Skip to main content

Synthesis, Processing, and Function of N-glycans in N-glycoproteins

  • Chapter
  • First Online:
Glycobiology of the Nervous System

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 9))

Abstract

Many membrane-resident and secrected proteins, including growth factors and their receptors, are N-glycosylated. The initial N-glycan structure is synthesized in the endoplasmic reticulum (ER) as a branched structure on a lipid anchor (dolichol pyrophosphate) and then co-translationally, “en bloc” transferred and linked via N-acetylglucosamine to asparagine within a specific N-glycosylation acceptor sequence of the nascent recipient protein. In the ER and then the Golgi apparatus, the N-linked glycan structure is modified by hydrolytic removal of sugar residues (“trimming”) followed by re-glycosylation with additional sugar residues (“processing”) such as galactose, fucose, or sialic acid to form complex N-glycoproteins. While the sequence of the reactions leading to biosynthesis, “en bloc” transfer and processing of N-glycans is well investigated, it is still not completely understood how N-glycans affect the biological fate and function of N-glycoproteins. This review discusses the biology of N-glycoprotein synthesis, processing, and function with specific reference to the physiology and pathophysiology of the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDG:

Congenital disorders of glycosylation

COG:

Conserved oligomeric Golgi

dNM:

Deoxynojirimycin (dNJ)

Dol-PP:

Dolichol pyrophosphate

ER:

Endoplasmic reticulum

ERAD:

ER-assisted degradation

Gal:

Galactose

GalNAc:

N-acetylgalactosamine

GD2:

Ganglioside GD2

GD3:

Ganglioside GD3

Glc:

Glucose

GlcNAc:

N-acetylglucosamine

GM1:

Ganglioside GM1

GM3:

Ganglioside GM3

M6P:

Mannose-6-phosphate

Man:

Mannose

OST:

Oligosaccharyl transferase

References

  • Abian O, Alfonso P, Velazquez-Campoy A, Giraldo P, Pocovi M, Sancho J. Therapeutic strategies for Gaucher disease: miglustat (NB-DNJ) as a pharmacological chaperone for glucocerebrosidase and the different thermostability of velaglucerase alfa and imiglucerase. Mol Pharm. 2011;8(6):2390–7. doi:10.1021/mp200313e.

    CAS  PubMed  Google Scholar 

  • Alonzi DS, Kukushkin NV, Allman SA, Hakki Z, Williams SJ, Pierce L, et al. Glycoprotein misfolding in the endoplasmic reticulum: identification of released oligosaccharides reveals a second ER-associated degradation pathway for Golgi-retrieved proteins. Cell Mol Life Sci. 2013. doi:10.1007/s00018-013-1304-6.

    PubMed  Google Scholar 

  • Ando S, Yu RK. Isolation and characterization of a novel trisialoganglioside, GT1a, from human brain. J Biol Chem. 1977;252(18):6247–50.

    CAS  PubMed  Google Scholar 

  • Arumugham RG, Tanzer ML. Abnormal glycosylation of human cellular fibronectin in the presence of swainsonine. J Biol Chem. 1983;258(19):11883–9.

    CAS  PubMed  Google Scholar 

  • Baek RC, Kasperzyk JL, Platt FM, Seyfried TN. N-butyldeoxygalactonojirimycin reduces brain ganglioside and GM2 content in neonatal Sandhoff disease mice. Neurochem Int. 2008;52(6):1125–33. doi:10.1016/j.neuint.2007.12.001. S0197-0186(07)00329-4. [pii].

    CAS  PubMed  Google Scholar 

  • Banerjee S, Vishwanath P, Cui J, Kelleher DJ, Gilmore R, Robbins PW, et al. The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation. Proc Natl Acad Sci U S A. 2007;104(28):11676–81. doi:10.1073/pnas.0704862104. 0704862104 [pii].

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bause E, Bieberich E, Rolfs A, Volker C, Schmidt B. Molecular cloning and primary structure of Man9-mannosidase from human kidney. Eur J Biochem. 1993;217(2):535–40.

    CAS  PubMed  Google Scholar 

  • Bause E, Breuer W, Peters S. Investigation of the active site of oligosaccharyltransferase from pig liver using synthetic tripeptides as tools. Biochem J. 1995;312(Pt 3):979–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bieberich E, Bause E. Man9-mannosidase from human kidney is expressed in COS cells as a Golgi-resident type II transmembrane N-glycoprotein. Eur J Biochem. 1995;233(2):644–9.

    CAS  PubMed  Google Scholar 

  • Bieberich E, Yu RK. Multi-enzyme kinetic analysis of glycolipid biosynthesis. Biochim Biophys Acta. 1999;1432(1):113–24. S0167-4838(99)00085-0 [pii].

    CAS  PubMed  Google Scholar 

  • Bieberich E, Treml K, Volker C, Rolfs A, Kalz-Fuller B, Bause E. Man9-mannosidase from pig liver is a type-II membrane protein that resides in the endoplasmic reticulum. cDNA cloning and expression of the enzyme in COS 1 cells. Eur J Biochem. 1997;246(3):681–9.

    CAS  PubMed  Google Scholar 

  • Bieberich E, Freischutz B, Liour SS, Yu RK. Regulation of ganglioside metabolism by phosphorylation and dephosphorylation. J Neurochem. 1998;71(3):972–9.

    CAS  PubMed  Google Scholar 

  • Bieberich E, Tencomnao T, Kapitonov D, Yu RK. Effect of N-glycosylation on turnover and subcellular distribution of N-acetylgalactosaminyltransferase I and sialyltransferase II in neuroblastoma cells. J Neurochem. 2000;74(6):2359–64.

    CAS  PubMed  Google Scholar 

  • Boscher C, Dennis JW, Nabi IR. Glycosylation, galectins and cellular signaling. Curr Opin Cell Biol. 2011;23(4):383–92. doi:10.1016/j.ceb.2011.05.001. S0955-0674(11)00062-7 [pii].

    CAS  PubMed  Google Scholar 

  • Boscher C, Zheng YZ, Lakshminarayan R, Johannes L, Dennis JW, Foster LJ, et al. Galectin-3 protein regulates mobility of N-cadherin and GM1 ganglioside at cell-cell junctions of mammary carcinoma cells. J Biol Chem. 2012;287(39):32940–52. doi:10.1074/jbc.M112.353334. M112.353334 [pii].

    CAS  PubMed Central  PubMed  Google Scholar 

  • Browning S, Baker CA, Smith E, Mahal SP, Herva ME, Demczyk CA, et al. Abrogation of complex glycosylation by swainsonine results in strain- and cell-specific inhibition of prion replication. J Biol Chem. 2011;286(47):40962–73. doi:10.1074/jbc.M111.283978. M111.283978 [pii].

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chambers J, Elbein AD. Biosynthesis and characterization of lipid-linked sugars and glycoproteins in aorta. J Biol Chem. 1975;250(17):6904–15.

    CAS  PubMed  Google Scholar 

  • Chao HH, Waheed A, Pohlmann R, Hille A, von Figura K. Mannose 6-phosphate receptor dependent secretion of lysosomal enzymes. EMBO J. 1990;9(11):3507–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chavany C, Jendoubi M. Biology and potential strategies for the treatment of GM2 gangliosidoses. Mol Med Today. 1998;4(4):158–65. doi:10.1016/S1357-4310(98)01227-1.

    CAS  PubMed  Google Scholar 

  • Coutinho MF, Prata MJ, Alves S. Mannose-6-phosphate pathway: a review on its role in lysosomal function and dysfunction. Mol Genet Metab. 2012;105(4):542–50. doi:10.1016/j.ymgme.2011.12.012. S1096-7192(11)00652-4 [pii].

    CAS  PubMed  Google Scholar 

  • Cox T, Lachmann R, Hollak C, Aerts J, van Weely S, Hrebicek M, et al. Novel oral treatment of Gaucher’s disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet. 2000;355(9214):1481–5. doi:10.1016/S0140-6736(00)02161-9. S0140-6736(00)02161-9 [pii].

    CAS  PubMed  Google Scholar 

  • Cummings RD, Kornfeld S, Schneider WJ, Hobgood KK, Tolleshaug H, Brown MS, et al. Biosynthesis of N- and O-linked oligosaccharides of the low density lipoprotein receptor. J Biol Chem. 1983;258(24):15261–73.

    CAS  PubMed  Google Scholar 

  • Dennis JW, Lau KS, Demetriou M, Nabi IR. Adaptive regulation at the cell surface by N-glycosylation. Traffic. 2009a;10(11):1569–78. doi:10.1111/j.1600-0854.2009.00981.x. TRA981 [pii].

    CAS  PubMed  Google Scholar 

  • Dennis JW, Nabi IR, Demetriou M. Metabolism, cell surface organization, and disease. Cell. 2009b;139(7):1229–41. doi:10.1016/j.cell.2009.12.008. S0092-8674(09)01555-4 [pii].

    PubMed Central  PubMed  Google Scholar 

  • Deprez P, Gautschi M, Helenius A. More than one glycan is needed for ER glucosidase II to allow entry of glycoproteins into the calnexin/calreticulin cycle. Mol Cell. 2005;19(2):183–95. doi:10.1016/j.molcel.2005.05.029. S1097-2765(05)01384-5 [pii].

    CAS  PubMed  Google Scholar 

  • Dunphy WG, Fries E, Urbani LJ, Rothman JE. Early and late functions associated with the Golgi apparatus reside in distinct compartments. Proc Natl Acad Sci U S A. 1981;78(12):7453–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellgaard L, Molinari M, Helenius A. Setting the standards: quality control in the secretory pathway. Science. 1999;286(5446):1882–8. 8063 [pii].

    CAS  PubMed  Google Scholar 

  • Ericson MC, Gafford JT, Elbein AD. Tunicamycin inhibits GlcNAc-lipid formation in plants. J Biol Chem. 1977;252(21):7431–3.

    CAS  PubMed  Google Scholar 

  • Farinha CM, Amaral MD. Most F508del-CFTR is targeted to degradation at an early folding checkpoint and independently of calnexin. Mol Cell Biol. 2005;25(12):5242–52. doi:10.1128/MCB.25.12.5242-5252.2005. 25/12/5242 [pii].

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrari ML, Gomez GA, Maccioni HJ. Spatial organization and stoichiometry of N-terminal domain-mediated glycosyltransferase complexes in Golgi membranes determined by fret microscopy. Neurochem Res. 2012;37(6):1325–34. doi:10.1007/s11064-012-0741-1.

    CAS  PubMed  Google Scholar 

  • Freeze HH. Human disorders in N-glycosylation and animal models. Biochim Biophys Acta. 2002;1573(3):388–93. S0304416502004087 [pii].

    CAS  PubMed  Google Scholar 

  • Fung CW, Matthijs G, Sturiale L, Garozzo D, Wong KY, Wong R, et al. COG5-CDG with a mild neurohepatic presentation. JIMD Rep. 2012;3:67–70. doi:10.1007/8904_2011_61.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gary-Bobo M, Nirde P, Jeanjean A, Morere A, Garcia M. Mannose 6-phosphate receptor targeting and its applications in human diseases. Curr Med Chem. 2007;14(28):2945–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gault CR, Obeid LM, Hannun YA. An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol. 2010;688:1–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghosh P, Dahms NM, Kornfeld S. Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol. 2003;4(3):202–12. doi:10.1038/nrm1050. nrm1050 [pii].

    CAS  PubMed  Google Scholar 

  • Giraudo CG, Maccioni HJ. Ganglioside glycosyltransferases organize in distinct multienzyme complexes in CHO-K1 cells. J Biol Chem. 2003;278(41):40262–71. doi:10.1074/jbc.M305455200. M305455200 [pii].

    CAS  PubMed  Google Scholar 

  • Giraudo CG, Daniotti JL, Maccioni HJ. Physical and functional association of glycolipid N-acetyl-galactosaminyl and galactosyl transferases in the Golgi apparatus. Proc Natl Acad Sci U S A. 2001;98(4):1625–30. doi:10.1073/pnas.031458398. 031458398 [pii].

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goreta SS, Dabelic S, Dumic J. Insights into complexity of congenital disorders of glycosylation. Biochem Med (Zagreb). 2012;22(2):156–70.

    CAS  Google Scholar 

  • Greenberg P, Merrill AH, Liotta DC, Grabowski GA. Human acid beta-glucosidase: use of sphingosyl and N-alkyl-glucosylamine inhibitors to investigate the properties of the active site. Biochim Biophys Acta. 1990;1039(1):12–20. doi:10.1016/0167-4838(90)90220-A.

    CAS  PubMed  Google Scholar 

  • Hamilton SR, Li H, Wischnewski H, Prasad A, Kerley-Hamilton JS, Mitchell T, et al. Intact {alpha}-1,2-endomannosidase is a typical type II membrane protein. Glycobiology. 2005;15(6):615–24. doi:10.1093/glycob/cwi045. cwi045 [pii].

    CAS  PubMed  Google Scholar 

  • Hammond C, Helenius A. A chaperone with a sweet tooth. Curr Biol. 1993;3(12):884–6. doi:10.1016/0960-9822(93)90226-E.

    CAS  PubMed  Google Scholar 

  • Hammond C, Helenius A. Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus. J Cell Biol. 1994;126(1):41–52.

    CAS  PubMed  Google Scholar 

  • Hammond C, Braakman I, Helenius A. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci U S A. 1994;91(3):913–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hardt B, Aparicio R, Bause E. The oligosaccharyltransferase complex from pig liver: cDNA cloning, expression and functional characterisation. Glycoconj J. 2000;17(11):767–79.

    CAS  PubMed  Google Scholar 

  • Hart GW, Lennarz WJ. Effects of tunicamycin on the biosynthesis of glycosaminoglycans by embryonic chick cornea. J Biol Chem. 1978;253(16):5795–801.

    CAS  PubMed  Google Scholar 

  • Helenius A, Aebi M. Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem. 2004;73:1019–49. doi:10.1146/annurev.biochem.73.011303.073752.

    CAS  PubMed  Google Scholar 

  • Herscovics A, Schneikert J, Athanassiadis A, Moremen KW. Isolation of a mouse Golgi mannosidase cDNA, a member of a gene family conserved from yeast to mammals. J Biol Chem. 1994;269(13):9864–71.

    CAS  PubMed  Google Scholar 

  • Hettkamp H, Bause E, Legler G. Inhibition by nojirimycin and 1-deoxynojirimycin of microsomal glucosidases from calf liver acting on the glycoprotein oligosaccharides Glc1-3Man9GlcNAc2. Biosci Rep. 1982;2(11):899–906.

    CAS  PubMed  Google Scholar 

  • Hettkamp H, Legler G, Bause E. Purification by affinity chromatography of glucosidase I, an endoplasmic reticulum hydrolase involved in the processing of asparagine-linked oligosaccharides. Eur J Biochem. 1984;142(1):85–90.

    CAS  PubMed  Google Scholar 

  • Hewitt LF. Separation of serum albumin into two fractions: observations on the nature of the glycoprotein fraction. Biochem J. 1937;31(3):360–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hosokawa N, Tremblay LO, Sleno B, Kamiya Y, Wada I, Nagata K, et al. EDEM1 accelerates the trimming of alpha1,2-linked mannose on the C branch of N-glycans. Glycobiology. 2010;20(5):567–75. doi:10.1093/glycob/cwq001. cwq001 [pii].

    CAS  PubMed  Google Scholar 

  • Jaeken J. Congenital disorders of glycosylation. Ann N Y Acad Sci. 2010;1214:190–8. doi:10.1111/j.1749-6632.2010.05840.x.

    CAS  PubMed  Google Scholar 

  • Jaeken J. Congenital disorders of glycosylation (CDG): it’s (nearly) all in it! J Inherit Metab Dis. 2011;34(4):853–8. doi:10.1007/s10545-011-9299-3.

    CAS  PubMed  Google Scholar 

  • Jeyakumar M, Butters TD, Cortina-Borja M, Hunnam V, Proia RL, Perry VH, et al. Delayed symptom onset and increased life expectancy in Sandhoff disease mice treated with N-butyldeoxynojirimycin. Proc Natl Acad Sci U S A. 1999;96(11):6388–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kalz-Fuller B, Bieberich E, Bause E. Cloning and expression of glucosidase I from human hippocampus. Eur J Biochem. 1995;231(2):344–51.

    CAS  PubMed  Google Scholar 

  • Kaplan HA, Welply JK, Lennarz WJ. Oligosaccharyl transferase: the central enzyme in the pathway of glycoprotein assembly. Biochim Biophys Acta. 1987;906(2):161–73. doi:10.1016/0304-4157(87)90010-4.

    CAS  PubMed  Google Scholar 

  • Kelleher DJ, Gilmore R. An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology. 2006;16(4):47R–62R. doi:10.1093/glycob/cwj066. cwj066 [pii].

    CAS  PubMed  Google Scholar 

  • Kelleher DJ, Kreibich G, Gilmore R. Oligosaccharyltransferase activity is associated with a protein complex composed of ribophorins I and II and a 48 kd protein. Cell. 1992;69(1):55–65. doi:10.1016/0092-8674(92)90118-V.

    CAS  PubMed  Google Scholar 

  • Konat G, Hogan EL, Leskawa KC, Gantt G, Singh I. Abnormal glycosylation of myelin-associated glycoprotein in quaking mouse brain. Neurochem Int. 1987;10(4):555–8. doi:10.1016/0197-0186(87)90084-2.

    CAS  PubMed  Google Scholar 

  • Lajoie P, Nabi IR. Lipid rafts, caveolae, and their endocytosis. Int Rev Cell Mol Biol. 2010;282:135–63. doi:10.1016/S1937-6448(10)82003-9. S1937-6448(10)82003-9 [pii].

    CAS  PubMed  Google Scholar 

  • Lajoie P, Goetz JG, Dennis JW, Nabi IR. Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J Cell Biol. 2009;185(3):381–5. doi:10.1083/jcb.200811059. jcb.200811059 [pii].

    CAS  PubMed Central  PubMed  Google Scholar 

  • Le Mercier M, Fortin S, Mathieu V, Kiss R, Lefranc F. Galectins and gliomas. Brain Pathol. 2010;20(1):17–27. doi:10.1111/j.1750-3639.2009.00270.x. BPA270 [pii].

    PubMed Central  PubMed  Google Scholar 

  • Leavitt R, Schlesinger S, Kornfeld S. Tunicamycin inhibits glycosylation and multiplication of Sindbis and vesicular stomatitis viruses. J Virol. 1977;21(1):375–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Legler G, Bieberich E. Isolation of a cytosolic beta-glucosidase from calf liver and characterization of its active site with alkyl glucosides and basic glycosyl derivatives. Arch Biochem Biophys. 1988;260(1):427–36. doi:10.1016/0003-9861(88)90466-3.

    CAS  PubMed  Google Scholar 

  • Legler G, Liedtke H. Glucosylceramidase from calf spleen. Characterization of its active site with 4-n-alkylumbelliferyl beta-glucosides and N-alkyl derivatives of 1-deoxynojirimycin. Biol Chem Hoppe Seyler. 1985;366(12):1113–22.

    CAS  PubMed  Google Scholar 

  • Lemansky P, Gieselmann V, Hasilik A, von Figura K. Cathepsin D and beta-hexosaminidase synthesized in the presence of 1-deoxynojirimycin accumulate in the endoplasmic reticulum. J Biol Chem. 1984;259(16):10129–35.

    CAS  PubMed  Google Scholar 

  • Leroy JG. Congenital disorders of N-glycosylation including diseases associated with O- as well as N-glycosylation defects. Pediatr Res. 2006;60(6):643–56. doi:10.1203/01.pdr.0000246802.57692.ea. 01.pdr.0000246802.57692.ea [pii].

    CAS  PubMed  Google Scholar 

  • Li E, Kornfeld S. Structure of the altered oligosaccharide present in glycoproteins from a clone of Chinese hamster ovary cells deficient in N-acetylglucosaminyltransferase activity. J Biol Chem. 1978;253(18):6426–31.

    CAS  PubMed  Google Scholar 

  • Lubas WA, Spiro RG. Golgi endo-alpha-D-mannosidase from rat liver, a novel N-linked carbohydrate unit processing enzyme. J Biol Chem. 1987;262(8):3775–81.

    CAS  PubMed  Google Scholar 

  • Lubke T, Marquardt T, von Figura K, Korner C. A new type of carbohydrate-deficient glycoprotein syndrome due to a decreased import of GDP-fucose into the golgi. J Biol Chem. 1999;274(37):25986–9.

    CAS  PubMed  Google Scholar 

  • Lucas JJ, Waechter J, Lennarz WJ. The participation of lipid-linked oligosaccharide in synthesis of membrane glycoproteins. J Biol Chem. 1975;250(6):1992–2002.

    CAS  PubMed  Google Scholar 

  • Maccioni HJ. Glycosylation of glycolipids in the Golgi complex. J Neurochem. 2007;103 Suppl 1:81–90. doi:10.1111/j.1471-4159.2007.04717.x. JNC4717 [pii].

    CAS  PubMed  Google Scholar 

  • Maccioni HJ, Daniotti JL, Martina JA. Organization of ganglioside synthesis in the Golgi apparatus. Biochim Biophys Acta. 1999;1437(2):101–18. doi:10.1016/S1388-1981(99)00002-5.

    CAS  PubMed  Google Scholar 

  • Maccioni HJ, Giraudo CG, Daniotti JL. Understanding the stepwise synthesis of glycolipids. Neurochem Res. 2002;27(7–8):629–36.

    CAS  PubMed  Google Scholar 

  • Maccioni HJ, Quiroga R, Ferrari ML. Cellular and molecular biology of glycosphingolipid glycosylation. J Neurochem. 2011a;117(4):589–602. doi:10.1111/j.1471-4159.2011.07232.x.

    CAS  PubMed  Google Scholar 

  • Maccioni HJ, Quiroga R, Spessott W. Organization of the synthesis of glycolipid oligosaccharides in the Golgi complex. FEBS Lett. 2011b;585(11):1691–8. doi:10.1016/j.febslet.2011.03.030. S0014-5793(11)00183-9 [pii].

    CAS  PubMed  Google Scholar 

  • Martina JA, Daniotti JL, Maccioni HJ. Influence of N-glycosylation and N-glycan trimming on the activity and intracellular traffic of GD3 synthase. J Biol Chem. 1998;273(6):3725–31.

    CAS  PubMed  Google Scholar 

  • Martina JA, Daniotti JL, Maccioni HJ. GM1 synthase depends on N-glycosylation for enzyme activity and trafficking to the Golgi complex. Neurochem Res. 2000;25(5):725–31.

    CAS  PubMed  Google Scholar 

  • McFarlane I, Georgopoulou N, Coughlan CM, Gillian AM, Breen KC. The role of the protein glycosylation state in the control of cellular transport of the amyloid beta precursor protein. Neuroscience. 1999;90(1):15–25. doi:10.1016/S0306-4522(98)00361-3.

    CAS  PubMed  Google Scholar 

  • Mistry PK. Treatment of Gaucher’s disease with OGT 918. Lancet. 2000;356(9230):676–7. doi:10.1016/S0140673600026180.

    CAS  PubMed  Google Scholar 

  • Mohorko E, Glockshuber R, Aebi M. Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation. J Inherit Metab Dis. 2011;34(4):869–78. doi:10.1007/s10545-011-9337-1.

    CAS  PubMed  Google Scholar 

  • Molinari M, Helenius A. Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science. 2000;288(5464):331–3. 8432 [pii].

    CAS  PubMed  Google Scholar 

  • Morell AG, Gregoriadis G, Scheinberg IH, Hickman J, Ashwell G. The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem. 1971;246(5):1461–7.

    CAS  PubMed  Google Scholar 

  • Moremen KW. Golgi alpha-mannosidase II deficiency in vertebrate systems: implications for asparagine-linked oligosaccharide processing in mammals. Biochim Biophys Acta. 2002;1573(3):225–35. S0304416502003884 [pii].

    CAS  PubMed  Google Scholar 

  • Moremen KW, Robbins PW. Isolation, characterization, and expression of cDNAs encoding murine alpha-mannosidase II, a Golgi enzyme that controls conversion of high mannose to complex N-glycans. J Cell Biol. 1991;115(6):1521–34.

    CAS  PubMed  Google Scholar 

  • Moremen KW, Touster O. Biosynthesis and modification of Golgi mannosidase II in HeLa and 3T3 cells. J Biol Chem. 1985;260(11):6654–62.

    CAS  PubMed  Google Scholar 

  • Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 2012;13(7):448–62. doi:10.1038/nrm3383. nrm3383 [pii].

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakatani Y, Yanagisawa M, Suzuki Y, Yu RK. Characterization of GD3 ganglioside as a novel biomarker of mouse neural stem cells. Glycobiology. 2010;20(1):78–86. doi:10.1093/glycob/cwp149. cwp149 [pii].

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nash RJ, Kato A, Yu CY, Fleet GW. Iminosugars as therapeutic agents: recent advances and promising trends. Future Med Chem. 2011;3(12):1513–21. doi:10.4155/fmc.11.117.

    CAS  PubMed  Google Scholar 

  • Ngamukote S, Yanagisawa M, Ariga T, Ando S, Yu RK. Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. J Neurochem. 2007;103(6):2327–41. doi:10.1111/j.1471-4159.2007.04910.x. JNC4910 [pii].

    CAS  PubMed  Google Scholar 

  • Osiecki-Newman KM, Fabbro D, Dinur T, Boas S, Gatt S, Legler G, et al. Human acid beta-glucosidase: affinity purification of the normal placental and Gaucher disease splenic enzymes on N-alkyl-deoxynojirimycin-sepharose. Enzyme. 1986;35(3):147–53.

    CAS  PubMed  Google Scholar 

  • Osiecki-Newman K, Fabbro D, Legler G, Desnick RJ, Grabowski GA. Human acid beta-glucosidase: use of inhibitors, alternative substrates and amphiphiles to investigate the properties of the normal and Gaucher disease active sites. Biochim Biophys Acta. 1987;915(1):87–100. doi:10.1016/0167-4838(87)90128-2.

    CAS  PubMed  Google Scholar 

  • Parodi AJ. Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation. Biochem J. 2000;348(Pt 1):1–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parodi AJ, Behrens NH, Leloir LF, Carminatti H. The role of polyprenol-bound saccharides as intermediates in glycoprotein synthesis in liver. Proc Natl Acad Sci U S A. 1972;69(11):3268–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patterson MC, Vecchio D, Prady H, Abel L, Wraith JE. Miglustat for treatment of Niemann-Pick C disease: a randomised controlled study. Lancet Neurol. 2007;6(9):765–72. doi:10.1016/S1474-4422(07)70194-1. S1474-4422(07)70194-1 [pii].

    CAS  PubMed  Google Scholar 

  • Peyrieras N, Bause E, Legler G, Vasilov R, Claesson L, Peterson P, et al. Effects of the glucosidase inhibitors nojirimycin and deoxynojirimycin on the biosynthesis of membrane and secretory glycoproteins. EMBO J. 1983;2(6):823–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Platt FM, Neises GR, Dwek RA, Butters TD. N-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J Biol Chem. 1994;269(11):8362–5.

    CAS  PubMed  Google Scholar 

  • Pless DD, Lennarz WJ. Enzymatic conversion of proteins to glycoproteins. Proc Natl Acad Sci U S A. 1977;74(1):134–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ratner L, Vander HN. Mechanism of action of N-butyl deoxynojirimycin in inhibiting HIV-1 infection and activity in combination with nucleoside analogs. AIDS Res Hum Retroviruses. 1993;9(4):291–7.

    CAS  PubMed  Google Scholar 

  • Reszka N, Krol E, Patel AH, Szewczyk B. Effect of tunicamycin on the biogenesis of hepatitis C virus glycoproteins. Acta Biochim Pol. 2010;57(4):541–6. 20101994 [pii].

    CAS  PubMed  Google Scholar 

  • Reynders E, Foulquier F, Annaert W, Matthijs G. How Golgi glycosylation meets and needs trafficking: the case of the COG complex. Glycobiology. 2011;21(7):853–63. doi:10.1093/glycob/cwq179. cwq179 [pii].

    CAS  PubMed  Google Scholar 

  • Robina I, Moreno-Vargas AJ, Carmona AT, Vogel P. Glycosidase inhibitors as potential HIV entry inhibitors? Curr Drug Metab. 2004;5(4):329–61.

    CAS  PubMed  Google Scholar 

  • Ron I, Rapaport D, Horowitz M. Interaction between parkin and mutant glucocerebrosidase variants: a possible link between Parkinson disease and Gaucher disease. Hum Mol Genet. 2010;19(19):3771–81. doi:10.1093/hmg/ddq292. ddq292 [pii].

    CAS  PubMed  Google Scholar 

  • Roseman S. The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem Phys Lipids. 1970;5(1):270–97.

    CAS  PubMed  Google Scholar 

  • Roth J, Zuber C, Park S, Jang I, Lee Y, Kysela KG, et al. Protein N-glycosylation, protein folding, and protein quality control. Mol Cells. 2010;30(6):497–506. doi:10.1007/s10059-010-0159-z.

    CAS  PubMed  Google Scholar 

  • Ruddock LW, Molinari M. N-glycan processing in ER quality control. J Cell Sci. 2006;119(Pt 21):4373–80. doi:10.1242/jcs.03225. 119/21/4373 [pii].

    CAS  PubMed  Google Scholar 

  • Ruiz-Canada C, Kelleher DJ, Gilmore R. Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell. 2009;136(2):272–83. doi:10.1016/j.cell.2008.11.047. S0092-8674(08)01562-6 [pii].

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sandhoff K, Kolter T. Biosynthesis and degradation of mammalian glycosphingolipids. Philos Trans R Soc Lond B Biol Sci. 2003;358(1433):847–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwarz RT, Rohrschneider JM, Schmidt MF. Suppression of glycoprotein formation of Semliki Forest, influenza, and avian sarcoma virus by tunicamycin. J Virol. 1976;19(3):782–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schweden J, Legler G, Bause E. Purification and characterization of a neutral processing mannosidase from calf liver acting on (Man)9(GlcNAc)2 oligosaccharides. Eur J Biochem. 1986;157(3):563–70.

    CAS  PubMed  Google Scholar 

  • Sharma CB, Lehle L, Tanner W. N-Glycosylation of yeast proteins. Characterization of the solubilized oligosaccharyl transferase. Eur J Biochem. 1981;116(1):101–8.

    CAS  PubMed  Google Scholar 

  • Sheikh KA, Sun J, Liu Y, Kawai H, Crawford TO, Proia RL, et al. Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc Natl Acad Sci U S A. 1999;96(13):7532–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sousa MC, Ferrero-Garcia MA, Parodi AJ. Recognition of the oligosaccharide and protein moieties of glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. Biochemistry. 1992;31(1):97–105.

    CAS  PubMed  Google Scholar 

  • Spessott W, Crespo PM, Daniotti JL, Maccioni HJ. Glycosyltransferase complexes improve glycolipid synthesis. FEBS Lett. 2012;586(16):2346–50. doi:10.1016/j.febslet.2012.05.041. S0014-5793(12)00427-9 [pii].

    CAS  PubMed  Google Scholar 

  • Svennerholm L. Composition of gangliosides from human brain. Nature. 1956;177(4507):524–5.

    CAS  PubMed  Google Scholar 

  • Takatsuki A, Tamura G. Effect of tunicamycin on the synthesis of macromolecules in cultures of chick embryo fibroblasts infected with Newcastle disease virus. J Antibiot (Tokyo). 1971a;24(11):785–94.

    CAS  Google Scholar 

  • Takatsuki A, Tamura G. Tunicamycin, a new antibiotic. 3. Reversal of the antiviral activity of tunicamycin by aminosugars and their derivatives. J Antibiot (Tokyo). 1971b;24(4):232–8.

    CAS  Google Scholar 

  • Takatsuki A, Tamura G. Tunicamycin, a new antibiotic. II. Some biological properties of the antiviral activity of tunicamycin. J Antibiot (Tokyo). 1971c;24(4):224–31.

    CAS  Google Scholar 

  • Takatsuki A, Arima K, Tamura G. Tunicamycin, a new antibiotic. I. Isolation and characterization of tunicamycin. J Antibiot (Tokyo). 1971;24(4):215–23.

    CAS  Google Scholar 

  • Tarentino AL, Plummer Jr TH, Maley F. The release of intact oligosaccharides from specific glycoproteins by endo-beta-N-acetylglucosaminidase H. J Biol Chem. 1974;249(3):818–24.

    CAS  PubMed  Google Scholar 

  • Tokunaga F, Brostrom C, Koide T, Arvan P. Endoplasmic reticulum (ER)-associated degradation of misfolded N-linked glycoproteins is suppressed upon inhibition of ER mannosidase I. J Biol Chem. 2000;275(52):40757–64. doi:10.1074/jbc.M001073200. M001073200 [pii].

    CAS  PubMed  Google Scholar 

  • Trombetta SE, Parodi AJ. Purification to apparent homogeneity and partial characterization of rat liver UDP-glucose:glycoprotein glucosyltransferase. J Biol Chem. 1992;267(13):9236–40.

    CAS  PubMed  Google Scholar 

  • Trombetta SE, Bosch M, Parodi AJ. Glucosylation of glycoproteins by mammalian, plant, fungal, and trypanosomatid protozoa microsomal membranes. Biochemistry. 1989;28(20):8108–16.

    CAS  PubMed  Google Scholar 

  • Trombetta SE, Ganan SA, Parodi AJ. The UDP-Glc:glycoprotein glucosyltransferase is a soluble protein of the endoplasmic reticulum. Glycobiology. 1991;1(2):155–61.

    CAS  PubMed  Google Scholar 

  • Van Den Hamer CJ, Morell AG, Scheinberg IH, Hickman J, Ashwell G. Physical and chemical studies on ceruloplasmin. IX. The role of galactosyl residues in the clearance of ceruloplasmin from the circulation. J Biol Chem. 1970;245(17):4397–402.

    Google Scholar 

  • Venier RE, Igdoura SA. Miglustat as a therapeutic agent: prospects and caveats. J Med Genet. 2012;49(9):591–7. doi:10.1136/jmedgenet-2012-101070. jmedgenet-2012-101070 [pii].

    CAS  PubMed  Google Scholar 

  • Vleugels W, Schollen E, Foulquier F, Matthijs G. Screening for OST deficiencies in unsolved CDG-I patients. Biochem Biophys Res Commun. 2009;390(3):769–74. doi:10.1016/j.bbrc.2009.10.047. S0006-291X(09)02025-7 [pii].

    CAS  PubMed  Google Scholar 

  • Volker C, De Praeter CM, Hardt B, Breuer W, Kalz-Fuller B, Van Coster RN, et al. Processing of N-linked carbohydrate chains in a patient with glucosidase I deficiency (CDG type IIb). Glycobiology. 2002;12(8):473–83.

    CAS  PubMed  Google Scholar 

  • Waechter CJ, Lucas JJ, Lennarz WJ. Membrane glycoproteins. I. Enzymatic synthesis of mannosyl phosphoryl polyisoprenol and its role as a mannosyl donor in glycoprotein synthesis. J Biol Chem. 1973;248(21):7570–9.

    CAS  PubMed  Google Scholar 

  • Waheed A, Hasilik A, von Figura K. Processing of the phosphorylated recognition marker in lysosomal enzymes. Characterization and partial purification of a microsomal alpha-N-acetylglucosaminyl phosphodiesterase. J Biol Chem. 1981;256(11):5717–21.

    CAS  PubMed  Google Scholar 

  • Wang J, White AL. Role of calnexin, calreticulin, and endoplasmic reticulum mannosidase I in apolipoprotein(a) intracellular targeting. Biochemistry. 2000;39(30):8993–9000. bi000027v [pii].

    CAS  PubMed  Google Scholar 

  • Wohlfarth C, Efferth T. Natural products as promising drug candidates for the treatment of hepatitis B and C. Acta Pharmacol Sin. 2009;30(1):25–30. doi:10.1038/aps.2008.5. aps20085 [pii].

    CAS  PubMed  Google Scholar 

  • Wrodnigg TM, Steiner AJ, Ueberbacher BJ. Natural and synthetic iminosugars as carbohydrate processing enzyme inhibitors for cancer therapy. Anticancer Agents Med Chem. 2008;8(1):77–85.

    CAS  PubMed  Google Scholar 

  • Yanagisawa M, Liour SS, Yu RK. Involvement of gangliosides in proliferation of immortalized neural progenitor cells. J Neurochem. 2004;91(4):804–12. doi:10.1111/j.1471-4159.2004.02750.x. JNC2750 [pii].

    CAS  PubMed  Google Scholar 

  • Yang LJ, Zeller CB, Shaper NL, Kiso M, Hasegawa A, Shapiro RE, et al. Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc Natl Acad Sci U S A. 1996;93(2):814–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu RK. Gangliosides: structure and analysis. Adv Exp Med Biol. 1984;174:39–53.

    CAS  PubMed  Google Scholar 

  • Yu RK. Development regulation of ganglioside metabolism. Prog Brain Res. 1994;101:31–44.

    CAS  PubMed  Google Scholar 

  • Yu RK, Ando S. Structures of some new complex gangliosides of fish brain. Adv Exp Med Biol. 1980;125:33–45.

    CAS  PubMed  Google Scholar 

  • Yu RK, Ledeen RW. Gangliosides of human, bovine, and rabbit plasma. J Lipid Res. 1972;13(5):680–6.

    CAS  PubMed  Google Scholar 

  • Yu RK, Macala LJ, Taki T, Weinfield HM, Yu FS. Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem. 1988;50(6):1825–9.

    CAS  PubMed  Google Scholar 

  • Yu RK, Bieberich E, Xia T, Zeng G. Regulation of ganglioside biosynthesis in the nervous system. J Lipid Res. 2004;45(5):783–93. doi:10.1194/jlr.R300020-JLR200. R300020-JLR200 [pii].

    CAS  PubMed  Google Scholar 

  • Yu RK, Suzuki Y, Yanagisawa M. Membrane glycolipids in stem cells. FEBS Lett. 2010;584(9):1694–9. doi:10.1016/j.febslet.2009.08.026. S0014-5793(09)00656-5 [pii].

    CAS  PubMed  Google Scholar 

  • Yu RK, Tsai YT, Ariga T. Functional roles of gangliosides in neurodevelopment: an overview of recent advances. Neurochem Res. 2012; 37(6):1230–44.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health R01AG034389 and the National Science Foundation (NSF1121579). We also thank the Department of Neuroscience and Regenerative Medicine (Chair Dr. Lin Mei), Georgia Regents University, Augusta, GA, for institutional support.

Compliance with Ethics Requirements The author, Dr. Erhard Bieberich, declares that he does not have any conflict of interest.

This chapter does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erhard Bieberich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bieberich, E. (2014). Synthesis, Processing, and Function of N-glycans in N-glycoproteins. In: Yu, R., Schengrund, CL. (eds) Glycobiology of the Nervous System. Advances in Neurobiology, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1154-7_3

Download citation

Publish with us

Policies and ethics