Radiation from a Semi-infinite Unflanged Planar Dielectric Waveguide

  • B. U. FelderhofEmail author
Part of the Springer Series in Optical Sciences book series (SSOS, volume 189)


Radiative emission from a semi-infinite unflanged planar dielectric waveguide is studied for the case of TM polarization on the basis of an iterative scheme. The first step of the scheme leads to approximate values for the reflection coefficients and electromagnetic fields inside and outside the waveguide. It is shown that for the related problems of reflection from a step potential in one-dimensional quantum mechanics and of Fresnel reflection of an electromagnetic plane wave from a half-space the iterative scheme is in accordance with the exact solution.

PACS numbers:

41.20.Jb 42.25.Bs 42.79.Gn 43.20.+g 


  1. 1.
    H. Levine, J. Schwinger, Phys. Rev. 73, 383 (1948)MathSciNetCrossRefzbMATHADSGoogle Scholar
  2. 2.
    H. Levine, J. Schwinger, Commun. Pure Appl. Math. 3, 355 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A. Sommerfeld, Math. Ann. 47, 317 (1896)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    A. Sommerfeld, Optics (Akademische Verlagsgesellschaft, Leipzig, 1964)Google Scholar
  5. 5.
    H. Bouwkamp, Rep. Prog. Phys. 17, 35 (1954)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    M. Born, E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1975)Google Scholar
  7. 7.
    F.E. Gardiol, in Advances in Electronics and Electron Physics, vol. 63, ed. by P.W. Hawkes (Academic, London, 1985), p. 139Google Scholar
  8. 8.
    D. Hondros, P. Debye, Ann. d. Phys. 32, 465 (1910)CrossRefzbMATHADSGoogle Scholar
  9. 9.
    G.F. Homicz, J.A. Lordi, J. Sound Vib. 41, 283 (1975)CrossRefADSGoogle Scholar
  10. 10.
    P. Joseph, C.L. Morfey, J. Acoust. Soc. Am. 105, 2590 (1999)CrossRefADSGoogle Scholar
  11. 11.
    M.S. Howe, Hydrodynamics and Sound (Cambridge University Press, Cambridge, 2007)Google Scholar
  12. 12.
    S.W. Rienstra, A. Hirschberg, An Introduction to Acoustics 2014,
  13. 13.
    D.M.S. Soh, J. Nilsson, S. Baek, C. Codemard, Y. Jeong, V. Philippov, J. Opt. Soc. Am. A21, 1241 (2004)CrossRefADSGoogle Scholar
  14. 14.
    A.E. Heins, Q. Appl. Math. 6, 157 (1948)zbMATHGoogle Scholar
  15. 15.
    P.C. Clemmow, Proc. R. Soc. A 205, 286 (1951)MathSciNetCrossRefzbMATHADSGoogle Scholar
  16. 16.
    F.E. Borgnis, C.H. Papas, Electromagnetic Waveguides and Resonators (Springer, Berlin, 1958)Google Scholar
  17. 17.
    D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974)Google Scholar
  18. 18.
    H. Kogelnik, in Integrated Optics, Topics Appl. Phys. 7, ed. by T. Tamir (Springer, Berlin, 1979)Google Scholar
  19. 19.
    P. Lorrain, D.R. Corson, F. Lorrain, Electromagnetic Fields and Waves (Freeman, New York, 1988)Google Scholar
  20. 20.
    A. Bratz, B.U. Felderhof, G. Marowsky, Appl. Phys. B 50, 393 (1990)CrossRefADSGoogle Scholar
  21. 21.
    R.G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1966)Google Scholar
  22. 22.
    A.R. da Silva, G.P. Scavone, J. Phys. A 40, 397 (2007)CrossRefzbMATHADSGoogle Scholar
  23. 23.
    W. Duan, R. Kirby, J. Acoust. Soc. Am. 131, 3638 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institut für Theorie der Statistischen PhysikRWTH Aachen UniversityAachenGermany

Personalised recommendations