

    Article  Google Scholar 

  40. J.A. Scholl, A. García-Etxarri, A.L. Koh, J.A. Dionne, Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 13, 564–569 (2013). doi:10.1021/nl304078v

    Article  ADS  Google Scholar 

  41. J.S. Kim, T. LaGrange, B.W. Reed et al., Imaging of transient structures using nanosecond in situ TEM. Science 321, 1472–1475 (2008). doi:10.1126/science.1161517

    Article  ADS  Google Scholar 

  42. A.H. Zewail, Four-dimensional electron microscopy. Science 328, 187–193 (2010). doi:10.1126/science.1166135

    Article  ADS  Google Scholar 

  43. M. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe, Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921–2923 (1991). doi:10.1063/1.105227

    Article  ADS  Google Scholar 

  44. P. Grutter, Scanning probe microscopy: seeing the charge within. Nat. Nanotech. 7, 210–211 (2012). doi:10.1038/nnano.2012.43

    Article  ADS  Google Scholar 

  45. H. Hoppe, T. Glatzel, M. Niggemann et al., Kelvin Probe force microscopy study on conjugated polymer/fullerene bulk heterojunction organic solar cells. Nano Lett. 5, 269–274 (2005). doi:10.1021/nl048176c

    Article  ADS  Google Scholar 

  46. H.O. Jacobs, H.F. Knapp, A. Stemmer, Practical aspects of Kelvin probe force microscopy. Rev. Sci. Instr. 70, 1756 (1999). doi:10.1063/1.1149664

    Article  ADS  Google Scholar 

  47. F. Mohn, L. Gross, N. Moll, G. Meyer, Imaging the charge distribution within a single molecule. Nat. Nanotech. 7, 227–231 (2012). doi:10.1038/nnano.2012.20

    Article  ADS  Google Scholar 

  48. E.J. Spadafora, R. Demadrille, B. Ratier, B. Grévin, Imaging the carrier photogeneration in nanoscale phase segregated organic heterojunctions by kelvin probe force microscopy. Nano Lett. 10, 3337–3342 (2010). doi:10.1021/nl101001d

    Article  ADS  Google Scholar 

  49. L. Yan, C. Punckt, I.A. Aksay et al., Local voltage drop in a single functionalized graphene sheet characterized by kelvin probe force microscopy. Nano Lett. 11, 3543–3549 (2011). doi:10.1021/nl201070c

    Article  ADS  Google Scholar 

  50. S.A. Burke, J.M. LeDue, Y. Miyahara et al., Determination of the local contact potential difference of PTCDA on NaCl: a comparison of techniques. Nanotechnology 20, 264012 (2009). doi:10.1088/0957-4484/20/26/264012

    Article  ADS  Google Scholar 

  51. L. Nony, A.S. Foster, F. Bocquet, C. Loppacher, Understanding the atomic-scale contrast in Kelvin probe force microscopy. Phys. Rev. Lett. 103, 036802. arXiv:09074015 (2009). doi:10.1103/PhysRevLett.103.036802

    Article  ADS  Google Scholar 

  52. S. Sadewasser, P. Jelinek, C.-K. Fang et al., New insights on atomic-resolution frequency-modulation kelvin-probe force-microscopy imaging of semiconductors. Phys. Rev. Lett. 103, 266103 (2009). doi:10.1103/PhysRevLett.103.266103

    Article  ADS  Google Scholar 

  53. M. Cohen, Z. Zalevsky, R. Shavit, Towards integrated nanoplasmonic logic circuitry. Nanoscale 5, 5442–5449 (2013). doi:10.1039/C3NR00830D

    Article  ADS  Google Scholar 

  54. M. Cohen, Z. Zalevsky, R. Shavit, Towards integrated nanoplasmonic logic circuitry. Nanoscale (2013). doi:10.1039/C3NR00830D

    Google Scholar 

  55. A. Yariv, Coupled-mode theory for guided-wave optics. IEEE J. Quant. Electron. 9, 919–933 (1973). doi:10.1109/JQE.1973.1077767

    Article  ADS  Google Scholar 

  56. O. Limon, Z. Zalevsky, Nanophotonic interferometer realizing all-optical exclusive or gate on a silicon chip. Opt. Eng. 48, 064601–064601 (2009). doi:10.1117/1.3156021

    Article  ADS  Google Scholar 

  57. A. Andryieuski, R. Malureanu, G. Biagi et al., Compact dipole nanoantenna coupler to plasmonic slot waveguide. Opt. Lett. 37, 1124–1126 (2012). doi:10.1364/OL.37.001124

    Article  ADS  Google Scholar 

  58. V.G. Kravets, G. Zoriniants, C.P. Burrows et al., Composite Au nanostructures for fluorescence studies in visible light. Nano Lett. 10, 874–879 (2010). doi:10.1021/nl903498h

    Article  ADS  Google Scholar 

  59. M. Nonnenmacher, M. O’Boyle, H.K. Wickramasinghe, Surface investigations with a Kelvin probe force microscope. Ultramicroscopy 42–44(Part 1), 268–273 (1992). doi:10.1016/0304-3991(92)90278-R

    Article  Google Scholar 

  60. I. Brodie, Uncertainty, topography, and work function. Phys. Rev. B 51, 13660–13668 (1995). doi:10.1103/PhysRevB.51.13660

    Article  ADS  Google Scholar 

  61. F.J. García de Abajo, The role of surface plasmons in ion-induced kinetic electron emission. Nucl. Instr. Meth. Phys. Res. Sect. B Beam Interact. Mater. Atoms 98, 445–449 (1995). doi:10.1016/0168-583X(95)00164-6

    Article  ADS  Google Scholar 

  62. F.A. Gutierrez, J. Díaz-Valdés, H. Jouin, Bulk-plasmon contribution to the work function of metals. J. Phys. Condens. Matter 19, 326221 (2007). doi:10.1088/0953-8984/19/32/326221

    Article  Google Scholar 

  63. R. Mehrotra, J. Mahanty, Free electron contribution to the workfunction of metals. J. Phys. C Solid State Phys. 11, 2061–2064 (1978). doi:10.1088/0022-3719/11/10/016

    Article  ADS  Google Scholar 

  64. M. Schmeits, A. Lucas, Physical adsorption and surface plasmons. Surf. Sci. 64, 176–196 (1977). doi:10.1016/0039-6028(77)90265-5

    Article  ADS  Google Scholar 

  65. E. Gerlach, Equivalence of van der Waals forces between Solids and the surface-plasmon interaction. Phys. Rev. B 4, 393–396 (1971). doi:10.1103/PhysRevB.4.393

    Article  MathSciNet  ADS  Google Scholar 

  66. N.R. Hill, M. Haller, V. Celli, Van der Waals forces and molecular diffraction from metal surfaces, with application to Ag(111). Chem. Phys. 73, 363–375 (1982). doi:10.1016/0301-0104(82)85175-6

    Article  ADS  Google Scholar 

  67. J. Wen, S. Romanov, U. Peschel, Excitation of plasmonic gap waveguides by nanoantennas. Opt. Express 17, 5925–5932 (2009). doi:10.1364/OE.17.005925

    Article  ADS  Google Scholar 

  68. J. Chen, G.A. Smolyakov, S.R. Brueck, K.J. Malloy, Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides. Opt. Express 16, 14902–14909 (2008). doi:10.1364/OE.16.014902

    Article  ADS  Google Scholar 

  69. W. Melitz, J. Shen, A.C. Kummel, S. Lee, Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66, 1–27 (2011). doi:10.1016/j.surfrep.2010.10.001

    Article  ADS  Google Scholar 

  70. C. Barth, C.R. Henry, Surface double layer on (001) surfaces of alkali halide crystals: a scanning force microscopy study. Phys. Rev. Lett. 98, 136804 (2007). doi:10.1103/PhysRevLett.98.136804

    Article  ADS  Google Scholar 

  71. A.J. Bennett, Influence of the electron charge distribution on surface-plasmon dispersion. Phys. Rev. B 1, 203–207 (1970). doi:10.1103/PhysRevB.1.203

    Article  ADS  Google Scholar 

  72. W. Ekardt, Work function of small metal particles: self-consistent spherical jellium-background model. Phys. Rev. B 29, 1558–1564 (1984). doi:10.1103/PhysRevB.29.1558

    Article  ADS  Google Scholar 

  73. L. Gross, F. Mohn, P. Liljeroth et al., Measuring the charge state of an adatom with noncontact atomic force microscopy. Science 324, 1428–1431 (2009). doi:10.1126/science.1172273

    Article  ADS  Google Scholar 

  74. T. König, G.H. Simon, H.-P. Rust et al., Measuring the charge state of point defects on MgO/Ag(001). J. Am. Chem. Soc. 131, 17544–17545 (2009). doi:10.1021/ja908049n

    Article  Google Scholar 

  75. T. Leoni, O. Guillermet, H. Walch et al., Controlling the charge state of a single redox molecular switch. Phys. Rev. Lett. 106, 216103 (2011). doi:10.1103/PhysRevLett.106.216103

    Article  ADS  Google Scholar 

  76. C. Sommerhalter, T.W. Matthes, T. Glatzel et al., High-sensitivity quantitative Kelvin probe microscopy by noncontact ultra-high-vacuum atomic force microscopy. Appl. Phys. Lett. 75, 286–288 (1999). doi:10.1063/1.124357

    Article  ADS  Google Scholar 

  77. S. Schäfer, Z. Wang, R. Zierold et al., Laser-induced charge separation in CdSe nanowires. Nano Lett. 11, 2672–2677 (2011). doi:10.1021/nl200770h

    Article  Google Scholar 

  78. J.A. Hutchison, A. Liscio, T. Schwartz et al., Tuning the work-function via strong coupling. Adv. Mater. 25, 2481–2485 (2013). doi:10.1002/adma.201203682

    Article  Google Scholar 

  79. A. Vial, A.-S. Grimault, D. Macías et al., Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys. Rev. B 71, 085416 (2005). doi:10.1103/PhysRevB.71.085416

    Article  ADS  Google Scholar 

  80. P.G. Etchegoin, E.C. Le Ru, M. Meyer, An analytic model for the optical properties of gold. J. Chem. Phys. 125, 164705 (2006). doi:10.1063/1.2360270

    Article  ADS  Google Scholar 

  81. A. Vial, T. Laroche, Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method. J. Phys. Appl. Phys. 40, 7152 (2007). doi:10.1088/0022-3727/40/22/043

    Article  ADS  Google Scholar 

  82. J. Bardeen, Theory of the work function. II. The surface double layer. Phys. Rev. 49, 653–663 (1936). doi:10.1103/PhysRev.49.653

    Article  MATH  ADS  Google Scholar 

  83. J.C. Slater, H.M. Krutter, The Thomas-Fermi method for metals. Phys. Rev. 47, 559–568 (1935). doi:10.1103/PhysRev.47.559

    Article  MATH  ADS  Google Scholar 

  84. H.O. Jacobs, H.F. Knapp, S. Müller, A. Stemmer, Surface potential mapping: a qualitative material contrast in SPM. Ultramicroscopy 69, 39–49 (1997). doi:10.1016/S0304-3991(97)00027-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshik Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cohen, M., Shavit, R., Zalevsky, Z. (2015). Nanoplasmonic Metal–Insulator–Metal Waveguides. In: Marowsky, G. (eds) Planar Waveguides and other Confined Geometries. Springer Series in Optical Sciences, vol 189. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1179-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1179-0_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1178-3

  • Online ISBN: 978-1-4939-1179-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics