Skip to main content

Slow Synaptic Transmission in the Central Nervous System

  • Chapter
  • First Online:

Part of the book series: The Receptors ((REC,volume 26))

Abstract

New types of nicotinic connections with much slower kinetics than previously described have recently been discovered in several regions of the central nervous system (CNS). Slow nicotinic responses have been reported in the interpeduncular nucleus, hippocampus, neocortex, striatum, spinal cord, and thalamus. Studies have suggested that α4β2 containing nicotinic receptors may be the receptor subtype mediating the slow nicotinic synaptic events. These slow nicotinic excitatory postsynaptic potentials (EPSPs) appear to be the predominant nicotinic synaptic event in regions of the CNS (hippocampus and neocortex) that previously were thought to be dominated by α7 nicotinic receptors. Depending on the region of the CNS, slow nicotinic events may be mediated by classical synaptic transmission or volume transmission. Although the slow nicotinic EPSPs may vary subtly in kinetics and possible mechanisms of transmission, all known neuronal types that respond with slow nicotinic EPSPs are inhibitory. Thus slow nicotinic EPSPs may play an important role in controlling local and global network function through feedforward and feedback inhibition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Loewi O. Uber humorale ubertragbarkeit der herznervvenwirkung I. Mitteilung. 2013;2013:239–42.

    Google Scholar 

  2. Dale HH, Dudley HW. The presence of histamine and acetylcholine in the spleen of the ox and the horse. J Physiol. 1929;68(2):97–123.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. del Castillo J, del Katz B. Quantal components of the end-plate potential. J Physiol. 1954;124:560–73.

    PubMed Central  Google Scholar 

  4. Fatt P, Katz B. Spontaneous subthreshold activity at motor nerve endings. J Physiol. 1952;117:109–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Fatt P, Katz B. An analysis of the end-plate potential recorded with an intracellular electrode. J Physiol. 1951;115:320–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Blackman JG, Ginsborg BL, Ray C. Synaptic transmission in the sympathetic ganglion of the frog. J Physiol. 1963;167:355–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Blackman JG, Ginsborg BL, Ray C. Spontaneous synaptic activity in sympathetic ganglion cells of the frog. J Physiol. 1963;167:389–401.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Nishi S, Koketsu K. Electrical properties and activities of single sympathetic neurons in frogs. J Cell Comp Physiol. 1960;55:15–30.

    Article  CAS  PubMed  Google Scholar 

  9. Alkondon M, Pereira EF, Albuquerque EX. Alpha-bungarotoxin- and methyllycaconitine-sensitive nicotinic receptors mediate fast synaptic transmission in interneurons of rat hippocampal slices. Brain Res. 1998;810:257–63.

    Article  CAS  PubMed  Google Scholar 

  10. Chu ZG, Zhou FM, Hablitz JJ. Nicotinic acetylcholine receptor-mediated synaptic potentials in rat neocortex. Brain Res. 2000;887:399–405.

    Article  CAS  PubMed  Google Scholar 

  11. Frazier CJ, Buhler AV, Weiner JL, Dunwiddie TV. Synaptic potentials mediated via alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat hippocampal interneurons. J Neurosci. 1998;18:8228–35.

    CAS  PubMed  Google Scholar 

  12. Grybko MJ, Hahm ET, Perrine W, Parnes JA, Chick WS, Sharma G, Finger TE, Vijayaraghavan S. A transgenic mouse model reveals fast nicotinic transmission in hippocampal pyramidal neurons. Eur J Neurosci. 2011;33:1786–98.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Hatton GI, Yang QZ. Synaptic potentials mediated by alpha 7 nicotinic acetylcholine receptors in supraoptic nucleus. J Neurosci. 2002;22:29–37.

    CAS  PubMed  Google Scholar 

  14. Leao RN, Mikulovic S, Leao KE, Munguba H, Gezelius H, Enjin A, Patra K, Eriksson A, Loew LM, Tort AB, Kullander K. OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons. Nat Neurosci. 2012;15:1524–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Roerig B, Nelson DA, Katz LC. Fast synaptic signaling by nicotinic acetylcholine and serotonin 5-HT3 receptors in developing visual cortex. J Neurosci. 1997;17:8353–62.

    CAS  PubMed  Google Scholar 

  16. Stone TW. Kynurenic acid blocks nicotinic synaptic transmission to hippocampal interneurons in young rats. Eur J Neurosci. 2007;25:2656–65.

    Article  PubMed  Google Scholar 

  17. Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol. 2007;47:699–729.

    Article  CAS  PubMed  Google Scholar 

  18. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005;8:1263–8.

    Article  CAS  PubMed  Google Scholar 

  19. Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE, Boyden ES. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature. 2010;463:98–102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Han X, Boyden ES. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One. 2007;2:e299.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Lin JY, Lin MZ, Steinbach P, Tsien RY. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J. 2009;96:1803–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K. Multimodal fast optical interrogation of neural circuitry. Nature. 2007;446:633–9.

    Article  CAS  PubMed  Google Scholar 

  23. Ren J, Qin C, Hu F, Tan J, Qiu L, Zhao S, Feng G, Luo M. Habenula "cholinergic" neurons co-release glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron. 2011;69:445–52.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao S, Ting JT, Atallah HE, Qiu L, Tan J, Gloss B, Augustine GJ, Deisseroth K, Luo M, Graybiel AM, Feng G. Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods. 2011;8:745–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Arroyo S, Bennett C, Aziz D, Brown SP, Hestrin S. Prolonged disynaptic inhibition in the cortex mediated by slow, non-alpha7 nicotinic excitation of a specific subset of cortical interneurons. J Neurosci. 2012;32:3859–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Bell KA, Shim H, Chen CK, McQuiston AR. Nicotinic excitatory postsynaptic potentials in hippocampal CA1 interneurons are predominantly mediated by nicotinic receptors that contain alpha4 and beta2 subunits. Neuropharmacology. 2011;61:1379–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Bennett C, Arroyo S, Berns D, Hestrin S. Mechanisms generating dual-component nicotinic EPSCs in cortical interneurons. J Neurosci. 2012;32:17287–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. English DF, Ibanez-Sandoval O, Stark E, Tecuapetla F, Buzsaki G, Deisseroth K, Tepper JM, Koos T. GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons. Nat Neurosci. 2012;15:123–30.

    Article  CAS  Google Scholar 

  29. Gu Z, Yakel JL. Timing-dependent septal cholinergic induction of dynamic hippocampal synaptic plasticity. Neuron. 2011;71:155–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Nagode DA, Tang AH, Karson MA, Klugmann M, Alger BE. Optogenetic release of ACh induces rhythmic bursts of perisomatic IPSCs in hippocampus. PLoS One. 2011;6:e27691.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Atasoy D, Aponte Y, Su HH, Sternson SM. A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci. 2008;28: 7025–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Schnutgen F, Doerflinger N, Calleja C, Wendling O, Chambon P, Ghyselinck NB. A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Biotechnol. 2003;21:562–5.

    Article  PubMed  Google Scholar 

  33. Rossi J, Balthasar N, Olson D, Scott M, Berglund E, Lee CE, Choi MJ, Lauzon D, Lowell BB, Elmquist JK. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab. 2011;13:195–204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Grady SR, Moretti M, Zoli M, Marks MJ, Zanardi A, Pucci L, Clementi F, Gotti C. Rodent habenulo-interpeduncular pathway expresses a large variety of uncommon nAChR subtypes, but only the alpha3beta4* and alpha3beta3beta4* subtypes mediate acetylcholine release. J Neurosci. 2009;29:2272–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Perry DC, Xiao Y, Nguyen HN, Musachio JL, Davila-Garcia MI, Kellar KJ. Measuring nicotinic receptors with characteristics of alpha4beta2, alpha3beta2 and alpha3beta4 subtypes in rat tissues by autoradiography. J Neurochem. 2002;82:468–81.

    Article  CAS  PubMed  Google Scholar 

  36. Ibanez-Sandoval O, Tecuapetla F, Unal B, Shah F, Koos T, Tepper JM. A novel functionally distinct subtype of striatal neuropeptide Y interneuron. J Neurosci. 2011;31:16757–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. d'Incamps BL, Ascher P. Subunit composition and kinetics of the Renshaw cell heteromeric nicotinic receptors. Biochem Pharmacol. 2013;86(8):1114–21.

    Article  Google Scholar 

  38. Lamotte B, Krejci E, Ascher P. Mechanisms shaping the slow nicotinic synaptic current at the motoneuron-renshaw cell synapse. J Neurosci. 2012;32:8413–23.

    Article  Google Scholar 

  39. Sun YG, Pita-Almenar JD, Wu CS, Renger JJ, Uebele VN, Lu HC, Beierlein M. Biphasic cholinergic synaptic transmission controls action potential activity in thalamic reticular nucleus neurons. J Neurosci. 2013;33:2048–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Coggan JS, Bartol TM, Esquenazi E, Stiles JR, Lamont S, Martone ME, Berg DK, Ellisman MH, Sejnowski TJ. Evidence for ectopic neurotransmission at a neuronal synapse. Science. 2005;309:446–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Copits BA, Swanson GT. Dancing partners at the synapse: auxiliary subunits that shape kainate receptor function. Nat Rev Neurosci. 2012;13:675–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Straub C, Tomita S. The regulation of glutamate receptor trafficking and function by TARPs and other transmembrane auxiliary subunits. Curr Opin Neurobiol. 2012;22:488–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Sykova E, Vargova L. Extrasynaptic transmission and the diffusion parameters of the extracellular space. Neurochem Int. 2008;52:5–13.

    Article  CAS  PubMed  Google Scholar 

  44. Umbriaco D, Watkins KC, Descarries L, Cozzari C, Hartman BK. Ultrastructural and morphometric features of the acetylcholine innervation in adult rat parietal cortex: an electron microscopic study in serial sections. J Comp Neurol. 1994;348:351–73.

    Article  CAS  PubMed  Google Scholar 

  45. Umbriaco D, Garcia S, Beaulieu C, Descarries L. Relational features of acetylcholine, noradrenaline, serotonin and GABA axon terminals in the stratum radiatum of adult rat hippocampus (CA1). Hippocampus. 1995;5:605–20.

    Article  CAS  PubMed  Google Scholar 

  46. Turrini P, Casu MA, Wong TP, De KY, Ribeiro-da-Silva A, Cuello AC. Cholinergic nerve terminals establish classical synapses in the rat cerebral cortex: synaptic pattern and age-related atrophy. Neuroscience. 2001;105:277–85.

    Article  CAS  PubMed  Google Scholar 

  47. Ferraguti F, Zoli M, Aronsson M, Agnati LF, Goldstein M, Filer D, Fuxe K. Distribution of glutamic acid decarboxylase messenger RNA-containing nerve cell populations of the male rat brain. J Chem Neuroanat. 1990;3:377–96.

    CAS  PubMed  Google Scholar 

  48. Kawaja MD, Flumerfelt BA, Hrycyshyn AW. Simultaneous demonstration of choline acetyltransferase and glutamic acid decarboxylase immunoreactivity in the rat interpeduncular nucleus. J Chem Neuroanat. 1990;3:165–77.

    CAS  PubMed  Google Scholar 

  49. Klemm WR. Habenular and interpeduncularis nuclei: shared components in multiple-function networks. Med Sci Monit. 2004;10:RA261–73.

    PubMed  Google Scholar 

  50. Acsady L, Gorcs TJ, Freund TF. Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus. Neuroscience. 1996;73:317–34.

    Article  CAS  PubMed  Google Scholar 

  51. Apicella P. Leading tonically active neurons of the striatum from reward detection to context recognition. Trends Neurosci. 2007;30:299–306.

    Article  CAS  PubMed  Google Scholar 

  52. Fuentealba P, Steriade M. The reticular nucleus revisited: intrinsic and network properties of a thalamic pacemaker. Prog Neurobiol. 2005;75:125–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rory McQuiston Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

McQuiston, A.R. (2014). Slow Synaptic Transmission in the Central Nervous System. In: Lester, R. (eds) Nicotinic Receptors. The Receptors, vol 26. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1167-7_10

Download citation

Publish with us

Policies and ethics