Advertisement

Fiber-Optical 3D Shape Sensing

  • Christian Waltermann
  • Jan Koch
  • Martin Angelmahr
  • Jörg Burgmeier
  • Markus Thiel
  • Wolfgang SchadeEmail author
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 189)

Abstract

Fiber Bragg grating (FBG) technology is well known since more than three decades. It started in 1978 with the discovery of photosensitivity in optical fibers by Ken Hill et al. [1] when illuminating germanium-doped silica fibers with visible argon ion laser radiation. In this context, first periodic refractive index variation was introduced into the core of such special optical fibers. However, for nearly one decade, there was found no real application of these fundamental observations. The major breakthrough for Bragg gratings came in 1988 with the report on holographic writing applying single-photon absorption in the ultraviolet by Metz et al. [2]. They demonstrated reflection gratings using two interfering laser beams imaged into the fiber core. This was the starting point for several applications of FBGs ranging from reflection gratings used in telecommunication, high reflectivity end reflectors in fiber lasers, or sensor applications for monitoring mechanical strain and temperature.

Keywords

Femtosecond Laser Fiber Bragg Grating Fiber Core Fiber Bragg Grating Sensor Sensor Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partly supported by the German Federal Ministry of Education and Research under the contract 13N12524.

References

  1. 1.
    K.O. Hill, Y. Fujii, D.C. Johnson, B.S. Kawasaki, Photosensitivity in optical fiber waveguides: application to reflection filter fabrication. Appl. Phys. Lett. 32(10), 647 (1978)CrossRefADSGoogle Scholar
  2. 2.
    G. Meltz, W.W. Morey, W.H. Glenn, Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. 14(15), 823 (1989)CrossRefADSGoogle Scholar
  3. 3.
    A. Martinez, M. Dubov, I. Khrushchev, I. Bennion, Direct writing of fibre Bragg gratings by femtosecond laser. Electron. Lett. 40(19), 1170 (2004)CrossRefGoogle Scholar
  4. 4.
    A. Martinez, I.Y. Khrushchev, I. Bennion, Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser. Electron. Lett. 41, 176–178 (2005)CrossRefGoogle Scholar
  5. 5.
    R.J. Roesthuis, M. Kemp, J.J. van den Dobbelsteen, S. Misra, Three-dimensional needle shape reconstruction using an array of fiber Bragg grating sensors (2013 accepted)Google Scholar
  6. 6.
    G.M.H. Flockhart, W.N. MacPherson, J.S. Barton, J.D.C. Jones, L. Zhang, I. Bennion, Two-axis bend measurement with Bragg gratings in multicore optical fiber. Opt. Lett. 28(6), 387–389 (2003)CrossRefADSGoogle Scholar
  7. 7.
    A. Othonos, Fiber Bragg gratings. Rev. Sci. Instrum. 68(12), 4309–4341 (1997)CrossRefADSGoogle Scholar
  8. 8.
    R. Kashyap, Fiber Bragg Gratings, 2nd edn. (Academic, Burlington, 2010)Google Scholar
  9. 9.
    J. Burgmeier, W. Schippers, N. Emde, P. Funken, W. Schade, Femtosecond laser-inscribed fiber Bragg gratings for strain monitoring in power cables of offshore wind turbines. Appl. Opt. 50(13), 2011 (1868–1872)Google Scholar
  10. 10.
    J. Burgmeier, Erzeugung periodischer brechzahlmodulationen in glasfasern mit femtosekundenlaserpulsen und deren anwendung, Graduate thesis, Clausthal University of Technology (CUT), 2013Google Scholar
  11. 11.
    G.D. Marshall, R.J. Williams, N. Jovanovic, M.J. Steel, M.J. Withford, Point-by-point written fiber-Bragg gratings and their application in complex grating designs. Opt. Express 18, 19844–19859 (2010)CrossRefADSGoogle Scholar
  12. 12.
    L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, Femtosecond laser-induced damage and filamentary propagation in fused silica. Phys. Rev. Lett. 89(18), 186601 (2002)CrossRefADSGoogle Scholar
  13. 13.
    A. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, 1999)Google Scholar
  14. 14.
    R.J. Williams, C. Voigtländer, G.D. Marshall, A. Tünnermann, S. Nolte, M.J. Steel, M.J. Withford, Point-by-point inscription of apodized fiber Bragg gratings. Opt. Lett. 36(15), 2988–2990 (2011)CrossRefADSGoogle Scholar
  15. 15.
    B. Malo, S. Theriault, D.C. Johnson, F. Bilodeau, J. Albert, K.O. Hill, Apodized in-fibre Bragg grating reflectors photo-imprinted using a phase mask. Electron. Lett. 31(3), 223–225 (1995)CrossRefGoogle Scholar
  16. 16.
    J. Canning, M.G. Sceats, π-phase-shifted periodic distributed structures in optical fibres by UV post-processing. Electron. Lett. 30(16), 1344–1345 (1994)CrossRefADSGoogle Scholar
  17. 17.
    R. Kashyap, P.F. McKee, D. Armes, UV written reflection grating structures in photosensitive optical fibres using phase-shifted phase masks. Electron. Lett. 30(23), 1994 (1977–1978)Google Scholar
  18. 18.
    W.W. Morey, J.R. Dunphy, G. Meltz, Multiplexing fiber Bragg grating sensors. Distributed and multiplexed fiber optic sensors. Proc. SPIE 1586, 216 (1992)CrossRefADSGoogle Scholar
  19. 19.
    A.D. Kersey, M.A. Davis, H.J. Patrick, M. LeBlanc, K.P. Koo, C.G. Askins, M.A. Putnam, E.J. Friebele, Fiber grating sensors. J. Lightwave Technol. 15(8), 1442–1463 (1997)CrossRefADSGoogle Scholar
  20. 20.
    K.T.V. Grattan, T. Sun, Fiber optic sensor technology: an overview. Sensors Actuators A Phys. 82(1), 40–61 (2000)CrossRefGoogle Scholar
  21. 21.
    J. Koch, M. Angelmahr, W. Schade, Arrayed waveguide grating interrogator for fiber Bragg grating sensors: measurement and simulation. Appl. Opt. 51(31), 7718–7723 (2012)CrossRefADSGoogle Scholar
  22. 22.
    Y. Xinhua, Q. Jinwu, S. Linyong, Z. Yanan, Z. Zhen, An innovative 3D colonoscope shape sensing sensor based on FBG sensor array, in International Conference on Information Acquisition, Korea, 2007, pp. 227–232Google Scholar
  23. 23.
    J.P. Moore, M.D. Rogge, Shape sensing using multi-core fiber optic cable and parametric curve solutions. Opt. Express 20(3), 2967–2973 (2012)CrossRefADSGoogle Scholar
  24. 24.
    M.J. Gander, W.N. MacPherson, R. McBride, J.D.C. Jones, L. Zhang, I. Bennion, P.M. Blanchard, J.G. Burnett, A.H. Greenaway, Bend measurement using Bragg gratings in multicore fibre. Electron. Lett. 36(2), 120–121 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Christian Waltermann
    • 1
  • Jan Koch
    • 1
  • Martin Angelmahr
    • 1
  • Jörg Burgmeier
    • 1
  • Markus Thiel
    • 1
  • Wolfgang Schade
    • 2
    • 3
    Email author
  1. 1.Fraunhofer Heinrich-Hertz-Institut (HHI)GoslarGermany
  2. 2.Institut für Energieforschung und Physikalische Technologien (IEPT), Energie-Forschungszentrum Niedersachsen (EFZN)Technische Universität ClausthalGoslarGermany
  3. 3.Fraunhofer Heinrich-Hertz-Institut (HHI)GoslarGermany

Personalised recommendations