Advertisement

Optimizing Second-Harmonic Generation in a Circular Cylindrical Waveguide with Embedded Periodically Arranged Tubelets of Nonlinear Susceptibility

  • B. U. FelderhofEmail author
  • G. Marowsky
  • J. Troe
Chapter
  • 1.4k Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 189)

Abstract

Optical second-harmonic generation (SHG) is studied for the confined geometry of a circular cylindrical waveguide or optical fiber. A model situation of high symmetry is considered where the material with nonlinear susceptibility is isotropic and distributed in radially symmetric manner about the axis. In addition it is assumed that the material of high second-order nonlinearity consists of a thin circular layer, with periodic variation in the axial direction—similar to a usual quasi-phase-matched configuration. One can optimize the efficiency of SHG by choosing the period of the array such that a Bragg condition is satisfied. Depletion is studied in the framework of mode-coupling theory.

Keywords

Conversion Coefficient Planar Waveguide Nonlinear Susceptibility Fundamental Wave Bragg Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Bratz, B.U. Felderhof, G. Marowsky, Appl. Phys. B 50, 393 (1990)CrossRefADSGoogle Scholar
  2. 2.
    B.U. Felderhof, G. Marowsky, Appl. Phys. B 43, 161 (1987)CrossRefADSGoogle Scholar
  3. 3.
    J.A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, Phys. Rev. 127, 1918 (1962); reprinted in N. Bloembergen Nonlinear Optics (Addison-Wesley, Redwood City, 1992)Google Scholar
  4. 4.
    L.-M. Zhao, G.-K. Yue, Y.-S. Zhou, EPL 99, 34002 (2012)CrossRefADSGoogle Scholar
  5. 5.
    M.E. Fermann, L. Li, M.C. Farries, L.J. Poyntz-Wright, L. Dong, Optics Lett. 14, 748 (1989)CrossRefADSGoogle Scholar
  6. 6.
    T. Mizunami, T. Tsukuda, Y. Noi, K. Horimoto, Proc. Soc. Photo-Opt. Instrum. Eng. 5350, 115 (2004)Google Scholar
  7. 7.
    T. Mizunami, Y. Sadakane, Y. Tatsumoto, Thin Solid Films 516, 5890 (2008)CrossRefADSGoogle Scholar
  8. 8.
    K.R. Parameswaran, J.R. Kurz, R.V. Roussev, M.M. Fejer, Optics Lett. 27, 43 (2002)CrossRefADSGoogle Scholar
  9. 9.
    D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974)Google Scholar
  10. 10.
    H. Kogelnik, in Integrated Optics, Topics Appllied Physics 7, ed. by T. Tamir (Springer, Berlin, 1979), p. 13Google Scholar
  11. 11.
    H.A. Haus Waves and Fields in Optoelectronics (Prentice Hall, Englewood Cliffs, 1974)Google Scholar
  12. 12.
    B.U. Felderhof, G. Marowsky, Appl. Phys. B 43, 161 (1991).CrossRefADSGoogle Scholar
  13. 13.
    V. Mizrahi, J.E. Sipe, J. Opt. Soc. Am. B 5, 660 (1988)CrossRefADSGoogle Scholar
  14. 14.
    J.M. Chen, J. R. Bower, C. S. Wang, C. H. Lee, Opt. Commun. 9, 132 (1973)CrossRefADSGoogle Scholar
  15. 15.
    C.K. Chen, T.F. Heinz, D. Ricard, Y.R. Shen, Phys. Rev. Lett. 46, 1010 (1981)CrossRefADSGoogle Scholar
  16. 16.
    B. Dick, Chem. Phys. 96, 199 (1985)CrossRefADSGoogle Scholar
  17. 17.
    O. Roders, O. Befort, G. Marowsky, D. Möbius, A. Bratz, Appl. Phys. B 59, 537 (1994)CrossRefADSGoogle Scholar
  18. 18.
    N.G. van Kampen, Phys. Rev. A 135, 362 (1964)CrossRefGoogle Scholar
  19. 19.
    H. Paul, Nichtlineare Optik II (Akademie-Verlag, Berlin, 1973)Google Scholar
  20. 20.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institut für Theorie der Statistischen PhysikAachenGermany
  2. 2.Laser-Laboratorium Göttingen e.V.GöttingenGermany

Personalised recommendations