Skip to main content

Angiogenesis Inhibition in Castration-Resistant Prostate Cancer

  • Chapter
  • First Online:
Management of Castration Resistant Prostate Cancer

Part of the book series: Current Clinical Urology ((CCU))

  • 857 Accesses

Abstract

Knowledge of the important role of neovascularization in tumor growth and metastasis has made angiogenesis a therapeutic target of great interest within oncology. The pathophysiology of neovascularization has been well described in prostate cancer as well as other tumors. Identification and characterization of numerous biochemical pathways contributing to angiogenesis in cancer have allowed for the development of anti-angiogenic drugs. The application of anti-angiogenic agents in prostate cancer has led to some success, but further work is needed to determine the optimal population for treatment. Future growth of anti-angiogenic therapy in prostate cancer will be derived from an increasing understanding of the behavior and interactions of microvasculature, paracrine signals, adhesions molecules, and cytokines in the localized compartment known as the “tumor microenvironment.” Additionally, as individual tumors are driven by different mutations and signaling pathways, mutational analysis may allow for greater benefit by targeting anti-angiogenic therapy towards those patients whose tumors are most likely to demonstrate a clinical benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6. doi:10.1056/NEJM197111182852108.

    CAS  PubMed  Google Scholar 

  2. Boehm-Viswanathan T. Is angiogenesis inhibition the Holy Grail of cancer therapy? Curr Opin Oncol. 2000;12(1):89–94.

    CAS  PubMed  Google Scholar 

  3. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 1989;161(2):851–8.

    CAS  PubMed  Google Scholar 

  4. Ribatti D. The crucial role of vascular permeability factor/vascular endothelial growth factor in angiogenesis: a historical review. Br J Haematol. 2005;128(3):303–9. doi:10.1111/j.1365-2141.2004.05291.x.

    CAS  PubMed  Google Scholar 

  5. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353–64.

    CAS  PubMed  Google Scholar 

  6. Ferrara N, Chen H, Davis-Smyth T, et al. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat Med. 1998;4(3):336–40.

    CAS  PubMed  Google Scholar 

  7. Nissen NN, Polverini PJ, Koch AE, Volin MV, Gamelli RL, DiPietro LA. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol. 1998;152(6):1445–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Srivastava A, Laidler P, Hughes LE, Woodcock J, Shedden EJ. Neovascularization in human cutaneous melanoma: a quantitative morphological and Doppler ultrasound study. Eur J Cancer Clin Oncol. 1986;22(10):1205–9.

    CAS  PubMed  Google Scholar 

  9. Srivastava A, Laidler P, Davies RP, Horgan K, Hughes LE. The prognostic significance of tumor vascularity in intermediate-thickness (0.76–4.0 mm thick) skin melanoma. A quantitative histologic study. Am J Pathol. 1988;133(2):419–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med. 1991;324(1):1–8. doi:10.1056/NEJM199101033240101.

    CAS  PubMed  Google Scholar 

  11. Macchiarini P, Fontanini G, Hardin MJ, Squartini F, Angeletti CA. Relation of neovascularisation to metastasis of non-small-cell lung cancer. Lancet. 1992;340(8812):145–6.

    CAS  PubMed  Google Scholar 

  12. Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol. 1993;143(2):401–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Jaeger TM, Weidner N, Chew K, et al. Tumor angiogenesis correlates with lymph node metastases in invasive bladder cancer. J Urol. 1995;154(1):69–71.

    CAS  PubMed  Google Scholar 

  14. Dvorak HF, Sioussat TM, Brown LF, et al. Distribution of vascular permeability factor (vascular endothelial growth factor) in tumors: concentration in tumor blood vessels. J Exp Med. 1991;174(5):1275–8.

    CAS  PubMed  Google Scholar 

  15. Kondo S, Asano M, Suzuki H. Significance of vascular endothelial growth factor/vascular permeability factor for solid tumor growth, and its inhibition by the antibody. Biochem Biophys Res Commun. 1993;194(3):1234–41. doi:10.1006/bbrc.1993.1955.

    CAS  PubMed  Google Scholar 

  16. Ferrara N, Winer J, Burton T, et al. Expression of vascular endothelial growth factor does not promote transformation but confers a growth advantage in vivo to Chinese hamster ovary cells. J Clin Invest. 1993;91(1):160–70. doi:10.1172/JCI116166.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Kondo S, Asano M, Matsuo K, Ohmori I, Suzuki H. Vascular endothelial growth factor/vascular permeability factor is detectable in the sera of tumor-bearing mice and cancer patients. Biochim Biophys Acta. 1994;1221(2):211–4.

    CAS  PubMed  Google Scholar 

  18. Folkman J, Watson K, Ingber D, Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature. 1989;339(6219):58–61. doi:10.1038/339058a0.

    CAS  PubMed  Google Scholar 

  19. Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993;362(6423):841–4. doi:10.1038/362841a0.

    CAS  PubMed  Google Scholar 

  20. Willett CG, Boucher Y, di Tomaso E, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 2004;10(2):145–7. doi:10.1038/nm988.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Wang Y, Fei D, Vanderlaan M, Song A. Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis. 2004;7(4):335–45. doi:10.1007/s10456-004-8272-2.

    CAS  PubMed  Google Scholar 

  22. Margolin K, Gordon MS, Holmgren E, et al. Phase Ib trial of intravenous recombinant humanized monoclonal antibody to vascular endothelial growth factor in combination with chemotherapy in patients with advanced cancer: pharmacologic and long-term safety data. J Clin Oncol. 2001;19(3):851–6.

    CAS  PubMed  Google Scholar 

  23. USFDA. Drugs@FDA: FDA Approved Drug Products. Available at: http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.DrugDetails. Accessed 30 June 2013.

  24. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335–42. doi:10.1056/NEJMoa032691.

    CAS  PubMed  Google Scholar 

  25. Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355(24):2542–50. doi:10.1056/NEJMoa061884.

    CAS  PubMed  Google Scholar 

  26. Robert NJ, Diéras V, Glaspy J, et al. RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol. 2011;29(10):1252–60. doi:10.1200/JCO.2010.28.0982.

    CAS  PubMed  Google Scholar 

  27. Rini BI, Halabi S, Rosenberg JE, et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J Clin Oncol. 2010;28(13):2137–43. doi:10.1200/JCO.2009.26.5561.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Reck M, von Pawel J, Zatloukal P, et al. Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial (AVAiL). Ann Oncol. 2010;21(9):1804–9. doi:10.1093/annonc/mdq020.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Young RJ, Reed MWR. Anti-angiogenic therapy: concept to clinic. Microcirculation. 2012;19(2):115–25. doi:10.1111/j.1549-8719.2011.00147.x.

    CAS  PubMed  Google Scholar 

  30. Segler A, Tsimberidou A-M. Lenalidomide in solid tumors. Cancer Chemother Pharmacol. 2012;69(6):1393–406. doi:10.1007/s00280-012-1874-2.

    CAS  PubMed  Google Scholar 

  31. Lin J, Kelly WK. Targeting angiogenesis as a promising modality for the treatment of prostate cancer. Urol Clin North Am. 2012;39(4):547–60. doi:10.1016/j.ucl.2012.07.010.

    PubMed  Google Scholar 

  32. Movsas B, Chapman JD, Horwitz EM, et al. Hypoxic regions exist in human prostate carcinoma. Urology. 1999;53(1):11–8.

    CAS  PubMed  Google Scholar 

  33. Siegal JA, Yu E, Brawer MK. Topography of neovascularity in human prostate carcinoma. Cancer. 1995;75(10):2545–51.

    CAS  PubMed  Google Scholar 

  34. Silberman MA, Partin AW, Veltri RW, Epstein JI. Tumor angiogenesis correlates with progression after radical prostatectomy but not with pathologic stage in Gleason sum 5 to 7 adenocarcinoma of the prostate. Cancer. 1997;79(4):772–9.

    CAS  PubMed  Google Scholar 

  35. Strohmeyer D, Rössing C, Strauss F, Bauerfeind A, Kaufmann O, Loening S. Tumor angiogenesis is associated with progression after radical prostatectomy in pT2/pT3 prostate cancer. Prostate. 2000;42(1):26–33.

    CAS  PubMed  Google Scholar 

  36. Halvorsen OJ, Haukaas S, Høisaeter PA, Akslen LA. Independent prognostic importance of microvessel density in clinically localized prostate cancer. Anticancer Res. 2000;20(5C):3791–9.

    CAS  PubMed  Google Scholar 

  37. Borre M, Offersen BV, Nerstrom B, Overgaard J. Microvessel density predicts survival in prostate cancer patients subjected to watchful waiting. Br J Cancer. 1998;78(7):940–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Mucci LA, Powolny A, Giovannucci E, et al. Prospective study of prostate tumor angiogenesis and cancer-specific mortality in the health professionals follow-up study. J Clin Oncol. 2009;27(33):5627–33. doi:10.1200/JCO.2008.20.8876.

    PubMed Central  PubMed  Google Scholar 

  39. Grothey A, Galanis E. Targeting angiogenesis: progress with anti-VEGF treatment with large molecules. Nat Rev Clin Oncol. 2009;6(9):507–18. doi:10.1038/nrclinonc.2009.110.

    CAS  PubMed  Google Scholar 

  40. Kukk E, Lymboussaki A, Taira S, et al. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development. 1996;122(12):3829–37.

    CAS  PubMed  Google Scholar 

  41. Ferrara N, Gerber H-P, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669–76. doi:10.1038/nm0603-669.

    CAS  PubMed  Google Scholar 

  42. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399(6736):601–5. doi:10.1038/21224.

    CAS  PubMed  Google Scholar 

  43. Le Boeuf F, Houle F, Huot J. Regulation of vascular endothelial growth factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities. J Biol Chem. 2004;279(37):39175–85. doi:10.1074/jbc.M405493200.

    PubMed  Google Scholar 

  44. Cook KM, Figg WD. Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin. 2010;60(4):222–43. doi:10.3322/caac.20075.

    PubMed Central  PubMed  Google Scholar 

  45. Huang H, Bhat A, Woodnutt G, Lappe R. Targeting the ANGPT-TIE2 pathway in malignancy. Nat Rev Cancer. 2010;10(8):575–85. doi:10.1038/nrc2894.

    CAS  PubMed  Google Scholar 

  46. Augustin HG, Koh GY, Thurston G, Alitalo K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol. 2009;10(3):165–77. doi:10.1038/nrm2639.

    CAS  PubMed  Google Scholar 

  47. Peters KG, Kontos CD, Lin PC, et al. Functional significance of Tie2 signaling in the adult vasculature. Recent Prog Horm Res. 2004;59:51–71.

    CAS  PubMed  Google Scholar 

  48. Cao Y, Cao R, Hedlund E-M. R Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways. J Mol Med (Berl). 2008;86(7):785–9. doi:10.1007/s00109-008-0337-z.

    CAS  Google Scholar 

  49. Risau W, Drexler H, Mironov V, et al. Platelet-derived growth factor is angiogenic in vivo. Growth Factors. 1992;7(4):261–6.

    CAS  PubMed  Google Scholar 

  50. Oikawa T, Onozawa C, Sakaguchi M, Morita I, Murota S. Three isoforms of platelet-derived growth factors all have the capability to induce angiogenesis in vivo. Biol Pharm Bull. 1994;17(12):1686–8.

    CAS  PubMed  Google Scholar 

  51. Li L, Asteriou T, Bernert B, Heldin C-H, Heldin P. Growth factor regulation of hyaluronan synthesis and degradation in human dermal fibroblasts: importance of hyaluronan for the mitogenic response of PDGF-BB. Biochem J. 2007;404(2):327–36. doi:10.1042/BJ20061757.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Wang Z, Kong D, Li Y, Sarkar FH. PDGF-D signaling: a novel target in cancer therapy. Curr Drug Targets. 2009;10(1):38–41.

    PubMed  Google Scholar 

  53. Li X, Kumar A, Zhang F, et al. VEGF-independent angiogenic pathways induced by PDGF-C. Oncotarget. 2010;1(4):309–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Auguste P, Javerzat S, Bikfalvi A. Regulation of vascular development by fibroblast growth factors. Cell Tissue Res. 2003;314(1):157–66. doi:10.1007/s00441-003-0750-0.

    CAS  PubMed  Google Scholar 

  55. Korc M, Friesel RE. The role of fibroblast growth factors in tumor growth. Curr Cancer Drug Targets. 2009;9(5):639–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Carstens RP, Eaton JV, Krigman HR, Walther PJ, Garcia-Blanco MA. Alternative splicing of fibroblast growth factor receptor 2 (FGF-R2) in human prostate cancer. Oncogene. 1997;15(25):3059–65. doi:10.1038/sj.onc.1201498.

    CAS  PubMed  Google Scholar 

  57. Bierie B, Moses HL. TGF-beta and cancer. Cytokine Growth Factor Rev. 2006;17(1–2):29–40. doi:10.1016/j.cytogfr.2005.09.006.

    CAS  PubMed  Google Scholar 

  58. Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem. 2000;275(47):36803–10. doi:10.1074/jbc.M005912200.

    CAS  PubMed  Google Scholar 

  59. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425(6958):577–84. doi:10.1038/nature02006.

    CAS  PubMed  Google Scholar 

  60. Gherardi E, Birchmeier W, Birchmeier C, Vande WG. Targeting MET in cancer: rationale and progress. Nat Rev Cancer. 2012;12(2):89–103. doi:10.1038/nrc3205.

    CAS  PubMed  Google Scholar 

  61. Bussolino F, Di Renzo MF, Ziche M, et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol. 1992;119(3):629–41.

    CAS  PubMed  Google Scholar 

  62. Grant DS, Kleinman HK, Goldberg ID, et al. Scatter factor induces blood vessel formation in vivo. Proc Natl Acad Sci U S A. 1993;90(5):1937–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Zhang Y-W, Su Y, Volpert OV, Vande Woude GF. Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc Natl Acad Sci U S A. 2003;100(22):12718–23. doi:10.1073/pnas.2135113100.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Nauseef JT, Henry MD. Epithelial-to-mesenchymal transition in prostate cancer: paradigm or puzzle? Nat Rev Urol. 2011;8(8):428–39. doi:10.1038/nrurol.2011.85.

    PubMed  Google Scholar 

  65. Ogunwobi OO, Liu C. Hepatocyte growth factor upregulation promotes carcinogenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via Akt and COX-2 pathways. Clin Exp Metastasis. 2011;28(8):721–31. doi:10.1007/s10585-011-9404-x.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Nagai T, Arao T, Furuta K, et al. Sorafenib inhibits the hepatocyte growth factor-mediated epithelial mesenchymal transition in hepatocellular carcinoma. Mol Cancer Ther. 2011;10(1):169–77. doi:10.1158/1535-7163.MCT-10-0544.

    CAS  PubMed  Google Scholar 

  67. Jackson MW, Bentel JM, Tilley WD. Vascular endothelial growth factor (VEGF) expression in prostate cancer and benign prostatic hyperplasia. J Urol. 1997;157(6):2323–8.

    CAS  PubMed  Google Scholar 

  68. Ferrer FA, Miller LJ, Andrawis RI, et al. Vascular endothelial growth factor (VEGF) expression in human prostate cancer: in situ and in vitro expression of VEGF by human prostate cancer cells. J Urol. 1997;157(6):2329–33.

    CAS  PubMed  Google Scholar 

  69. Ferrer FA, Miller LJ, Andrawis RI, et al. Angiogenesis and prostate cancer: in vivo and in vitro expression of angiogenesis factors by prostate cancer cells. Urology. 1998;51(1):161–7.

    CAS  PubMed  Google Scholar 

  70. Ferrer FA, Miller LJ, Lindquist R, et al. Expression of vascular endothelial growth factor receptors in human prostate cancer. Urology. 1999;54(3):567–72.

    CAS  PubMed  Google Scholar 

  71. Strohmeyer D, Rössing C, Bauerfeind A, et al. Vascular endothelial growth factor and its correlation with angiogenesis and p53 expression in prostate cancer. Prostate. 2000;45(3):216–24.

    CAS  PubMed  Google Scholar 

  72. Pallares J, Rojo F, Iriarte J, Morote J, Armadans LI, de Torres I. Study of microvessel density and the expression of the angiogenic factors VEGF, bFGF and the receptors Flt-1 and FLK-1 in benign, premalignant and malignant prostate tissues. Histol Histopathol. 2006;21(8):857–65.

    CAS  PubMed  Google Scholar 

  73. Bok RA, Halabi S, Fei DT, et al. Vascular endothelial growth factor and basic fibroblast growth factor urine levels as predictors of outcome in hormone-refractory prostate cancer patients: a cancer and leukemia group B study. Cancer Res. 2001;61(6):2533–6.

    CAS  PubMed  Google Scholar 

  74. Mao K, Badoual C, Camparo P, et al. The prognostic value of vascular endothelial growth factor (VEGF)-A and its receptor in clinically localized prostate cancer: a prospective evaluation in 100 patients undergoing radical prostatectomy. Can J Urol. 2008;15(5):4257–62.

    PubMed  Google Scholar 

  75. George DJ, Halabi S, Shepard TF, et al. Prognostic significance of plasma vascular endothelial growth factor levels in patients with hormone-refractory prostate cancer treated on Cancer and Leukemia Group B 9480. Clin Cancer Res. 2001;7(7):1932–6.

    CAS  PubMed  Google Scholar 

  76. Doll JA, Reiher FK, Crawford SE, Pins MR, Campbell SC, Bouck NP. Thrombospondin-1, vascular endothelial growth factor and fibroblast growth factor-2 are key functional regulators of angiogenesis in the prostate. Prostate. 2001;49(4):293–305.

    CAS  PubMed  Google Scholar 

  77. Huss WJ, Barrios RJ, Foster BA, Greenberg NM. Differential expression of specific FGF ligand and receptor isoforms during angiogenesis associated with prostate cancer progression. Prostate. 2003;54(1):8–16. doi:10.1002/pros.10163.

    PubMed  Google Scholar 

  78. Wikström P, Stattin P, Franck-Lissbrant I, Damber JE, Bergh A. Transforming growth factor beta1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate. 1998;37(1):19–29.

    PubMed  Google Scholar 

  79. Morrissey C, Dowell A, Koreckij TD, et al. Inhibition of angiopoietin-2 in LuCaP 23.1 prostate cancer tumors decreases tumor growth and viability. Prostate. 2010;70(16):1799–808.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Sieveking DP, Lim P, Chow RWY, et al. A sex-specific role for androgens in angiogenesis. J Exp Med. 2010;207(2):345–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Gerber H-P, Ferrara N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res. 2005;65(3):671–80.

    CAS  PubMed  Google Scholar 

  82. Heldin C-H, Rubin K, Pietras K, Ostman A. High interstitial fluid pressure – an obstacle in cancer therapy. Nat Rev Cancer. 2004;4(10):806–13. doi:10.1038/nrc1456.

    CAS  PubMed  Google Scholar 

  83. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307(5706):58–62. doi:10.1126/science.1104819.

    CAS  PubMed  Google Scholar 

  84. Ryan CJ, Lin AM, Small EJ. Angiogenesis inhibition plus chemotherapy for metastatic hormone refractory prostate cancer: history and rationale. Urol Oncol. 2006;24(3):250–3. doi:10.1016/j.urolonc.2005.11.021.

    CAS  PubMed  Google Scholar 

  85. Gasparini G, Longo R, Fanelli M, Teicher BA. Combination of antiangiogenic therapy with other anticancer therapies: results, challenges, and open questions. J Clin Oncol. 2005;23(6):1295–311. doi:10.1200/JCO.2005.10.022.

    CAS  PubMed  Google Scholar 

  86. Cheng L, Zhang S, Sweeney CJ, Kao C, Gardner TA, Eble JN. Androgen withdrawal inhibits tumor growth and is associated with decrease in angiogenesis and VEGF expression in androgen-independent CWR22Rv1 human prostate cancer model. Anticancer Res. 2004;24(4):2135–40.

    CAS  PubMed  Google Scholar 

  87. Stewart RJ, Panigrahy D, Flynn E, Folkman J. Vascular endothelial growth factor expression and tumor angiogenesis are regulated by androgens in hormone responsive human prostate carcinoma: evidence for androgen dependent destabilization of vascular endothelial growth factor transcripts. J Urol. 2001;165(2):688–93. doi:10.1097/00005392-200102000-00095.

    CAS  PubMed  Google Scholar 

  88. Boddy JL, Fox SB, Han C, et al. The androgen receptor is significantly associated with vascular endothelial growth factor and hypoxia sensing via hypoxia-inducible factors HIF-1a, HIF-2a, and the prolyl hydroxylases in human prostate cancer. Clin Cancer Res. 2005;11(21):7658–63. doi:10.1158/1078-0432.CCR-05-0460.

    CAS  PubMed  Google Scholar 

  89. Yang L, You S, Kumar V, Zhang C, Cao Y. In vitro the behaviors of metastasis with suppression of VEGF in human bone metastatic LNCaP-derivative C4-2B prostate cancer cell line. J Exp Clin Cancer Res. 2012;31:40. doi:10.1186/1756-9966-31-40.

    PubMed Central  PubMed  Google Scholar 

  90. Reese D, Fratesi P, Corry M, Novotny W, Holmgren E, Small E. A phase II trial of humanized anti-vascular endothelial growth factor antibody for the treatment of androgen-independent prostate cancer. Prostate J. 2001;3(2):65–70.

    Google Scholar 

  91. Di Lorenzo G, Figg WD, Fossa SD, et al. Combination of bevacizumab and docetaxel in docetaxel-pretreated hormone-refractory prostate cancer: a phase 2 study. Eur Urol. 2008;54(5):1089–94. doi:10.1016/j.eururo.2008.01.082.

    PubMed  Google Scholar 

  92. Picus J, Halabi S, Kelly WK, et al. A phase 2 study of estramustine, docetaxel, and bevacizumab in men with castrate-resistant prostate cancer: results from Cancer and Leukemia Group B Study 90006. Cancer. 2011;117(3):526–33. doi:10.1002/cncr.25421.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Ross RW, Galsky MD, Febbo P, et al. Phase 2 study of neoadjuvant docetaxel plus bevacizumab in patients with high-risk localized prostate cancer: a Prostate Cancer Clinical Trials Consortium trial. Cancer. 2012;118(19):4777–84. doi:10.1002/cncr.27416.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Rini BI, Weinberg V, Fong L, Conry S, Hershberg RM, Small EJ. Combination immunotherapy with prostatic acid phosphatase pulsed antigen-presenting cells (provenge) plus bevacizumab in patients with serologic progression of prostate cancer after definitive local therapy. Cancer. 2006;107(1):67–74. doi:10.1002/cncr.21956.

    CAS  PubMed  Google Scholar 

  95. Kelly WK, Halabi S, Carducci M, et al. Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. J Clin Oncol. 2012;30(13):1534–40. doi:10.1200/JCO.2011.39.4767.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Halabi S, Kelly W, George D, Kaplan EB, Small EJ. Comorbidities predict overall survival (OS) in men with metastatic castrate-resistant prostate cancer (CRPC). J Clin Oncol. (suppl 7):abstr 189

    Google Scholar 

  97. Antonarakis ES, Carducci MA. Targeting angiogenesis for the treatment of prostate cancer. Expert Opin Ther Targets. 2012;16(4):365–76. doi:10.1517/14728222.2012.668887.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Ning Y-M, Gulley JL, Arlen PM, et al. Phase II trial of bevacizumab, thalidomide, docetaxel, and prednisone in patients with metastatic castration-resistant prostate cancer. J Clin Oncol. 2010;28(12):2070–6. doi:10.1200/JCO.2009.25.4524.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Isambert N, Freyer G, Zanetta S, et al. Phase I dose-escalation study of intravenous aflibercept in combination with docetaxel in patients with advanced solid tumors. Clin Cancer Res. 2012;18(6):1743–50. doi:10.1158/1078-0432.CCR-11-1918.

    CAS  PubMed  Google Scholar 

  100. Tannock IF, Fizazi K, Ivanov S, et al. Aflibercept versus placebo in combination with docetaxel and prednisone for treatment of men with metastatic castration-resistant prostate cancer (VENICE): a phase 3, double-blind randomised trial. Lancet Oncol. 2013;14(8):760–8. doi:10.1016/S1470-2045(13)70184-0.

    CAS  PubMed  Google Scholar 

  101. D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A. 1994;91(9):4082–5.

    PubMed Central  PubMed  Google Scholar 

  102. Verheul HM, Panigrahy D, Yuan J, D’Amato RJ. Combination oral antiangiogenic therapy with thalidomide and sulindac inhibits tumour growth in rabbits. Br J Cancer. 1999;79(1):114–8. doi:10.1038/sj.bjc.6690020.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Figg WD, Kruger EA, Price DK, Kim S, Dahut WD. Inhibition of angiogenesis: treatment options for patients with metastatic prostate cancer. Invest New Drugs. 2002;20(2):183–94.

    CAS  PubMed  Google Scholar 

  104. Figg WD, Dahut W, Duray P, et al. A randomized phase II trial of thalidomide, an angiogenesis inhibitor, in patients with androgen-independent prostate cancer. Clin Cancer Res. 2001;7(7):1888–93.

    CAS  PubMed  Google Scholar 

  105. Dahut WL, Gulley JL, Arlen PM, et al. Randomized phase II trial of docetaxel plus thalidomide in androgen-independent prostate cancer. J Clin Oncol. 2004;22(13):2532–9. doi:10.1200/JCO.2004.05.074.

    CAS  PubMed  Google Scholar 

  106. Figg WD, Li H, Sissung T, et al. Pre-clinical and clinical evaluation of estramustine, docetaxel and thalidomide combination in androgen-independent prostate cancer. BJU Int. 2007;99(5):1047–55. doi:10.1111/j.1464-410X.2007.06763.x.

    CAS  PubMed  Google Scholar 

  107. Figg WD, Hussain MH, Gulley JL, et al. A double-blind randomized crossover study of oral thalidomide versus placebo for androgen dependent prostate cancer treated with intermittent androgen ablation. J Urol. 2009;181(3):1104–13. doi:10.1016/j.juro.2008.11.026. discussion 1113.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Keizman D, Zahurak M, Sinibaldi V, et al. Lenalidomide in nonmetastatic biochemically relapsed prostate cancer: results of a phase I/II double-blinded, randomized study. Clin Cancer Res. 2010;16(21):5269–76. doi:10.1158/1078-0432.CCR-10-1928.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Tohnya T, Gulley JL, Arlen PM, et al. Phase I study of lenalidomide, a novel thalidomide analog, in patients with refractory metastatic cancer. J Clin Oncol. 2006;24(18S):13038.

    Google Scholar 

  110. Adesunloye B, Huang X, Ning Y, et al. Phase II trial of bevacizumab and lenalidomide with docetaxel and prednisone in patients with metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2012;30(5(S)):abstract 207.

    Google Scholar 

  111. Garcia JA, Elson P, Tyler A, Triozzi P, Dreicer R. Sargramostim (GM-CSF) and lenalidomide in castration-resistant prostate cancer (CRPC): results from a phase I–II clinical trial(). Urol Oncol. 2014;32:33.e11–7. doi:10.1016/j.urolonc.2012.12.004.

    CAS  Google Scholar 

  112. Petrylak DP, Fizazi K, Sternberg CN, et al. A phase 3 study to evaluate the efficacy and safety of Docetaxel and Prednisone (DP) with or without Lenalidomide (LEN) in patients with Castrate-Resistant Prostate Cancer (CRPC): the MAINSAIL trial. In: Vol Abstract LBA24. Vienna, Austria; 2012.

    Google Scholar 

  113. Dror Michaelson M, Regan MM, Oh WK, et al. Phase II study of sunitinib in men with advanced prostate cancer. Ann Oncol. 2009;20(5):913–20. doi:10.1093/annonc/mdp111.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Sonpavde G, Periman PO, Bernold D, et al. Sunitinib malate for metastatic castration-resistant prostate cancer following docetaxel-based chemotherapy. Ann Oncol. 2010;21(2):319–24. doi:10.1093/annonc/mdp323.

    CAS  PubMed  Google Scholar 

  115. Zurita AJ, George DJ, Shore ND, et al. Sunitinib in combination with docetaxel and prednisone in chemotherapy-naive patients with metastatic, castration-resistant prostate cancer: a phase 1/2 clinical trial. Ann Oncol. 2012;23(3):688–94. doi:10.1093/annonc/mdr349.

    CAS  PubMed  Google Scholar 

  116. Ou Y, Michaelson MD, Sengelov L, et al. Randomized, placebo-controlled, phase III trial of sunitinib in combination with prednisone (SU + P) versus prednisone (P) alone in men with progressive metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2011;29(15(S)):abstract 4515.

    Google Scholar 

  117. Aragon-Ching JB, Dahut WL. The role of angiogenesis inhibitors in prostate cancer. Cancer J. 2008;14(1):20–5. doi:10.1097/PPO.0b013e318161c014.

    CAS  PubMed  Google Scholar 

  118. Steinbild S, Mross K, Frost A, et al. A clinical phase II study with sorafenib in patients with progressive hormone-refractory prostate cancer: a study of the CESAR Central European Society for Anticancer Drug Research-EWIV. Br J Cancer. 2007;97(11):1480–5. doi:10.1038/sj.bjc.6604064.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Dahut WL, Scripture C, Posadas E, et al. A phase II clinical trial of sorafenib in androgen-independent prostate cancer. Clin Cancer Res. 2008;14(1):209–14. doi:10.1158/1078-0432.CCR-07-1355.

    CAS  PubMed  Google Scholar 

  120. Aragon-Ching JB, Jain L, Gulley JL, et al. Final analysis of a phase II trial using sorafenib for metastatic castration-resistant prostate cancer. BJU Int. 2009;103(12):1636–40. doi:10.1111/j.1464-410X.2008.08327.x.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Chi KN, Ellard SL, Hotte SJ, et al. A phase II study of sorafenib in patients with chemo-naive castration-resistant prostate cancer. Ann Oncol. 2008;19(4):746–51. doi:10.1093/annonc/mdm554.

    CAS  PubMed  Google Scholar 

  122. Beardsley EK, Hotte SJ, North S, et al. A phase II study of sorafenib in combination with bicalutamide in patients with chemotherapy-naive castration resistant prostate cancer. Invest New Drugs. 2012;30(4):1652–9. doi:10.1007/s10637-011-9722-5.

    CAS  PubMed  Google Scholar 

  123. Smith DC, Smith MR, Sweeney C, et al. Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial. J Clin Oncol. 2013;31(4):412–9. doi:10.1200/JCO.2012.45.0494.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Sherman SI. Targeted therapies for thyroid tumors. Mod Pathol. 2011;24 Suppl 2:S44–52. doi:10.1038/modpathol.2010.165.

    CAS  PubMed  Google Scholar 

  125. Herbst RS, Sun Y, Eberhardt WEE, et al. Vandetanib plus docetaxel versus docetaxel as second-line treatment for patients with advanced non-small-cell lung cancer (ZODIAC): a double-blind, randomised, phase 3 trial. Lancet Oncol. 2010;11(7):619–26. doi:10.1016/S1470-2045(10)70132-7.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Pick AM, Nystrom KK. Pazopanib for the treatment of metastatic renal cell carcinoma. Clin Ther. 2012;34(3):511–20. doi:10.1016/j.clinthera.2012.01.014.

    CAS  PubMed  Google Scholar 

  127. Sternberg CN, Davis ID, Mardiak J, et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol. 2010;28(6):1061–8. doi:10.1200/JCO.2009.23.9764.

    CAS  PubMed  Google Scholar 

  128. Ward JE, Karrison T, Chatta G, et al. A randomized, phase II study of pazopanib in castrate-sensitive prostate cancer: a University of Chicago Phase II Consortium/Department of Defense Prostate Cancer Clinical Trials Consortium study. Prostate Cancer Prostatic Dis. 2012;15(1):87–92. doi:10.1038/pcan.2011.49.

    CAS  PubMed  Google Scholar 

  129. Rogosin S, Sandler AB. Beyond bevacizumab: antiangiogenic agents. Clin Lung Cancer. 2012;13(5):326–33. doi:10.1016/j.cllc.2011.12.001.

    CAS  PubMed  Google Scholar 

  130. Ryan CJ, Stadler WM, Roth B, et al. Phase I dose escalation and pharmacokinetic study of AZD2171, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinase, in patients with hormone refractory prostate cancer (HRPC). Invest New Drugs. 2007;25(5):445–51. doi:10.1007/s10637-007-9050-y.

    CAS  PubMed  Google Scholar 

  131. Olsson A, Björk A, Vallon-Christersson J, Isaacs JT, Leanderson T. Tasquinimod (ABR-215050), a quinoline-3-carboxamide anti-angiogenic agent, modulates the expression of thrombospondin-1 in human prostate tumors. Mol Cancer. 2010;9:107. doi:10.1186/1476-4598-9-107.

    PubMed Central  PubMed  Google Scholar 

  132. Pili R, Häggman M, Stadler WM, et al. Phase II randomized, double-blind, placebo-controlled study of tasquinimod in men with minimally symptomatic metastatic castrate-resistant prostate cancer. J Clin Oncol. 2011;29(30):4022–8. doi:10.1200/JCO.2011.35.6295.

    CAS  PubMed  Google Scholar 

  133. Armstrong AJ, Haggman M, Stadler WM, et al. Tasquinimod and survival in men with metastatic castration-resistant prostate cancer: Results of long-term follow-up of a randomized phase II placebo-controlled trial. J Clin Oncol. 2012;30(suppl):abstract 4550.

    Google Scholar 

  134. Grgic T, Mis L, Hammond JM. Everolimus: a new mammalian target of rapamycin inhibitor for the treatment of advanced renal cell carcinoma. Ann Pharmacother. 2011;45(1):78–83. doi:10.1345/aph.1M288.

    CAS  PubMed  Google Scholar 

  135. Templeton AJ, Dutoit V, Cathomas R, et al. Phase 2 trial of single-agent everolimus in chemotherapy-naive patients with castration-resistant prostate cancer (SAKK 08/08). Eur Urol. 2013;64(1):150–8. doi:10.1016/j.eururo.2013.03.040.

    CAS  PubMed  Google Scholar 

  136. Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nat Rev Cancer. 2005;5(6):423–35. doi:10.1038/nrc1628.

    CAS  PubMed  Google Scholar 

  137. Pili R, Rosenthal MA, Mainwaring PN, et al. Phase II study on the addition of ASA404 (vadimezan; 5,6-dimethylxanthenone-4-acetic acid) to docetaxel in CRMPC. Clin Cancer Res. 2010;16(10):2906–14. doi:10.1158/1078-0432.CCR-09-3026.

    CAS  PubMed  Google Scholar 

  138. Ma S, Rosen ST. Enzastaurin. Curr Opin Oncol. 2007;19(6):590–5. doi:10.1097/CCO.0b013e3282f10a00.

    CAS  PubMed  Google Scholar 

  139. Keyes KA, Mann L, Sherman M, et al. LY317615 decreases plasma VEGF levels in human tumor xenograft-bearing mice. Cancer Chemother Pharmacol. 2004;53(2):133–40. doi:10.1007/s00280-003-0713-x.

    CAS  PubMed  Google Scholar 

  140. Dreicer R, Garcia J, Hussain M, et al. Oral enzastaurin in prostate cancer: a two-cohort phase II trial in patients with PSA progression in the non-metastatic castrate state and following docetaxel-based chemotherapy for castrate metastatic disease. Invest New Drugs. 2011;29(6):1441–8. doi:10.1007/s10637-010-9428-0.

    CAS  PubMed  Google Scholar 

  141. Parish CR, Freeman C, Brown KJ, Francis DJ, Cowden WB. Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res. 1999;59(14):3433–41.

    CAS  PubMed  Google Scholar 

  142. Khasraw M, Pavlakis N, McCowatt S, et al. Multicentre phase I/II study of PI-88, a heparanase inhibitor in combination with docetaxel in patients with metastatic castrate-resistant prostate cancer. Ann Oncol. 2010;21(6):1302–7. doi:10.1093/annonc/mdp524.

    CAS  PubMed  Google Scholar 

  143. Rosen LS, Hurwitz HI, Wong MK, et al. A phase I first-in-human study of TRC105 (anti-endoglin antibody) in patients with advanced cancer. Clin Cancer Res. 2012;18(17):4820–9. doi:10.1158/1078-0432.CCR-12-0098.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Uneda S, Toi H, Tsujie T, et al. Anti-endoglin monoclonal antibodies are effective for suppressing metastasis and the primary tumors by targeting tumor vasculature. Int J Cancer. 2009;125(6):1446–53. doi:10.1002/ijc.24482.

    CAS  PubMed  Google Scholar 

  145. Herbst RS, Hong D, Chap L, et al. Safety, pharmacokinetics, and antitumor activity of AMG 386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors. J Clin Oncol. 2009;27(21):3557–65. doi:10.1200/JCO.2008.19.6683.

    CAS  PubMed  Google Scholar 

  146. Rini B, Szczylik C, Tannir NM, et al. AMG 386 in combination with sorafenib in patients with metastatic clear cell carcinoma of the kidney: a randomized, double-blind, placebo-controlled, phase 2 study. Cancer. 2012;118(24):6152–61. doi:10.1002/cncr.27632.

    CAS  PubMed  Google Scholar 

  147. Eatock MM, Tebbutt NC, Bampton CL, et al. Phase II randomized, double-blind, placebo-controlled study of AMG 386 (trebananib) in combination with cisplatin and capecitabine in patients with metastatic gastro-oesophageal cancer. Ann Oncol. 2013;24(3):710–8. doi:10.1093/annonc/mds502.

    CAS  PubMed  Google Scholar 

  148. Peeters M, Strickland AH, Lichinitser M, et al. A randomised, double-blind, placebo-controlled phase 2 study of trebananib (AMG 386) in combination with FOLFIRI in patients with previously treated metastatic colorectal carcinoma. Br J Cancer. 2013;108(3):503–11. doi:10.1038/bjc.2012.594.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Karlan BY, Oza AM, Richardson GE, et al. Randomized, double-blind, placebo-controlled phase II study of AMG 386 combined with weekly paclitaxel in patients with recurrent ovarian cancer. J Clin Oncol. 2012;30(4):362–71. doi:10.1200/JCO.2010.34.3178.

    CAS  PubMed  Google Scholar 

  150. Alva A, Slovin S, Daignault S, et al. Phase II study of cilengitide (EMD 121974, NSC 707544) in patients with non-metastatic castration resistant prostate cancer, NCI-6735. A study by the DOD/PCF prostate cancer clinical trials consortium. Invest New Drugs. 2012;30(2):749–57. doi:10.1007/s10637-010-9573-5.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Brooks PC, Montgomery AM, Rosenfeld M, et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell. 1994;79(7):1157–64.

    CAS  PubMed  Google Scholar 

  152. Nisato RE, Tille J-C, Jonczyk A, Goodman SL, Pepper MS. Alphav beta 3 and alphav beta 5 integrin antagonists inhibit angiogenesis in vitro. Angiogenesis. 2003;6(2):105–19. doi:10.1023/B:AGEN.0000011801.98187.f2.

    CAS  PubMed  Google Scholar 

  153. Bradley DA, Daignault S, Ryan CJ, et al. Cilengitide (EMD 121974, NSC 707544) in asymptomatic metastatic castration resistant prostate cancer patients: a randomized phase II trial by the prostate cancer clinical trials consortium. Invest New Drugs. 2011;29(6):1432–40. doi:10.1007/s10637-010-9420-8.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Neckers L, Workman P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res. 2012;18(1):64–76. doi:10.1158/1078-0432.CCR-11-1000.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Fionda C, Soriani A, Malgarini G, Iannitto ML, Santoni A, Cippitelli M. Heat shock protein-90 inhibitors increase MHC class I-related chain A and B ligand expression on multiple myeloma cells and their ability to trigger NK cell degranulation. J Immunol. 2009;183(7):4385–94. doi:10.4049/jimmunol.0901797.

    CAS  PubMed  Google Scholar 

  156. Modi S, Stopeck A, Linden H, et al. HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin Cancer Res. 2011;17(15):5132–9. doi:10.1158/1078-0432.CCR-11-0072.

    CAS  PubMed  Google Scholar 

  157. Richardson PG, Chanan-Khan AA, Lonial S, et al. Tanespimycin and bortezomib combination treatment in patients with relapsed or relapsed and refractory multiple myeloma: results of a phase 1/2 study. Br J Haematol. 2011;153(6):729–40. doi:10.1111/j.1365-2141.2011.08664.x.

    CAS  PubMed  Google Scholar 

  158. The Myeloma Beacon Staff. Bristol-Myers Squibb Halts Development of Tanespimycin. The Myeloma Beacon. http://www.myelomabeacon.com/news/2010/07/22/tanespimycin-development-halted/. Published July 22, 2010. Accessed 4 July 2013.

  159. Heath EI, Hillman DW, Vaishampayan U, et al. A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clin Cancer Res. 2008;14(23):7940–6. doi:10.1158/1078-0432.CCR-08-0221.

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Oh WK, Galsky MD, Stadler WM, et al. Multicenter phase II trial of the heat shock protein 90 inhibitor, retaspimycin hydrochloride (IPI-504), in patients with castration-resistant prostate cancer. Urology. 2011;78(3):626–30. doi:10.1016/j.urology.2011.04.041.

    PubMed Central  PubMed  Google Scholar 

  161. Harris AL. Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2(1):38–47. doi:10.1038/nrc704.

    CAS  PubMed  Google Scholar 

  162. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307. doi:10.1038/nature10144.

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat Rev Cancer. 2008;8(12):967–75. doi:10.1038/nrc2540.

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Fokas E, McKenna WG, Muschel RJ. The impact of tumor microenvironment on cancer treatment and its modulation by direct and indirect antivascular strategies. Cancer Metastasis Rev. 2012;31(3–4):823–42. doi:10.1007/s10555-012-9394-4.

    CAS  PubMed  Google Scholar 

  165. Trédan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99(19):1441–54. doi:10.1093/jnci/djm135.

    PubMed  Google Scholar 

  166. Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 2004;64(11):3731–6. doi:10.1158/0008-5472.CAN-04-0074.

    CAS  PubMed  Google Scholar 

  167. Peruzzi B, Bottaro DP. Targeting the c-Met signaling pathway in cancer. Clin Cancer Res. 2006;12(12):3657–60. doi:10.1158/1078-0432.CCR-06-0818.

    CAS  PubMed  Google Scholar 

  168. Corn PG. The tumor microenvironment in prostate cancer: elucidating molecular pathways for therapy development. Cancer Manag Res. 2012;4:183–93. doi:10.2147/CMAR.S32839.

    PubMed Central  PubMed  Google Scholar 

  169. Liao C-P, Adisetiyo H, Liang M, Roy-Burman P. Cancer stem cells and microenvironment in prostate cancer progression. Horm Cancer. 2010;1(6):297–305. doi:10.1007/s12672-010-0051-5.

    CAS  PubMed  Google Scholar 

  170. Van der Horst G, van den Hoogen C, Buijs JT, et al. Targeting of α(v)-integrins in stem/progenitor cells and supportive microenvironment impairs bone metastasis in human prostate cancer. Neoplasia. 2011;13(6):516–25.

    PubMed Central  PubMed  Google Scholar 

  171. Van den Hoogen C, van der Horst G, Cheung H, et al. High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res. 2010;70(12):5163–73. doi:10.1158/0008-5472.CAN-09-3806.

    PubMed  Google Scholar 

  172. Bisanz K, Yu J, Edlund M, et al. Targeting ECM-integrin interaction with liposome-encapsulated small interfering RNAs inhibits the growth of human prostate cancer in a bone xenograft imaging model. Mol Ther. 2005;12(4):634–43. doi:10.1016/j.ymthe.2005.05.012.

    CAS  PubMed  Google Scholar 

  173. Schultheis AM, Lurje G, Rhodes KE, et al. Polymorphisms and clinical outcome in recurrent ovarian cancer treated with cyclophosphamide and bevacizumab. Clin Cancer Res. 2008;14(22):7554–63. doi:10.1158/1078-0432.CCR-08-0351.

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Jubb AM, Harris AL. Biomarkers to predict the clinical efficacy of bevacizumab in cancer. Lancet Oncol. 2010;11(12):1172–83. doi:10.1016/S1470-2045(10)70232-1.

    CAS  PubMed  Google Scholar 

  175. Fukumura D, Jain RK. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res. 2007;74(2–3):72–84. doi:10.1016/j.mvr.2007.05.003.

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Willett CG, Boucher Y, Duda DG, et al. Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J Clin Oncol. 2005;23(31):8136–9. doi:10.1200/JCO.2005.02.5635.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Kelly DO .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

George, D.J., Kelly, W., Mitchell, A. (2014). Angiogenesis Inhibition in Castration-Resistant Prostate Cancer. In: Saad, F., Eisenberger, M. (eds) Management of Castration Resistant Prostate Cancer. Current Clinical Urology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1176-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1176-9_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1175-2

  • Online ISBN: 978-1-4939-1176-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics