Skip to main content

Targeting C-Met/VEGF in Castration Resistant Prostate Cancer

  • Chapter
  • First Online:
  • 855 Accesses

Part of the book series: Current Clinical Urology ((CCU))

Abstract

HGF/MET and VEGF/VEGFR pathways have emerged as rational therapeutic targets in castrate-resistant prostate cancer (CRPC). Preclinical studies support the role of inhibition of these pathways in this challenging disease. Clinical trials using agents that inhibit either one but not both pathways concurrently suggest modest activity with no overall survival benefit. Cabozantinib (Cabo) is a multi-targeted tyrosine kinase inhibitor against MET, VEGFR2, RET. A phase II randomized discontinuation trial in patients with metastatic CRPC showed significant improvement in bone scans, bone turnover markers, and pain response. However, Cabo was associated with significant adverse events resulting in dose reduction and treatment discontinuation. Ongoing phase II and two phase III trials are expected to define the role of Cabo in CRPC. The development of biomarkers predictive of response will further refine the role of targeted therapies in the management of CRPC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF, et al. Identification of the hepatocyte growth factor receptor as the met proto-oncogene product. Science. 1991;251(4995):802–4.

    Article  CAS  PubMed  Google Scholar 

  2. Galland F, Stefanova M, Lafage M, Birnbaum D. Localization of the 5′ end of the MCF2 oncogene to human chromosome 15q15–q23. Cytogenet Cell Genet. 1992;60(2):114–6.

    Article  CAS  PubMed  Google Scholar 

  3. Cooper CS. The met oncogene: from detection by transfection to transmembrane receptor for hepatocyte growth factor. Oncogene. 1992;7(1):3–7.

    CAS  PubMed  Google Scholar 

  4. Migliore C, Giordano S. Molecular cancer therapy: can our expectation be MET? Eur J Cancer. 2008;44(5):641–51.

    Article  CAS  PubMed  Google Scholar 

  5. Zhu H, Naujokas MA, Fixman ED, Torossian K, Park M. Tyrosine 1356 in the carboxyl-terminal tail of the HGF/SF receptor is essential for the transduction of signals for cell motility and morphogenesis. J Biol Chem. 1994;269(47):29943–8.

    CAS  PubMed  Google Scholar 

  6. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–25.

    Article  CAS  PubMed  Google Scholar 

  7. Lesko E, Majka M. The biological role of HGF–MET axis in tumor growth and development of metastasis. Front Biosci. 2008;13:1271–80.

    Article  CAS  PubMed  Google Scholar 

  8. Liu X, Newton RC, Scherle PA. Developing c-MET pathway inhibitors for cancer therapy: progress and challenges. Trends Mol Med. 2010;16(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  9. Matsumoto K, Nakamura T. Hepatocyte growth factor and the Met system as a mediator of tumor-stromal interactions. Int J Cancer. 2006;119(3):477–83.

    Article  CAS  PubMed  Google Scholar 

  10. Maulik G, Shrikhande A, Kijima T, Ma PC, Morrison PT, Salgia R. Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev. 2002;13(1):41–59.

    Article  CAS  PubMed  Google Scholar 

  11. Schmidt L, Duh FM, Chen F, Kishida T, Glenn G, Choyke P, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 1997;16(1):68–73.

    Article  CAS  PubMed  Google Scholar 

  12. Di Renzo MF, Olivero M, Martone T, Maffe A, Maggiora P, Stefani AD, et al. Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene. 2000;19(12):1547–55.

    Article  PubMed  Google Scholar 

  13. Humphrey PA, Zhu X, Zarnegar R, Swanson PE, Ratliff TL, Vollmer RT, et al. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am J Pathol. 1995;147(2):386–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Pisters LL, Troncoso P, Zhau HE, Li W, von Eschenbach AC, Chung LW. c-Met proto-oncogene expression in benign and malignant human prostate tissues. J Urol. 1995;154(1):293–8.

    Article  CAS  PubMed  Google Scholar 

  15. Russo AL, Jedlicka K, Wernick M, McNally D, Kirk M, Sproull M, et al. Urine analysis and protein networking identify met as a marker of metastatic prostate cancer. Clin Cancer Res. 2009;15(13):4292–8.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu X, Humphrey PA. Overexpression and regulation of expression of scatter factor/hepatocyte growth factor in prostatic carcinoma. Urology. 2000;56(6):1071–4.

    Article  CAS  PubMed  Google Scholar 

  17. Knudsen BS, Edlund M. Prostate cancer and the met hepatocyte growth factor receptor. Adv Cancer Res. 2004;91:31–67.

    Article  CAS  PubMed  Google Scholar 

  18. Gupta A, Karakiewicz PI, Roehrborn CG, Lotan Y, Zlotta AR, Shariat SF. Predictive value of plasma hepatocyte growth factor/scatter factor levels in patients with clinically localized prostate cancer. Clin Cancer Res. 2008;14(22):7385–90.

    Article  CAS  PubMed  Google Scholar 

  19. Yasuda K, Nagakawa O, Akashi T, Fujiuchi Y, Koizumi K, Komiya A, et al. Serum active hepatocyte growth factor (AHGF) in benign prostatic disease and prostate cancer. Prostate. 2009;69(4):346–51.

    Article  CAS  PubMed  Google Scholar 

  20. Maeda A, Nakashiro K, Hara S, Sasaki T, Miwa Y, Tanji N, et al. Inactivation of AR activates HGF/c-Met system in human prostatic carcinoma cells. Biochem Biophys Res Commun. 2006;347(4):1158–65.

    Article  CAS  PubMed  Google Scholar 

  21. Verras M, Lee J, Xue H, Li TH, Wang Y, Sun Z. The androgen receptor negatively regulates the expression of c-Met: implications for a novel mechanism of prostate cancer progression. Cancer Res. 2007;67(3):967–75.

    Article  CAS  PubMed  Google Scholar 

  22. Pallares J, Rojo F, Iriarte J, Morote J, Armadans LI, de Torres I. Study of microvessel density and the expression of the angiogenic factors VEGF, bFGF and the receptors Flt-1 and FLK-1 in benign, premalignant and malignant prostate tissues. Histol Histopathol. 2006;21:857–65.

    CAS  PubMed  Google Scholar 

  23. Ferrer FA, Miller LJ, Andrawis RI, Kurtzman SH, Albertsen PC, Laudone VP, et al. Vascular endothelial growth factor (VEGF) expression in human prostate cancer: in situ and in vitro expression of VEGF by human prostate cancer cells. J Urol. 1997;157:2329–33.

    Article  CAS  PubMed  Google Scholar 

  24. Duque JLF, Loughlin KR, Adam RM, Kantoff PW, Zurakowski D, Freeman MR. Plasma levels of vascular endothelial growth factor are increased in patients with metastatic prostate cancer. Urology. 1999;54:523–7.

    Article  CAS  PubMed  Google Scholar 

  25. Bok RA, Halabi S, Fei DT, Rodriquez CR, Hayes DF, Vogelzang NJ, et al. Vascular endothelial growth factor and basic fibroblast growth factor urine levels as predictors of outcome in hormone-refractory prostate cancer patients: a cancer and leukemia group B study. Cancer Res. 2001;61:2533–6.

    CAS  PubMed  Google Scholar 

  26. George DJ, Halabi S, Shepard TF, Sanford B, Vogelzang NJ, Small EJ, et al. The prognostic significance of plasma interleukin-6 levels in patients with metastatic hormone- refractory prostate cancer results from cancer and leukemia group B 9480. Clin Cancer Res. 2005;11:1815–20.

    Article  CAS  PubMed  Google Scholar 

  27. Chen J, De S, Brainard J, Byzova TV. Metastatic properties of prostate cancer cells are controlled by VEGF. Cell Commun Adhes. 2004;11(1):1–11.

    Article  PubMed  Google Scholar 

  28. Ferrer FA, Miller LJ, Andrawis RI, Kurtzman SH, Albertsen PC, Laudone VP, et al. Angiogenesis and prostate cancer: in vivo and in vitro expression of angiogenesis factors by prostate cancer cells. Urology. 1998;51(1):161–7.

    Article  CAS  PubMed  Google Scholar 

  29. Yang AD, Camp ER, Fan F, Shen L, Gray MJ, Liu W, et al. Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells. Cancer Res. 2006;66(1):46–51.

    Article  CAS  PubMed  Google Scholar 

  30. Kitagawa Y, Dai J, Zhang J, Keller JM, Nor J, Yao Z, et al. Vascular endothelial growth factor contributes to prostate cancer-mediated osteoblastic activity. Cancer Res. 2005;65(23):10921–9.

    Article  CAS  PubMed  Google Scholar 

  31. Wu D, Zhau HE, Huang WC, Iqbal S, Habib FK, Sartor O, et al. cAMP-responsive element-binding protein regulates vascular endothelial growth factor expression: implication in human prostate cancer bone metastasis. Oncogene. 2007;26(35):5070–7.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang S, Zhau HE, Osunkoya AO, Iqbal S, Yang X, Fan S, et al. Vascular endothelial growth factor regulates myeloid cell leukemia-1 expression through neuropilin-1-dependent activation of c-MET signaling in human prostate cancer cells. Mol Cancer. 2010;9:9.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Davies G, Watkins G, Mason MD, Jiang WG. Targeting the HGF/SF receptor c-met using a hammerhead ribozyme transgene reduces in vitro invasion and migration in prostate cancer cells. Prostate. 2004;60(4):317–24.

    Article  CAS  PubMed  Google Scholar 

  34. Kim SJ, Johnson M, Koterba K, Herynk MH, Uehara H, Gallick GE. Reduced c-Met expression by an adenovirus expressing a c-Met ribozyme inhibits tumorigenic growth and lymph node metastases of PC3-LN4 prostate tumor cells in an orthotopic nude mouse model. Clin Cancer Res. 2003;9(14):5161–70.

    CAS  PubMed  Google Scholar 

  35. Dai Y, Siemann DW. BMS-777607, a small-molecule met kinase inhibitor, suppresses hepatocyte growth factor-stimulated prostate cancer metastatic phenotype in vitro. Mol Cancer Ther. 2010;9(6):1554–61.

    Article  CAS  PubMed  Google Scholar 

  36. Tu WH, Zhu C, Clark C, Christensen JG, Sun Z. Efficacy of c-Met inhibitor for advanced prostate cancer. BMC Cancer. 2010;10:556.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10:2298–308.

    Article  CAS  PubMed  Google Scholar 

  38. Schimmoller F, Zayzafoon M, Chung LWK, Zhau HE, Fagerlund KM, Aftab DT. Cabozantinib (XL184), a dual MET–VEGFR2 inhibitor, blocks osteoblastic and osteolytic progression of human prostate cancer xenografts in mouse bone. Mol Cancer Ther. 2011;10:233 (suppl; abstract).

    Article  Google Scholar 

  39. Yang L, You S, Kumar V, Zhang C, Cao Y. In vitro the behaviors of metastasis with suppression of VEGF in human bone metastatic LNCaP-derivative C4-2B prostate cancer cell line. J Exp Clin Cancer Res. 2012;31:40.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Makhov PB, Golovine K, Kutikov A, Teper E, Canter DJ, Simhan J, et al. Modulation of Akt/mTOR signaling overcomes sunitinib resistance in renal and prostate cancer cells. Mol Cancer Ther. 2012;11:1510–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Ryan CJ, Rosenthal M, Ng S, Alumkal J, Picus J, Gravis G, et al. Targeted MET inhibition in castration-resistant prostate cancer: a randomized phase II study and biomarker analysis with rilotumumab plus mitoxantrone and prednisone. Clin Cancer Res. 2013;19(1):215–24.

    Article  CAS  PubMed  Google Scholar 

  42. Hong DS, Rosen PJ, Lockhart AC, Fu S, Janku F, Kurzrock R, et al. First-in-human study of AMG 208, an oral MET inhibitor, in adult patients (pts) with advanced solid tumors. J Clin Oncol. 2013;31(suppl 6; abstract 41).

    Google Scholar 

  43. Ning YM, Gulley JL, Arlen PM, Woo S, Steinberg SM, Wright JJ, et al. Phase II trial of bevacizumab, thalidomide, docetaxel, and prednisone in patients with metastatic castration-resistant prostate cancer. J Clin Oncol. 2010;28(12):2070–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Picus J, Halabi S, Kelly WK, Vogelzang NJ, Whang YE, Kaplan EB, et al. A phase 2 study of estramustine, docetaxel, and bevacizumab in men with castrate-resistant prostate cancer: results from cancer and leukemia group B study 90006. Cancer. 2011;117(3):526–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Kelly WK, Halabi S, Carducci M, George D, Mahoney JF, Stadler WM, et al. Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. J Clin Oncol. 2012;30(13):1534–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Halabi S, Kelly KW, George DJ, Morris MJ, Kaplan EB, Small EJ. Comorbidities predict overall survival (OS) in men with metastatic castrate-resistant prostate cancer (CRPC). J Clin Oncol. 2011;29(Suppl.7; abstract 189).

    Google Scholar 

  47. Antonarakis ES, Carducci MA. Targeting angiogenesis for the treatment of prostate cancer. Expert Opin Ther Targets. 2012;16:365–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Michaelson MD, Regan MM, Oh WK, Kaufman DS, Olivier K, Michaelson SZ, et al. Phase II study of sunitinib in men with advanced prostate cancer. Ann Oncol. 2009;20:913–20.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Sonpavde G, Periman PO, Bernold D, Weckstein D, Fleming MT, Galsky MD, et al. Sunitinib malate for metastatic castration-resistant prostate cancer following docetaxel-based chemotherapy. Ann Oncol. 2010;21:319–24.

    Article  CAS  PubMed  Google Scholar 

  50. Saylor PJ, Mahmood U, Kunawudhi A, Smith MR, Palmer EL, Michaelson MD. Multitargeted tyrosine kinase inhibition produces discordant changes between 99mTc-MDP bone scans and other disease biomarkers: analysis of a phase II study of sunitinib for metastatic castration-resistant prostate cancer. J Nucl Med. 2012;53:1670–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Michaelson MD, Oudard S, Ou Y, Sengelov F, Saad F, Houede N, et al. Randomized, placebo-controlled, phase III trial of sunitinib in combination with prednisone (SU + P) versus prednisone (P) alone in men with progressive metastatic castration resistant prostate cancer (mCRPC). J Clin Oncol. 2011;29(suppl; abstr 4515).

    Google Scholar 

  52. Eigl BJ, Eliasziw M, North SA, Trudeau MG, Winquist E, Chi KN, et al. Results of a phase II study of sunitinib (SU) maintenance after response to docetaxel in metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2013;31(suppl 6; abstr 153).

    Google Scholar 

  53. Zurita AJ, George DJ, Shore ND, Liu G, Wilding G, Hutson TE, et al. Sunitinib in combination with docetaxel and prednisone in chemotherapy-naive patients with metastatic, castration-resistant prostate cancer: a phase 1/2 clinical trial. Ann Oncol. 2012;23(3):688–94.

    Article  CAS  PubMed  Google Scholar 

  54. Pili R, Haggman M, Stadler WM, Gingrich JR, Assikis VJ, Bjork A, et al. Phase II randomized double-blind, placebo-controlled study of tasquinimod in men With minimally symptomatic metastatic castrate-resistant prostate cancer. J Clin Oncol. 2011;29:4022–8.

    Article  CAS  PubMed  Google Scholar 

  55. Armstrong AJ, Stadler HM, Gingrich WM, Gingrich JR, Assikis VJ, Polikoff J, et al. Tasquinimod and survival in men with metastatic castration-resistant prostate cancer: results of long-term follow-up of a randomized phase II placebo-controlled trial. J. Clin. Oncol. 2012;30(suppl. abstract 4550).

    Google Scholar 

  56. Isambert N, Freyer G, Zanetta S, You B, Fumoleau P, Falandry C, et al. Phase I dose-escalation study of intravenous aflibercept in combination with docetaxel in patients with advanced solid tumors. Clin Cancer Res. 2012;18:1743–50.

    Article  CAS  PubMed  Google Scholar 

  57. Tannock I, Fizazi K, Ivanov S, Karlsson CT, Flechon A, Skoneczna IA, et al. Aflibercept versus placebo in combination with docetaxel/prednisone for first-line treatment of men with metastatic castration-resistant prostate cancer (mCRPC): Results from the multinational phase III trial (VENICE). J Clin Oncol. 2013;31(suppl 6; abstr 13).

    Google Scholar 

  58. Lu L, Payvandi F, Wu L, Zhang L-H, Hariri RJ, Man H-W, et al. The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. Microvasc Res. 2009;77:78–86.

    Article  CAS  PubMed  Google Scholar 

  59. Keizman D, Zahurak M, Sinibaldi V, Carducci M, Denmeade S, Drake C, et al. Lenalidomide in non-metastatic biochemically relapsed prostate cancer: results of a phase I/II double-blinded, randomized study. Clin Cancer Res. 2010;16:5269–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Petrylak DP, Fizazi K, Sternberg CN, Budnik N, Wit Rd, Wiechno PJ, et al. A phase 3 study to evaluate the efficacy and safety of docetaxel and prednisone (DP) with or without lenalidomide in patients with castrate-resistant prostate cancer (CRPC): the MAINSAIL trial. In: ESMO 2012 congress. 2012; abstract LBA24.

    Google Scholar 

  61. Adesunloye B, Huang X, Ning YM, Madan RA, Gulley JL, Beatson M, et al. Dual antiangiogenic therapy using lenalidomide and bevacizumab with docetaxel and prednisone in patients with metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2012;30(Suppl. abstract 4569).

    Google Scholar 

  62. Karzai FH, Madan RA, Apolo AB, Ning YM, Parnes HL, Arlen PM, et al. Use of supportive measures to improve outcome and decrease toxicity in docetaxel-based antiangiogenesis combinations. J Clin Oncol. 2013;31(suppl; abstract e16017).

    Google Scholar 

  63. Chi KN, Ellard SL, Hotte SJ, Czaykowski P, Moore M, Ruether JD, et al. A phase II study of sorafenib inpatients with chemo-naive castration-resistant prostate cancer. Ann Oncol. 2008;19:746–51.

    Article  CAS  PubMed  Google Scholar 

  64. Aragon-Ching JB, Jain L, Gulley JL, Arlen PM, Wright JJ, Steinberg SM, et al. Final analysis of a phase II trial using sorafenib for metastatic castration-resistant prostate cancer. BJU Int. 2009;103:1636–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Steinbild S, Mross K, Frost A, Morant R, Gillessen S, Dittrich C, et al. A clinical phase II study with sorafenib in patients with progressive hormone-refractory prostate cancer: a study of the CESAR Central European Society for Anticancer Drug Research-EWIV. Br J Cancer. 2007;97:1480–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Safarinejad MR. Safety and efficacy of sorafenib in patients with castrate resistant prostate cancer: a phase II study. Urol Oncol. 2010;28(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  67. Beardsley EK, Hotte SJ, North S, Ellard SL, Winquist E, Kollmannsberger C, et al. A phase II study of sorafenib in combination with bicalutamide in patients with chemotherapy-naive castration resistant prostate cancer. Invest New Drugs. 2012;30(4):1652–9.

    Article  CAS  PubMed  Google Scholar 

  68. Horti J, Widmark A, Stenzl A, Federico MH, Abratt RP, Sanders N, et al. A randomized, double-blind, placebo-controlled phase II study of vandetanib plus docetaxel/prednisolone in patients with hormone-refractory prostate cancer. Cancer Biother Radiopharm. 2009;24(2):175–80.

    Article  CAS  PubMed  Google Scholar 

  69. Dahut WL, Madan RA, Karakunnel JJ, Adelberg D, Gulley JL, Turkbey IB, et al. Phase II clinical trial of cediranib in patients with metastatic castration-resistant prostate cancer. BJU Int. 2013;111(8):1269–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Heath EI, Mannuel HD, Liu G, Lara P, Monk JP, Flaig TW, et al. Randomized phase II trial of docetaxel (Doc) and prednisone (Pred) with or without AZD2171 (cediranib), in chemotherapy-naive, metastatic castrate-resistant prostate cancer (mCRPC) (NCI 7451). J Clin Oncol. 2013;31(suppl 6; abstract 38).

    Google Scholar 

  71. Bousquet G, Alexandre J, Le Tourneau C, Goldwasser F, Faivre S, de Mont-Serrat H, et al. Phase I study of BIBF 1120 with docetaxel and prednisone in metastatic chemo-naive hormone-refractory prostate cancer patients. Br J Cancer. 2011;105(11):1640–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Hussain M, Rathkopf DE, Liu G, Armstrong AJ, Kelly WK, Ferrari AC, et al. A phase II randomized study of cixutumumab (IMC-A12: CIX) or ramucirumab (IMC-1121B: RAM) plus mitoxantrone (M) and prednisone (P) in patients (pts) with metastatic castrate-resistant prostate cancer (mCRPC) following disease progression (PD) on docetaxel (DCT) therapy. J Clin Oncol. 2012;30(suppl 5; abstr 97).

    Google Scholar 

  73. Smith DC, Smith MR, Sweeney C, Elfiky AA, Logothetis C, Corn PG, et al. Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial. J Clin Oncol. 2013;31(4):412–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Lee RJ, Saylor PJ, Michaelson MD, Rothenberg SM, Smas ME, Miyamoto DT, et al. A dose-ranging study of cabozantinib in men with castration-resistant prostate cancer and bone metastases. Clin Cancer Res. 2013;19(11):3088–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Corn PG, Varkaris A, Tapia EMLN, Araujo JC, Aparicio A, Tu S-M, et al. Modulation of soluble c-Met, bone turnover markers, angiogenic factors, and c-Met in men with mCRPC treated with cabozantinib. J Clin Oncol. 2013;31(suppl 6; abstract 58).

    Google Scholar 

  76. Grivas P, Daignault S, Cooney KA, Jacobson J, Yablon C, Ross BD, et al. A phase II trial of cabozantinib (Cabo) in patients (pts) with castrate-resistant prostate cancer (CRPC) metastatic to bone (NCT01428219). J Clin Oncol. 2013;31(suppl; abstract TPS5094).

    Google Scholar 

  77. Karzai FH, Madan RA, Apolo AB, Parnes HL, Wright JJ, Trepel JB, et al. A phase I study of cabozantinib (Cabo) plus docetaxel (D) and prednisone (P) in metastatic castrate resistant prostate cancer (mCRPC). J Clin Oncol. 2013;31(suppl; abstract TPS5095).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Smith MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grivas, P.D., Smith, D.C. (2014). Targeting C-Met/VEGF in Castration Resistant Prostate Cancer. In: Saad, F., Eisenberger, M. (eds) Management of Castration Resistant Prostate Cancer. Current Clinical Urology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1176-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1176-9_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1175-2

  • Online ISBN: 978-1-4939-1176-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics