Skip to main content

The Androgen Receptor as a Therapeutic Target for Castration-Resistant Prostate Cancer

  • Chapter
  • First Online:
  • 891 Accesses

Part of the book series: Current Clinical Urology ((CCU))

Abstract

The androgen receptor (AR) signals throughout the clinical course of prostate cancer, from localized disease to metastatic, and from castration-sensitive disease to castration-resistant. Recognition of the importance of the AR in patients with castration-resistant metastatic disease has led to the development of new agents that control disease, palliate symptoms, and extend life. For example, enzalutamide, a novel AR antagonist, has been shown to improve overall survival in two phase III clinical trials in men with castration-resistant prostate cancer (CRPC). However, resistance to anti-AR strategies, both intrinsic and acquired, highlights the continued importance of research and development in this field. In this chapter, we will review the biology of the AR, discuss the key aspects of therapy targeting the AR, review the discovery and development of enzalutamide, and evaluate other novel agents under investigation in clinical trials that target the AR.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gelmann EP. Molecular biology of the androgen receptor. J Clin Oncol. 2002;20(13):3001–15.

    Article  CAS  PubMed  Google Scholar 

  2. Matias PM, Donner P, Coelho R, Thomaz M, Peixoto C, Macedo S, et al. Structural evidence for ligand specificity in the binding domain of the human androgen receptor. Implications for pathogenic gene mutations. J Biol Chem. 2000;275(34):26164–71.

    Article  CAS  PubMed  Google Scholar 

  3. Brinkmann AO, Klaasen P, Kuiper GG, van der Korput JA, Bolt J, de Boer W, et al. Structure and function of the androgen receptor. Urol Res. 1989;17(2):87–93.

    Article  CAS  PubMed  Google Scholar 

  4. Sack JS, Kish KF, Wang C, Attar RM, Kiefer SE, An Y, et al. Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone. Proc Natl Acad Sci U S A. 2001;98(9):4904–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. He B, Gampe Jr RT, Kole AJ, Hnat AT, Stanley TB, An G, et al. Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance. Mol Cell. 2004;16(3):425–38.

    Article  CAS  PubMed  Google Scholar 

  6. Shang Y, Myers M, Brown M. Formation of the androgen receptor transcription complex. Mol Cell. 2002;9(3):601–10.

    Article  CAS  PubMed  Google Scholar 

  7. Dehm SM, Tindall DJ. Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol Endocrinol. 2007;21(12):2855–63.

    Article  CAS  PubMed  Google Scholar 

  8. Gioeli D, Paschal BM. Post-translational modification of the androgen receptor. Mol Cell Endocrinol. 2012;352(1–2):70–8.

    Article  CAS  PubMed  Google Scholar 

  9. Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell. 2009;138(2):245–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Yuan X, Cai C, Chen S, Chen S, Yu Z, Balk SP. Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene. 2014 May 29;33(22):2815–25

    Google Scholar 

  11. Friedlander TW, Roy R, Tomlins SA, Ngo VT, Kobayashi Y, Azameera A, et al. Common structural and epigenetic changes in the genome of castration-resistant prostate cancer. Cancer Res. 2012;72(3):616–25.

    Article  CAS  PubMed  Google Scholar 

  12. Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS, et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 2008;68(11):4447–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM, et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res. 2006;66(5):2815–25.

    Article  CAS  PubMed  Google Scholar 

  14. Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res. 2008;68(13):5469–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Li Y, Alsagabi M, Fan D, Bova GS, Tewfik AH, Dehm SM. Intragenic rearrangement and altered RNA splicing of the androgen receptor in a cell-based model of prostate cancer progression. Cancer Res. 2011;71(6):2108–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Bitting RL, Armstrong AJ. Targeting the PI3K/Akt/mTOR pathway in castration-resistant prostate cancer. Endocr Relat Cancer. 2013;20(3):R83–99.

    Article  CAS  PubMed  Google Scholar 

  17. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med. 2004;10(1):33–9.

    Article  PubMed  Google Scholar 

  18. Ford 3rd OH, Gregory CW, Kim D, Smitherman AB, Mohler JL. Androgen receptor gene amplification and protein expression in recurrent prostate cancer. J Urol. 2003;170(5):1817–21.

    Article  CAS  PubMed  Google Scholar 

  19. Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci U S A. 2004;101(3):811–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L, et al. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol. 2004;22(14):2790–9.

    Article  CAS  PubMed  Google Scholar 

  21. Holzbeierlein J, Lal P, LaTulippe E, Smith A, Satagopan J, Zhang L, et al. Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am J Pathol. 2004;164(1):217–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Bubendorf L, Kononen J, Koivisto P, Schraml P, Moch H, Gasser TC, et al. Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res. 1999;59(4):803–6.

    CAS  PubMed  Google Scholar 

  23. Edwards J, Krishna NS, Grigor KM, Bartlett JM. Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. Br J Cancer. 2003;89(3):552–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinanen R, Palmberg C, et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet. 1995;9(4):401–6.

    Article  CAS  PubMed  Google Scholar 

  25. Koivisto P, Kononen J, Palmberg C, Tammela T, Hyytinen E, Isola J, et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res. 1997;57(2):314–9.

    CAS  PubMed  Google Scholar 

  26. Zhao XY, Malloy PJ, Krishnan AV, Swami S, Navone NM, Peehl DM, et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat Med. 2000;6(6):703–6.

    Article  CAS  PubMed  Google Scholar 

  27. Culig Z, Hobisch A, Cronauer MV, Cato AC, Hittmair A, Radmayr C, et al. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol. 1993;7(12):1541–50.

    CAS  PubMed  Google Scholar 

  28. Dehm SM, Regan KM, Schmidt LJ, Tindall DJ. Selective role of an NH2-terminal WxxLF motif for aberrant androgen receptor activation in androgen depletion independent prostate cancer cells. Cancer Res. 2007;67(20):10067–77.

    Article  CAS  PubMed  Google Scholar 

  29. Dehm SM, Tindall DJ. Alternatively spliced androgen receptor variants. Endocr Relat Cancer. 2011;18(5):R183–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Li Y, Hwang TH, Oseth LA, Hauge A, Vessella RL, Schmechel SC, et al. AR intragenic deletions linked to androgen receptor splice variant expression and activity in models of prostate cancer progression. Oncogene. 2012;31(45):4759–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ceraline J, Cruchant MD, Erdmann E, Erbs P, Kurtz JE, Duclos B, et al. Constitutive activation of the androgen receptor by a point mutation in the hinge region: a new mechanism for androgen-independent growth in prostate cancer. Int J Cancer. 2004;108(1):152–7.

    Article  CAS  PubMed  Google Scholar 

  32. Libertini SJ, Tepper CG, Rodriguez V, Asmuth DM, Kung HJ, Mudryj M. Evidence for calpain-mediated androgen receptor cleavage as a mechanism for androgen independence. Cancer Res. 2007;67(19):9001–5.

    Article  CAS  PubMed  Google Scholar 

  33. Hu R, Lu C, Mostaghel EA, Yegnasubramanian S, Gurel M, Tannahill C, et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res. 2012;72(14):3457–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E, et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 2009;69(1):16–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Pourmand G, Ziaee AA, Abedi AR, Mehrsai A, Alavi HA, Ahmadi A, et al. Role of PTEN gene in progression of prostate cancer. Urol J. 2007;4(2):95–100.

    PubMed  Google Scholar 

  36. Reid AH, Attard G, Ambroisine L, Fisher G, Kovacs G, Brewer D, et al. Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer. Br J Cancer. 2010;102(4):678–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18(1):11–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Gao H, Ouyang X, Banach-Petrosky WA, Shen MM, Abate-Shen C. Emergence of androgen independence at early stages of prostate cancer progression in Nkx3.1; Pten mice. Cancer Res. 2006;66(16):7929–33.

    Article  CAS  PubMed  Google Scholar 

  39. Jiao J, Wang S, Qiao R, Vivanco I, Watson PA, Sawyers CL, et al. Murine cell lines derived from Pten null prostate cancer show the critical role of PTEN in hormone refractory prostate cancer development. Cancer Res. 2007;67(13):6083–91.

    Article  CAS  PubMed  Google Scholar 

  40. Maximum androgen blockade in advanced prostate cancer: an overview of the randomised trials. Prostate Cancer Trialists’ Collaborative Group. Lancet. 2000;355(9214):1491–8.

    Google Scholar 

  41. Kuhn JM, Billebaud T, Navratil H, Moulonguet A, Fiet J, Grise P, et al. Prevention of the transient adverse effects of a gonadotropin-releasing hormone analogue (buserelin) in metastatic prostatic carcinoma by administration of an antiandrogen (nilutamide). N Engl J Med. 1989;321(7):413–8.

    Article  CAS  PubMed  Google Scholar 

  42. Bennett CL, Tosteson TD, Schmitt B, Weinberg PD, Ernstoff MS, Ross SD. Maximum androgen-blockade with medical or surgical castration in advanced prostate cancer: a meta-analysis of nine published randomized controlled trials and 4128 patients using flutamide. Prostate Cancer Prostatic Dis. 1999;2(1):4–8.

    Article  PubMed  Google Scholar 

  43. Samson DJ, Seidenfeld J, Schmitt B, Hasselblad V, Albertsen PC, Bennett CL, et al. Systematic review and meta-analysis of monotherapy compared with combined androgen blockade for patients with advanced prostate carcinoma. Cancer. 2002;95(2):361–76.

    Article  CAS  PubMed  Google Scholar 

  44. Maximum androgen blockade in advanced prostate cancer: an overview of 22 randomised trials with 3283 deaths in 5710 patients. Prostate Cancer Trialists’ Collaborative Group. Lancet. 1995;346(8970):265–9

    Google Scholar 

  45. Taplin ME, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, Ogata GK, et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med. 1995;332(21):1393–8.

    Article  CAS  PubMed  Google Scholar 

  46. Culig Z, Hoffmann J, Erdel M, Eder IE, Hobisch A, Hittmair A, et al. Switch from antagonist to agonist of the androgen receptor bicalutamide is associated with prostate tumour progression in a new model system. Br J Cancer. 1999;81(2):242–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Hara T, Miyazaki J, Araki H, Yamaoka M, Kanzaki N, Kusaka M, et al. Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Res. 2003;63(1):149–53.

    CAS  PubMed  Google Scholar 

  48. Sartor AO, Tangen CM, Hussain MH, Eisenberger MA, Parab M, Fontana JA, et al. Antiandrogen withdrawal in castrate-refractory prostate cancer: a Southwest Oncology Group trial (SWOG 9426). Cancer. 2008;112(11):2393–400.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Small EJ, Carroll PR. Prostate-specific antigen decline after casodex withdrawal: evidence for an antiandrogen withdrawal syndrome. Urology. 1994;43(3):408–10.

    Article  CAS  PubMed  Google Scholar 

  50. Kelly WK, Scher HI. Prostate specific antigen decline after antiandrogen withdrawal: the flutamide withdrawal syndrome. J Urol. 1993;149(3):607–9.

    CAS  PubMed  Google Scholar 

  51. Small EJ, Halabi S, Dawson NA, Stadler WM, Rini BI, Picus J, et al. Antiandrogen withdrawal alone or in combination with ketoconazole in androgen-independent prostate cancer patients: a phase III trial (CALGB 9583). J Clin Oncol. 2004;22(6):1025–33.

    Article  CAS  PubMed  Google Scholar 

  52. Attar RM, Jure-Kunkel M, Balog A, Cvijic ME, Dell-John J, Rizzo CA, et al. Discovery of BMS-641988, a novel and potent inhibitor of androgen receptor signaling for the treatment of prostate cancer. Cancer Res. 2009;69(16):6522–30.

    Article  CAS  PubMed  Google Scholar 

  53. Rathkopf D, Liu G, Carducci MA, Eisenberger MA, Anand A, Morris MJ, et al. Phase I dose-escalation study of the novel antiandrogen BMS-641988 in patients with castration-resistant prostate cancer. Clin Cancer Res. 2011;17(4):880–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Teutsch G, Goubet F, Battmann T, Bonfils A, Bouchoux F, Cerede E, et al. Non-steroidal antiandrogens: synthesis and biological profile of high-affinity ligands for the androgen receptor. J Steroid Biochem Mol Biol. 1994;48(1):111–9.

    Article  CAS  PubMed  Google Scholar 

  55. Van Dort ME, Robins DM, Wayburn B. Design, synthesis, and pharmacological characterization of 4-[4, 4-dimethyl-3-(4-hydroxybutyl)-5-oxo-2-thioxo-1-imidazolidinyl]-2-iodobenzonitrile as a high-affinity nonsteroidal androgen receptor ligand. J Med Chem. 2000;43(17):3344–7.

    Article  PubMed  Google Scholar 

  56. Chen Y, Clegg NJ, Scher HI. Anti-androgens and androgen-depleting therapies in prostate cancer: new agents for an established target. Lancet Oncol. 2009;10(10):981–91.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science. 2009;324(5928):787–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Scher HI, Beer TM, Higano CS, Anand A, Taplin ME, Efstathiou E, et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1–2 study. Lancet. 2010;375(9724):1437–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Scher HI, Halabi S, Tannock I, Morris M, Sternberg CN, Carducci MA, et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol. 2008;26(7):1148–59.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Danila DC, Heller G, Gignac GA, Gonzalez-Espinoza R, Anand A, Tanaka E, et al. Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin Cancer Res. 2007;13(23):7053–8.

    Article  CAS  PubMed  Google Scholar 

  61. de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2008;14(19):6302–9.

    Article  PubMed  Google Scholar 

  62. Scher HI, Jia X, de Bono JS, Fleisher M, Pienta KJ, Raghavan D, et al. Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. Lancet Oncol. 2009;10(3):233–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Beattie BJ, Smith-Jones PM, Jhanwar YS, Schoder H, Schmidtlein CR, Morris MJ, et al. Pharmacokinetic assessment of the uptake of 16beta-18F-fluoro-5alpha-dihydrotestosterone (FDHT) in prostate tumors as measured by PET. J Nucl Med. 2010;51(2):183–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Foster WR, Car BD, Shi H, Levesque PC, Obermeier MT, Gan J, et al. Drug safety is a barrier to the discovery and development of new androgen receptor antagonists. Prostate. 2011;71(5):480–8.

    Article  CAS  PubMed  Google Scholar 

  65. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012;367(13):1187–97.

    Article  CAS  PubMed  Google Scholar 

  66. Beer TM, Armstrong AJ, Rathkopf DE, et al. Enzalutamide in Metastatic Prostate Cancer before Chemotherapy. N Engl J Med. June 1, 2014; [Epub ahead of print]..

    Google Scholar 

  67. Arora VK, Schenkein E, Murali R, Subudhi SK, Wongvipat J, Balbas MD, et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell. 2013;155(6):1309–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Korpal M, Korn JM, Gao X, Rakiec DP, Ruddy DA, Doshi S, et al. An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer Discov. 2013;3(9):1030–43.

    Article  CAS  PubMed  Google Scholar 

  69. Joseph JD, Lu N, Qian J, Sensintaffar J, Shao G, Brigham D, et al. A clinically relevant androgen receptor mutation confers resistance to 2nd generation anti-androgens enzalutamide and ARN-509. Cancer Discov. 2013;3:1020–9.

    Article  CAS  PubMed  Google Scholar 

  70. Balbas MD, Evans MJ, Hosfield DJ, Wongvipat J, Arora VK, Watson PA, et al. Overcoming mutation-based resistance to antiandrogens with rational drug design. Elife. 2013;2:e00499.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Li Y, Chan SC, Brand LJ, Hwang TH, Silverstein KA, Dehm SM. Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res. 2013;73(2):483–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Jia S, Gao X, Lee SH, Maira SM, Wu X, Stack EC, et al. Opposing effects of androgen deprivation and targeted therapy on prostate cancer prevention. Cancer Discov. 2013;3(1):44–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell. 2011;19(5):575–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Mulholland DJ, Tran LM, Li Y, Cai H, Morim A, Wang S, et al. Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell. 2011;19(6):792–804.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Baselga J, Campone M, Piccart M, Burris 3rd HA, Rugo HS, Sahmoud T, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366(6):520–9.

    Article  CAS  PubMed  Google Scholar 

  76. Clegg NJ, Wongvipat J, Joseph JD, Tran C, Ouk S, Dilhas A, et al. ARN-509: a novel antiandrogen for prostate cancer treatment. Cancer Res. 2012;72(6):1494–503.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Rathkopf DE, Morris MJ, Fox JJ, Danila DC, Slovin SF, Hager JH, et al. Phase I study of ARN-509, a novel antiandrogen, in the treatment of castration-resistant prostate cancer. J Clin Oncol. 2013;31(28):3525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rathkopf D, Antonarakis ES, Shore ND, Tutrone R, Alumkal JJ, Ryan CJ, et al. ARN-509 in men with metastatic castration-resistant prostate cancer (CRPC) [abstract]. 37th Congress of the European Society for Medical Oncology (ESMO), Sept 28–Oct 2, 2012. Ann Oncol. 2012;23 Suppl 9:317.

    Google Scholar 

  79. Smith MR, Antonarakis ES, Ryan CJ, Berry WR, Shore N, Liu G, et al. ARN-509 in men with high-risk nonmetastatic castration-resistant prostate cancer (CRPC). 2013 Genitourinary Cancers Symposium, American Society of Clinical Oncology, Feb 14–16, Orlando, FL. J Clin Oncol. 2013;31(Suppl 6):abstr 7.

    Google Scholar 

  80. Fizazi K, Massard C, James ND, Culine S, Jones RH, Oksala R, et al. ODM-201, a new generation androgen receptor inhibitor for castration-resistant prostate cancer: preclinical and phase I data. 2013 Genitourinary Cancers Symposium, American Society of Clinical Oncology, Feb 14–16, Orlando, FL. J Clin Oncol. 2013;31(suppl 6):abstr 65.

    Google Scholar 

  81. Massard C, James N, Culine S, Jones R, Vuorela A, Mustonen M. ARADES trial: a first-in-man, open-label, phase I/II safety, pharmacokinetic, and proof-of-concept study of ODM-201 in patients with progressive metastatic castration-resistant prostate cancer. Ann Oncol 23:ixe16, 2012 (suppl 9; abstr LBA25_PR).

    Google Scholar 

  82. Calderwood SK, Ciocca DR. Heat shock proteins: stress proteins with Janus-like properties in cancer. Int J Hyperthermia. 2008;24(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  83. Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR. Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci. 2006;31(3):164–72.

    Article  CAS  PubMed  Google Scholar 

  84. Solit DB, Zheng FF, Drobnjak M, Munster PN, Higgins B, Verbel D, et al. 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin Cancer Res. 2002;8(5):986–93.

    CAS  PubMed  Google Scholar 

  85. Solit DB, Ivy SP, Kopil C, Sikorski R, Morris MJ, Slovin SF, et al. Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. Clin Cancer Res. 2007;13(6):1775–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Iyer G, Morris MJ, Rathkopf D, Slovin SF, Steers M, Larson SM, et al. A phase I trial of docetaxel and pulse-dose 17-allylamino-17-demethoxygeldanamycin in adult patients with solid tumors. Cancer Chemother Pharmacol. 2012;69(4):1089–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Goetz MP, Toft D, Reid J, Ames M, Stensgard B, Safgren S, et al. Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J Clin Oncol. 2005;23(6):1078–87.

    Article  CAS  PubMed  Google Scholar 

  88. Heath EI, Hillman DW, Vaishampayan U, Sheng S, Sarkar F, Harper F, et al. A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clin Cancer Res. 2008;14(23):7940–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Oh WK, Galsky MD, Stadler WM, Srinivas S, Chu F, Bubley G, et al. Multicenter phase II trial of the heat shock protein 90 inhibitor, retaspimycin hydrochloride (IPI-504), in patients with castration-resistant prostate cancer. Urology. 2011;78(3):626–30.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Ischia J, Saad F, Gleave M. The promise of heat shock protein inhibitors in the treatment of castration resistant prostate cancer. Curr Opin Urol. 2013;23(3):194–200.

    Article  PubMed  Google Scholar 

  91. De Leon JT, Iwai A, Feau C, Garcia Y, Balsiger HA, Storer CL, et al. Targeting the regulation of androgen receptor signaling by the heat shock protein 90 cochaperone FKBP52 in prostate cancer cells. Proc Natl Acad Sci U S A. 2011;108(29):11878–83.

    Article  PubMed Central  PubMed  Google Scholar 

  92. Rocchi P, So A, Kojima S, Signaevsky M, Beraldi E, Fazli L, et al. Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res. 2004;64(18):6595–602.

    Article  CAS  PubMed  Google Scholar 

  93. Chi KN, Yu EY, Ellard S, Hotte JR, Gingerich AM. OGX-427 in castration resistant prostate cancer patients. 37th Congress of the European Society for Medical Oncology (ESMO), Sept 28–Oct 2, 2012. Ann Oncol. 2012;23(Suppl 9):Abstr ix297.

    Google Scholar 

  94. Miyake H, Nelson C, Rennie PS, Gleave ME. Testosterone-repressed prostate message-2 is an antiapoptotic gene involved in progression to androgen independence in prostate cancer. Cancer Res. 2000;60(1):170–6.

    CAS  PubMed  Google Scholar 

  95. Sensibar JA, Sutkowski DM, Raffo A, Buttyan R, Griswold MD, Sylvester SR, et al. Prevention of cell death induced by tumor necrosis factor alpha in LNCaP cells by overexpression of sulfated glycoprotein-2 (clusterin). Cancer Res. 1995;55(11):2431–7.

    CAS  PubMed  Google Scholar 

  96. Zellweger T, Chi K, Miyake H, Adomat H, Kiyama S, Skov K, et al. Enhanced radiation sensitivity in prostate cancer by inhibition of the cell survival protein clusterin. Clin Cancer Res. 2002;8(10):3276–84.

    CAS  PubMed  Google Scholar 

  97. Miyake H, Chi KN, Gleave ME. Antisense TRPM-2 oligodeoxynucleotides chemosensitize human androgen-independent PC-3 prostate cancer cells both in vitro and in vivo. Clin Cancer Res. 2000;6(5):1655–63.

    CAS  PubMed  Google Scholar 

  98. Sowery RD, Hadaschik BA, So AI, Zoubeidi A, Fazli L, Hurtado-Coll A, et al. Clusterin knockdown using the antisense oligonucleotide OGX-011 re-sensitizes docetaxel-refractory prostate cancer PC-3 cells to chemotherapy. BJU Int. 2008;102(3):389–97.

    Article  CAS  PubMed  Google Scholar 

  99. Chi KN, Hotte SJ, Yu EY, Tu D, Eigl BJ, Tannock I, et al. Randomized phase II study of docetaxel and prednisone with or without OGX-011 in patients with metastatic castration-resistant prostate cancer. J Clin Oncol. 2010;28(27):4247–54.

    Article  CAS  PubMed  Google Scholar 

  100. Saad F, Hotte S, North S, Eigl B, Chi K, Czaykowski P, et al. Randomized phase II trial of Custirsen (OGX-011) in combination with docetaxel or mitoxantrone as second-line therapy in patients with metastatic castrate-resistant prostate cancer progressing after first-line docetaxel: CUOG trial P-06c. Clin Cancer Res. 2011;17(17):5765–73.

    Article  CAS  PubMed  Google Scholar 

  101. Schayowitz A, Sabnis G, Njar VC, Brodie AM. Synergistic effect of a novel antiandrogen, VN/124-1, and signal transduction inhibitors in prostate cancer progression to hormone independence in vitro. Mol Cancer Ther. 2008;7(1):121–32.

    Article  CAS  PubMed  Google Scholar 

  102. Handratta VD, Vasaitis TS, Njar VC, Gediya LK, Kataria R, Chopra P, et al. Novel C-17-heteroaryl steroidal CYP17 inhibitors/antiandrogens: synthesis, in vitro biological activity, pharmacokinetics, and antitumor activity in the LAPC4 human prostate cancer xenograft model. J Med Chem. 2005;48(8):2972–84.

    Article  CAS  PubMed  Google Scholar 

  103. Vasaitis T, Belosay A, Schayowitz A, Khandelwal A, Chopra P, Gediya LK, et al. Androgen receptor inactivation contributes to antitumor efficacy of 17{alpha}-hydroxylase/17,20-lyase inhibitor 3beta-hydroxy-17-(1H-benzimidazole-1-yl)androsta-5,16-diene in prostate cancer. Mol Cancer Ther. 2008;7(8):2348–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Taplin ME, Chu F, Morrison JP, Pili R, Rettig MB, Stephenson J, et al. ARMOR1: Safety of galeterone (TOK-001) in a Phase 1 clinical trial in chemotherapy naïve patients with castration resistant prostate cancer (CRPC) [abstract]. In: Proceedings of the 103rd annual meeting of the American association for cancer research, March 31–April 4; 2012, Chicago, IL. Abstract nr CT-07.

    Google Scholar 

  105. Bradley D, Rathkopf D, Dunn R, Stadler WM, Liu G, Smith DC, et al. Vorinostat in advanced prostate cancer patients progressing on prior chemotherapy (National Cancer Institute Trial 6862): trial results and interleukin-6 analysis: a study by the Department of Defense Prostate Cancer Clinical Trial Consortium and University of Chicago Phase 2 Consortium. Cancer. 2009;115(23):5541–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Rathkopf DE, Picus J, Hussain A, Ellard S, Chi KN, Nydam T, et al. A phase 2 study of intravenous panobinostat in patients with castration-resistant prostate cancer. Cancer Chemother Pharmacol. 2013;72(3):537–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci U S A. 2003;100(8):4389–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Hu E, Dul E, Sung CM, Chen Z, Kirkpatrick R, Zhang GF, et al. Identification of novel isoform-selective inhibitors within class I histone deacetylases. J Pharmacol Exp Ther. 2003;307(2):720–8.

    Article  CAS  PubMed  Google Scholar 

  109. Festuccia C, Gravina GL, D’Alessandro AM, Muzi P, Millimaggi D, Dolo V, et al. Azacitidine improves antitumor effects of docetaxel and cisplatin in aggressive prostate cancer models. Endocr Relat Cancer. 2009;16(2):401–13.

    Article  CAS  PubMed  Google Scholar 

  110. Sonpavde G, Aparicio AM, Zhan F, North B, Delaune R, Garbo LE, et al. Azacitidine favorably modulates PSA kinetics correlating with plasma DNA LINE-1 hypomethylation in men with chemonaive castration-resistant prostate cancer. Urol Oncol. 2011;29(6):682–9.

    Google Scholar 

  111. Bianchini D, Omlin A, Pezaro C, Lorente D, Ferraldeschi R, Mukherji D, et al. First-in-human Phase I study of EZN-4176, a locked nucleic acid antisense oligonucleotide to exon 4 of the androgen receptor mRNA in patients with castration-resistant prostate cancer. Br J Cancer. 2013;109(10):2579–86.

    Google Scholar 

  112. OncoGenex Announces Top-Line Survival Results of Phase 3 SYNERGY Trial Evaluating Custirsen for Metastatic Castrate-Resistant Prostate Cancer. http://ir.oncogenex.com/releasedetail.cfm?ReleaseID=842949 Accessed 25 June 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Morris MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Feldman, J.L., Rathkopf, D., Morris, M.J. (2014). The Androgen Receptor as a Therapeutic Target for Castration-Resistant Prostate Cancer. In: Saad, F., Eisenberger, M. (eds) Management of Castration Resistant Prostate Cancer. Current Clinical Urology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1176-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1176-9_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1175-2

  • Online ISBN: 978-1-4939-1176-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics