Skip to main content

Optimizing Second-Harmonic Generation in a Circular Cylindrical Waveguide with Embedded Periodically Arranged Tubelets of Nonlinear Susceptibility

  • Chapter
  • First Online:
Planar Waveguides and other Confined Geometries

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 189))

  • 1738 Accesses

Abstract

Optical second-harmonic generation (SHG) is studied for the confined geometry of a circular cylindrical waveguide or optical fiber. A model situation of high symmetry is considered where the material with nonlinear susceptibility is isotropic and distributed in radially symmetric manner about the axis. In addition it is assumed that the material of high second-order nonlinearity consists of a thin circular layer, with periodic variation in the axial direction—similar to a usual quasi-phase-matched configuration. One can optimize the efficiency of SHG by choosing the period of the array such that a Bragg condition is satisfied. Depletion is studied in the framework of mode-coupling theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Bratz, B.U. Felderhof, G. Marowsky, Appl. Phys. B 50, 393 (1990)

    Article  ADS  Google Scholar 

  2. B.U. Felderhof, G. Marowsky, Appl. Phys. B 43, 161 (1987)

    Article  ADS  Google Scholar 

  3. J.A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, Phys. Rev. 127, 1918 (1962); reprinted in N. Bloembergen Nonlinear Optics (Addison-Wesley, Redwood City, 1992)

    Google Scholar 

  4. L.-M. Zhao, G.-K. Yue, Y.-S. Zhou, EPL 99, 34002 (2012)

    Article  ADS  Google Scholar 

  5. M.E. Fermann, L. Li, M.C. Farries, L.J. Poyntz-Wright, L. Dong, Optics Lett. 14, 748 (1989)

    Article  ADS  Google Scholar 

  6. T. Mizunami, T. Tsukuda, Y. Noi, K. Horimoto, Proc. Soc. Photo-Opt. Instrum. Eng. 5350, 115 (2004)

    Google Scholar 

  7. T. Mizunami, Y. Sadakane, Y. Tatsumoto, Thin Solid Films 516, 5890 (2008)

    Article  ADS  Google Scholar 

  8. K.R. Parameswaran, J.R. Kurz, R.V. Roussev, M.M. Fejer, Optics Lett. 27, 43 (2002)

    Article  ADS  Google Scholar 

  9. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974)

    Google Scholar 

  10. H. Kogelnik, in Integrated Optics, Topics Appllied Physics 7, ed. by T. Tamir (Springer, Berlin, 1979), p. 13

    Google Scholar 

  11. H.A. Haus Waves and Fields in Optoelectronics (Prentice Hall, Englewood Cliffs, 1974)

    Google Scholar 

  12. B.U. Felderhof, G. Marowsky, Appl. Phys. B 43, 161 (1991).

    Article  ADS  Google Scholar 

  13. V. Mizrahi, J.E. Sipe, J. Opt. Soc. Am. B 5, 660 (1988)

    Article  ADS  Google Scholar 

  14. J.M. Chen, J. R. Bower, C. S. Wang, C. H. Lee, Opt. Commun. 9, 132 (1973)

    Article  ADS  Google Scholar 

  15. C.K. Chen, T.F. Heinz, D. Ricard, Y.R. Shen, Phys. Rev. Lett. 46, 1010 (1981)

    Article  ADS  Google Scholar 

  16. B. Dick, Chem. Phys. 96, 199 (1985)

    Article  ADS  Google Scholar 

  17. O. Roders, O. Befort, G. Marowsky, D. Möbius, A. Bratz, Appl. Phys. B 59, 537 (1994)

    Article  ADS  Google Scholar 

  18. N.G. van Kampen, Phys. Rev. A 135, 362 (1964)

    Article  Google Scholar 

  19. H. Paul, Nichtlineare Optik II (Akademie-Verlag, Berlin, 1973)

    Google Scholar 

  20. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. U. Felderhof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Felderhof, B.U., Marowsky, G., Troe, J. (2015). Optimizing Second-Harmonic Generation in a Circular Cylindrical Waveguide with Embedded Periodically Arranged Tubelets of Nonlinear Susceptibility. In: Marowsky, G. (eds) Planar Waveguides and other Confined Geometries. Springer Series in Optical Sciences, vol 189. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1179-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1179-0_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1178-3

  • Online ISBN: 978-1-4939-1179-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics