Skip to main content

Galectins and Neuroinflammation

  • Chapter
  • First Online:

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 9))

Abstract

Galectins, β-galactoside-binding lectins, play multiple roles in the regulation of immune and inflammatory responses. The major galectins expressed in the CNS are galectins 1, 3, 4, 8, and 9. Under normal physiological conditions, galectins maintain CNS homeostasis by participating in neuronal myelination, neuronal stem cell proliferation, and apical vesicle transport in neuronal cells. In neuronal diseases and different experimental neuroinflammatory disease models, galectins may serve as extracellular mediators or intracellular regulators in controlling the inflammatory response or conferring the remodeling capacity in damaged CNS tissues. In general, galectins 1 and 9 attenuate experimental autoimmune encephalomyelitis (a model of multiple sclerosis), while galectin-3 promotes inflammation in this model. In brain ischemic lesions, both galectins 1 and 3 are induced to help neuronal regeneration. The expression of galectin-1 is required for astrocyte-derived neurotrophic factor secretion, and recombinant galectin-1 promotes neuronal regeneration. Galectin-3 promotes microglial cell proliferation and attenuates ischemic damage and neuronal apoptosis after cerebral ischemia. In amyotrophic lateral sclerosis models, galectin-3 is deleterious to neuroregeneration, while intramuscular administration of oxidized galectin-1 can improve neuromuscular disorders. In axotomy and Wallerian degeneration, galectin-3 helps phagocytosis of macrophages to clear degenerate myelin in the injured PNS or CNS. Thus, galectins are important modulators participating in homeostasis of the CNS and neuroinflammation. Continued investigations of the roles of galectins in neuroinflammation promise to provide a better understanding of the mechanism of this process and lead to new therapeutic approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CNS:

Central nervous system

BBB:

Blood–brain barrier

PAMPs:

Pathogen-associated molecular patterns

PRRs:

Pattern recognition receptors

TCR:

T-cell receptor

MHC:

Major histocompatibility complex

APC:

Antigen-presenting cells

Th:

T helper cell

TFH :

Follicular helper T cell

Treg:

Regulatory T cells

IFN-γ:

Interferon-gamma

EAE:

Experimental autoimmune encephalitis

MS:

Multiple sclerosis

TLRs:

Toll-like receptors

RLRs:

Retinoic acid-inducible gene I-like receptors

NLR:

Nucleotide-binding oligomerization domain-like receptor

BCR:

B-cell receptor

TNF-α:

Tumor necrosis factor-alpha

CCL20:

CC chemokine ligand 20

ROS:

Reactive oxygen species

AA:

Arachidonic acid

5-LO:

5-Lipoxygenase

CRDs:

Carbohydrate-recognition domains

OLG:

Oligodendrocyte

NSCs:

Neural stem cells

MBP:

Myelin basic protein

IL-1β:

Interleukin-1β

References

  • Andersson, U., and Tracey, K.J. (2012a). Neural reflexes in inflammation and immunity. The Journal of experimental medicine 209, 1057–1068.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andersson, U., and Tracey, K.J. (2012b). Reflex principles of immunological homeostasis. Annual review of immunology 30, 313–335.

    Article  CAS  PubMed  Google Scholar 

  • Arima, Y., Harada, M., Kamimura, D., Park, J.H., Kawano, F., Yull, F.E., Kawamoto, T., Iwakura, Y., Betz, U.A., Marquez, G., et al. (2012). Regional neural activation defines a gateway for autoreactive T cells to cross the blood-brain barrier. Cell 148, 447–457.

    Article  CAS  PubMed  Google Scholar 

  • Bazan, N.G., Halabi, A., Ertel, M., and Petasis, N.A. (2012). Chapter 34 - Neuroinflammation. In Basic Neurochemistry (Eighth Edition), T.B. Scott, J.S. George, R.W. Albers, G.J.S.R.W.A. Donald L. PriceA2 - Scott T. Brady, and L.P. Donald, eds. (New York, Academic Press), pp. 610–620.

    Google Scholar 

  • Beutler, B., Eidenschenk, C., Crozat, K., Imler, J.L., Takeuchi, O., Hoffmann, J.A., and Akira, S. (2007). Genetic analysis of resistance to viral infection. Nature reviews Immunology 7, 753–766.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi, M.E. (2007). DAMPs, PAMPs and alarmins: all we need to know about danger. Journal of leukocyte biology 81, 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Bischoff, V., Deogracias, R., Poirier, F., and Barde, Y.-A. (2012). Seizure-induced neuronal death is suppressed in the absence of the endogenous lectin Galectin-1. J Neurosci 32, 15590–15600.

    Article  CAS  PubMed  Google Scholar 

  • Blaser, C., Kaufmann, M., Müller, C., Zimmermann, C., Wells, V., Mallucci, L., and Pircher, H. (1998). Beta-galactoside-binding protein secreted by activated T cells inhibits antigen-induced proliferation of T cells. Eur J Immunol 28, 2311–2319.

    Article  CAS  PubMed  Google Scholar 

  • Bolitho, P., Voskoboinik, I., Trapani, J.A., and Smyth, M.J. (2007). Apoptosis induced by the lymphocyte effector molecule perforin. Current opinion in immunology 19, 339–347.

    Article  CAS  PubMed  Google Scholar 

  • Carson, M.J. (2012). Chapter 33 - Molecular Mechanisms and Consequences of Immune and Nervous System Interactions. In Basic Neurochemistry (Eighth Edition), T.B. Scott, J.S. George, R.W. Albers, G.J.S.R.W.A. Donald L. PriceA2 - Scott T. Brady, and L.P. Donald, eds. (New York, Academic Press), pp. 597–609.

    Google Scholar 

  • Chang-Hong, R., Wada, M., Koyama, S., Kimura, H., Arawaka, S., Kawanami, T., Kurita, K., Kadoya, T., Aoki, M., Itoyama, Y., et al. (2005). Neuroprotective effect of oxidized galectin-1 in a transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol 194, 203–211.

    Article  CAS  PubMed  Google Scholar 

  • Colnot, C., Ripoche, M.A., Scaerou, F., Foulis, D., and Poirier, F. (1996). Galectins in mouse embryogenesis. Biochem Soc Trans 24, 141–146.

    CAS  PubMed  Google Scholar 

  • Comte, I., Kim, Y., Young, C.C., van der Harg, J.M., Hockberger, P., Bolam, P.J., Poirier, F., and Szele, F.G. (2011). Galectin-3 maintains cell motility from the subventricular zone to the olfactory bulb. J Cell Sci 124, 2438–2447.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cooper, D.N.W. (2002). Galectinomics: finding themes in complexity. Biochim Biophys Acta 1572, 209–231.

    Article  CAS  PubMed  Google Scholar 

  • Cua, D.J., Sherlock, J., Chen, Y., Murphy, C.A., Joyce, B., Seymour, B., Lucian, L., To, W., Kwan, S., Churakova, T., et al. (2003). Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748.

    Article  CAS  PubMed  Google Scholar 

  • Cummings, R.D., and Liu, F.T. (2009). Galectins. In Essentials of Glycobiology, A. Varki, R.D. Cummings, J.D. Esko, H.H. Freeze, P. Stanley, C.R. Bertozzi, G.W. Hart, and M.E. Etzler, eds. (Cold Spring Harbor NY, The Consortium of Glycobiology Editors, La Jolla, California).

    Google Scholar 

  • Dagher, S.F., Wang, J.L., and Patterson, R.J. (1995). Identification of galectin-3 as a factor in pre-mRNA splicing. Proc Natl Acad Sci U S A 92, 1213–1217.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dubin, P.J., and Kolls, J.K. (2008). Th17 cytokines and mucosal immunity. Immunological reviews 226, 160–171.

    Article  CAS  PubMed  Google Scholar 

  • Farina, C., Aloisi, F., and Meinl, E. (2007). Astrocytes are active players in cerebral innate immunity. Trends in immunology 28, 138–145.

    Article  CAS  PubMed  Google Scholar 

  • Fazilleau, N., Mark, L., McHeyzer-Williams, L.J., and McHeyzer-Williams, M.G. (2009). Follicular helper T cells: lineage and location. Immunity 30, 324–335.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaudin, J.C., Arar, C., Monsigny, M., and Legrand, A. (1997). Modulation of the expression of the rabbit galectin-3 gene by p53 and c-Ha-ras proteins and PMA. Glycobiology 7, 1089–1098.

    Article  CAS  PubMed  Google Scholar 

  • Gendronneau, G., Sidhu, S.S., Delacour, D., Dang, T., Calonne, C., Houzelstein, D., Magnaldo, T., and Poirier, F. (2008). Galectin-7 in the control of epidermal homeostasis after injury. Mol Biol Cell 19, 5541–5549.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hadari, Y.R., Paz, K., Dekel, R., Mestrovic, T., Accili, D., and Zick, Y. (1995). Galectin-8. A new rat lectin, related to galectin-4. J Biol Chem 270, 3447–3453.

    Article  CAS  PubMed  Google Scholar 

  • Hawkins, B.T., and Davis, T.P. (2005). The blood-brain barrier/neurovascular unit in health and disease. Pharmacological reviews 57, 173–185.

    Article  CAS  PubMed  Google Scholar 

  • Heilmann, S., Hummel, T., Margolis, F.L., Kasper, M., and Witt, M. (2000). Immunohistochemical distribution of galectin-1, galectin-3, and olfactory marker protein in human olfactory epithelium. Histochem Cell Biol 113, 241–245.

    Article  CAS  PubMed  Google Scholar 

  • Heneka, M.T., Kummer, M.P., Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker, A., Griep, A., Axt, D., Remus, A., Tzeng, T.C., et al. (2013). NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678.

    Google Scholar 

  • Heusel, J.W., Wesselschmidt, R.L., Shresta, S., Russell, J.H., and Ley, T.J. (1994). Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76, 977–987.

    Article  CAS  PubMed  Google Scholar 

  • Horie, H., Inagaki, Y., Sohma, Y., Nozawa, R., Okawa, K., Hasegawa, M., Muramatsu, N., Kawano, H., Horie, M., Koyama, H., et al. (1999). Galectin-1 regulates initial axonal growth in peripheral nerves after axotomy. J Neurosci 19, 9964–9974.

    CAS  PubMed  Google Scholar 

  • Horie, H., and Kadoya, T. (2000). Identification of oxidized galectin-1 as an initial repair regulatory factor after axotomy in peripheral nerves. Neurosci Res 38, 131–137.

    Article  CAS  PubMed  Google Scholar 

  • Iadecola, C., and Anrather, J. (2011). The immunology of stroke: from mechanisms to translation. Nat Med 17, 796–808.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Imaizumi, Y., Sakaguchi, M., Morishita, T., Ito, M., Poirier, F., Sawamoto, K., and Okano, H. (2011). Galectin-1 is expressed in early-type neural progenitor cells and down-regulates neurogenesis in the adult hippocampus. Mol Brain 4, 7.

    Article  PubMed Central  PubMed  Google Scholar 

  • Imbe, H., Okamoto, K., Kadoya, T., Horie, H., and Senba, E. (2003). Galectin-1 is involved in the potentiation of neuropathic pain in the dorsal horn. Brain Res 993, 72–83.

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi, S., Kuroiwa, T., Sakaguchi, M., Sun, L., Kadoya, T., Okano, H., and Mizusawa, H. (2007). Galectin-1 regulates neurogenesis in the subventricular zone and promotes functional recovery after stroke. Exp Neurol 207, 302–313.

    Article  CAS  PubMed  Google Scholar 

  • Jack, C.S., Arbour, N., Manusow, J., Montgrain, V., Blain, M., McCrea, E., Shapiro, A., and Antel, J.P. (2005). TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175, 4320–4330.

    Article  CAS  PubMed  Google Scholar 

  • Jha, S., Srivastava, S.Y., Brickey, W.J., Iocca, H., Toews, A., Morrison, J.P., Chen, V.S., Gris, D., Matsushima, G.K., and Ting, J.P. (2010). The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18. The Journal of neuroscience : the official journal of the Society for Neuroscience 30, 15811–15820.

    Article  CAS  Google Scholar 

  • Jiang, H.R., Al Rasebi, Z., Mensah-Brown, E., Shahin, A., Xu, D., Goodyear, C.S., Fukada, S.Y., Liu, F.T., Liew, F.Y., and Lukic, M.L. (2009). Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis. J Immunol 182, 1167–1173.

    Article  CAS  PubMed  Google Scholar 

  • Kadoya, T., Oyanagi, K., Kawakami, E., Hasegawa, M., Inagaki, Y., Sohma, Y., and Horie, H. (2005). Oxidized galectin-1 advances the functional recovery after peripheral nerve injury. Neurosci Lett 380, 284–288.

    Article  CAS  PubMed  Google Scholar 

  • Kajitani, K., Nomaru, H., Ifuku, M., Yutsudo, N., Dan, Y., Miura, T., Tsuchimoto, D., Sakumi, K., Kadoya, T., Horie, H., et al. (2009). Galectin-1 promotes basal and kainate-induced proliferation of neural progenitors in the dentate gyrus of adult mouse hippocampus. Cell Death Differ 16, 417–427.

    Article  CAS  PubMed  Google Scholar 

  • Kipnis, J., Cohen, H., Cardon, M., Ziv, Y., and Schwartz, M. (2004). T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proceedings of the National Academy of Sciences of the United States of America 101, 8180–8185.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kipnis, J., Mizrahi, T., Hauben, E., Shaked, I., Shevach, E., and Schwartz, M. (2002). Neuroprotective autoimmunity: naturally occurring CD4+CD25+ regulatory T cells suppress the ability to withstand injury to the central nervous system. Proceedings of the National Academy of Sciences of the line United States of America 99, 15620–15625.

    Article  CAS  Google Scholar 

  • Koch, A., Poirier, F., Jacob, R., and Delacour, D. (2010). Galectin-3, a novel centrosome-associated protein, required for epithelial morphogenesis. Mol Biol Cell 21, 219–231.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kopitz, J., André, S., von Reitzenstein, C., Versluis, K., Kaltner, H., Pieters, R.J., Wasano, K., Kuwabara, I., Liu, F.-T., Cantz, M., et al. (2003). Homodimeric galectin-7 (p53-induced gene 1) is a negative growth regulator for human neuroblastoma cells. Oncogene 22, 6277–6288.

    Article  CAS  PubMed  Google Scholar 

  • Kurushima, H., Ohno, M., Miura, T., Nakamura, T.Y., Horie, H., Kadoya, T., Ooboshi, H., Kitazono, T., Ibayashi, S., Iida, M., et al. (2005). Selective induction of DeltaFosB in the brain after transient forebrain ischemia accompanied by an increased expression of galectin-1, and the implication of DeltaFosB and galectin-1 in neuroprotection and neurogenesis. Cell Death Differ 12, 1078–1096.

    Article  CAS  PubMed  Google Scholar 

  • Lalancette-Hébert, M., Swarup, V., Beaulieu, J.M., Bohacek, I., Abdelhamid, E., Weng, Y.C., Sato, S., and Kriz, J. (2012). Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury. J Neurosci 32, 10383–10395.

    Article  PubMed  CAS  Google Scholar 

  • Langrish, C.L., Chen, Y., Blumenschein, W.M., Mattson, J., Basham, B., Sedgwick, J.D., McClanahan, T., Kastelein, R.A., and Cua, D.J. (2005). IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. The Journal of experimental medicine 201, 233–240.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lehnardt, S. (2010). Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia 58, 253–263.

    PubMed  Google Scholar 

  • Lerman, B.J., Hoffman, E.P., Sutherland, M.L., Bouri, K., Hsu, D.K., Liu, F.-T., Rothstein, J.D., and Knoblach, S.M. (2012). Deletion of galectin-3 exacerbates microglial activation and accelerates disease progression and demise in a SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Brain Behav 2, 563–575.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lippai, D., Bala, S., Petrasek, J., Csak, T., Levin, I., Kurt-Jones, E.A., and Szabo, G. (2013). Alcohol-induced IL-1beta in the brain is mediated by NLRP3/ASC inflammasome activation that amplifies neuroinflammation. Journal of leukocyte biology 94, 171–182.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu, F.T., Hsu, D.K., Zuberi, R.I., Kuwabara, I., Chi, E.Y., and Henderson, W.R. (1995). Expression and function of galectin-3, a beta-galactoside-binding lectin, in human monocytes and macrophages. Am J Pathol 147, 1016–1028.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu, L., Sakai, T., Sano, N., and Fukui, K. (2004). Nucling mediates apoptosis by inhibiting expression of galectin-3 through interference with nuclear factor kappaB signalling. Biochem J 380, 31–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu, W., Hsu, D.K., Chen, H.-Y., Yang, R.-Y., Carraway, K.L., 3rd, Isseroff, R.R., and Liu, F.-T. (2012). Galectin-3 Regulates Intracellular Trafficking of EGFR through Alix and Promotes Keratinocyte Migration. J Invest Dermatol 132, 2828–2837.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mahanthappa, N.K., Cooper, D.N., Barondes, S.H., and Schwarting, G.A. (1994). Rat olfactory neurons can utilize the endogenous lectin, L-14, in a novel adhesion mechanism. Development 120, 1373–1384.

    CAS  PubMed  Google Scholar 

  • Martinon, F., Burns, K., and Tschopp, J. (2002). The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular cell 10, 417–426.

    Article  CAS  PubMed  Google Scholar 

  • McGraw, J., Gaudet, A.D., Oschipok, L.W., Kadoya, T., Horie, H., Steeves, J.D., Tetzlaff, W., and Ramer, M.S. (2005). Regulation of neuronal and glial galectin-1 expression by peripheral and central axotomy of rat primary afferent neurons. Exp Neurol 195, 103–114.

    Article  CAS  PubMed  Google Scholar 

  • McGraw, J., McPhail, L.T., Oschipok, L.W., Horie, H., Poirier, F., Steeves, J.D., Ramer, M.S., and Tetzlaff, W. (2004). Galectin-1 in regenerating motoneurons. Eur J Neurosci 20, 2872–2880.

    Article  CAS  PubMed  Google Scholar 

  • Mensah-Brown, E.P.K., Al Rabesi, Z., Shahin, A., Al Shamsi, M., Arsenijevic, N., Hsu, D.K., Liu, F.-T., and Lukic, M.L. (2009). Targeted disruption of the galectin-3 gene results in decreased susceptibility to multiple low dose streptozotocin-induced diabetes in mice. Clin Immunol 130, 83–88.

    Article  CAS  PubMed  Google Scholar 

  • Mina-Osorio, P., Rosas-Ballina, M., Valdes-Ferrer, S.I., Al-Abed, Y., Tracey, K.J., and Diamond, B. (2012). Neural signaling in the spleen controls B-cell responses to blood-borne antigen. Mol Med 18, 618–627.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mishra, R., Grzybek, M., Niki, T., Hirashima, M., and Simons, K. (2010). Galectin-9 trafficking regulates apical-basal polarity in Madin-Darby canine kidney epithelial cells. Proc Natl Acad Sci U S A 107, 17633–17638.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mrass, P., and Weninger, W. (2006). Immune cell migration as a means to control immune privilege: lessons from the CNS and tumors. Immunological reviews 213, 195–212.

    Article  PubMed  Google Scholar 

  • Narciso, M.S., Mietto, B.d.S., Marques, S.A., Soares, C.P., Mermelstein, C.d.S., El-Cheikh, M.C., and Martinez, A.M.B. (2009). Sciatic nerve regeneration is accelerated in galectin-3 knockout mice. Exp Neurol 217, 7–15.

    Google Scholar 

  • Novak, R., Dabelic, S., and Dumic, J. (2012). Galectin-1 and galectin-3 expression profiles in classically and alternatively activated human macrophages. Biochim Biophys Acta 1820, 1383–1390.

    Article  CAS  PubMed  Google Scholar 

  • O’Shea, J.J., and Paul, W.E. (2010). Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327, 1098–1102.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Offner, H., Celnik, B., Bringman, T.S., Casentini-Borocz, D., Nedwin, G.E., and Vandenbark, A.A. (1990). Recombinant human beta-galactoside binding lectin suppresses clinical and histological signs of experimental autoimmune encephalomyelitis. J Neuroimmunol 28, 177–184.

    Article  CAS  PubMed  Google Scholar 

  • Ohshima, S., Kuchen, S., Seemayer, C.A., Kyburz, D., Hirt, A., Klinzing, S., Michel, B.A., Gay, R.E., Liu, F.-T., Gay, S., et al. (2003). Galectin 3 and its binding protein in rheumatoid arthritis. Arthritis Rheum 48, 2788–2795.

    Article  CAS  PubMed  Google Scholar 

  • Olson, J.K., and Miller, S.D. (2004). Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 173, 3916–3924.

    Article  CAS  PubMed  Google Scholar 

  • Owens, T., Wekerle, H., and Antel, J. (2001). Genetic models for CNS inflammation. Nat Med 7, 161–166.

    Article  CAS  PubMed  Google Scholar 

  • Park, J.W., Voss, P.G., Grabski, S., Wang, J.L., and Patterson, R.J. (2001). Association of galectin-1 and galectin-3 with Gemin4 in complexes containing the SMN protein. Nucleic Acids Res 29, 3595–3602.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paron, I., Scaloni, A., Pines, A., Bachi, A., Liu, F.T., Puppin, C., Pandolfi, M., Ledda, L., Di Loreto, C., Damante, G., et al. (2003). Nuclear localization of Galectin-3 in transformed thyroid cells: a role in transcriptional regulation. Biochem Biophys Res Commun 302, 545–553.

    Article  CAS  PubMed  Google Scholar 

  • Pasquini, L.A., Millet, V., Hoyos, H.C., Giannoni, J.P., Croci, D.O., Marder, M., Liu, F.T., Rabinovich, G.A., and Pasquini, J.M. (2011). Galectin-3 drives oligodendrocyte differentiation to control myelin integrity and function. Cell Death Differ 18, 1746–1756.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peters, P.J., Borst, J., Oorschot, V., Fukuda, M., Krahenbuhl, O., Tschopp, J., Slot, J.W., and Geuze, H.J. (1991). Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. The Journal of experimental medicine 173, 1099–1109.

    Article  CAS  PubMed  Google Scholar 

  • Plachta, N., Annaheim, C., Bissière, S., Lin, S., Rüegg, M., Hoving, S., Müller, D., Poirier, F., Bibel, M., and Barde, Y.-A. (2007). Identification of a lectin causing the degeneration of neuronal processes using engineered embryonic stem cells. Nat Neurosci 10, 712–719.

    Article  CAS  PubMed  Google Scholar 

  • Poirier, F., and Robertson, E.J. (1993). Normal development of mice carrying a null mutation in the gene encoding the L14 S-type lectin. Development 119, 1229–1236.

    CAS  PubMed  Google Scholar 

  • Polyak, K., Xia, Y., Zweier, J.L., Kinzler, K.W., and Vogelstein, B. (1997). A model for p53-induced apoptosis. Nature 389, 300–305.

    Article  CAS  PubMed  Google Scholar 

  • Qu, W.-S., Wang, Y.-H., Ma, J.-F., Tian, D.-S., Zhang, Q., Pan, D.-J., Yu, Z.-Y., Xie, M.-J., Wang, J.-P., and Wang, W. (2011). Galectin-1 attenuates astrogliosis-associated injuries and improves recovery of rats following focal cerebral ischemia. J Neurochem 116, 217–226.

    Article  CAS  PubMed  Google Scholar 

  • Radosavljevic, G., Volarevic, V., Jovanovic, I., Milovanovic, M., Pejnovic, N., Arsenijevic, N., Hsu, D.K., and Lukic, M.L. (2012). The roles of Galectin-3 in autoimmunity and tumor progression. Immunol Res 52, 100–110.

    Article  CAS  PubMed  Google Scholar 

  • Ramos, H.J., Lanteri, M.C., Blahnik, G., Negash, A., Suthar, M.S., Brassil, M.M., Sodhi, K., Treuting, P.M., Busch, M.P., Norris, P.J., et al. (2012). IL-1beta signaling promotes CNS-intrinsic immune control of West Nile virus infection. PLoS pathogens 8, e1003039.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ransohoff, R.M., and Brown, M.A. (2012). Innate immunity in the central nervous system. The Journal of clinical investigation 122, 1164–1171.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reboldi, A., Coisne, C., Baumjohann, D., Benvenuto, F., Bottinelli, D., Lira, S., Uccelli, A., Lanzavecchia, A., Engelhardt, B., and Sallusto, F. (2009). C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nature immunology 10, 514–523.

    Article  CAS  PubMed  Google Scholar 

  • Reichert, F., and Rotshenker, S. (1999). Galectin-3/MAC-2 in experimental allergic encephalomyelitis. Exp Neurol 160, 508–514.

    Article  CAS  PubMed  Google Scholar 

  • Reichert, F., Saada, A., and Rotshenker, S. (1994). Peripheral nerve injury induces Schwann cells to express two macrophage phenotypes: phagocytosis and the galactose-specific lectin MAC-2. J Neurosci 14, 3231–3245.

    CAS  PubMed  Google Scholar 

  • Rosas-Ballina, M., Olofsson, P.S., Ochani, M., Valdes-Ferrer, S.I., Levine, Y.A., Reardon, C., Tusche, M.W., Pavlov, V.A., Andersson, U., Chavan, S., et al. (2011). Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101.

    Article  CAS  PubMed  Google Scholar 

  • Rotshenker, S. (2011). Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation 8, 109.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakaguchi, M., Arruda-Carvalho, M., Kang, N.H., Imaizumi, Y., Poirier, F., Okano, H., and Frankland, P.W. (2011). Impaired spatial and contextual memory formation in galectin-1 deficient mice. Mol Brain 4, 33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakaguchi, M., Imaizumi, Y., and Okano, H. (2007). Expression and function of galectin-1 in adult neural stem cells. Cell Mol Life Sci 64, 1254–1258.

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi, M., Shingo, T., Shimazaki, T., Okano, H.J., Shiwa, M., Ishibashi, S., Oguro, H., Ninomiya, M., Kadoya, T., Horie, H., et al. (2006). A carbohydrate-binding protein, Galectin-1, promotes proliferation of adult neural stem cells. Proc Natl Acad Sci U S A 103, 7112–7117.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakaguchi, S., Yamaguchi, T., Nomura, T., and Ono, M. (2008). Regulatory T cells and immune tolerance. Cell 133, 775–787.

    Article  CAS  PubMed  Google Scholar 

  • Sancho, D., and Reis e Sousa, C. (2012). Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annual review of immunology 30, 491–529.

    Google Scholar 

  • Savarin, C., and Bergmann, C.C. (2008). Neuroimmunology of central nervous system viral infections: the cells, molecules and mechanisms involved. Current opinion in pharmacology 8, 472–479.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwartz, M., and Kipnis, J. (2011). A conceptual revolution in the relationships between the brain and immunity. Brain, behavior, and immunity 25, 817–819.

    Article  PubMed Central  PubMed  Google Scholar 

  • Seil, F.J. (2001). Interactions between cerebellar Purkinje cells and their associated astrocytes. Histology and histopathology 16, 955–968.

    CAS  PubMed  Google Scholar 

  • Seo, T.B., Chang, I.A., Lee, J.H., and Namgung, U. (2013). Beneficial function of cell division cycle 2 activity in astrocytes on axonal regeneration after spinal cord injury. Journal of neurotrauma 30, 1053–1061.

    Article  PubMed  Google Scholar 

  • Shevach, E.M., DiPaolo, R.A., Andersson, J., Zhao, D.M., Stephens, G.L., and Thornton, A.M. (2006). The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunological reviews 212, 60–73.

    Article  CAS  PubMed  Google Scholar 

  • Stancic, M., Slijepcevic, D., Nomden, A., Vos, M.J., de Jonge, J.C., Sikkema, A.H., Gabius, H.-J., Hoekstra, D., and Baron, W. (2012). Galectin-4, a novel neuronal regulator of myelination. Glia 60, 919–935.

    Article  PubMed  Google Scholar 

  • Stancic, M., van Horssen, J., Thijssen, V.L., Gabius, H.-J., van der Valk, P., Hoekstra, D., and Baron, W. (2011). Increased expression of distinct galectins in multiple sclerosis lesions. Neuropathol Appl Neurobiol 37, 654–671.

    Article  CAS  PubMed  Google Scholar 

  • Straube, T., von Mach, T., Hönig, E., Greb, C., Schneider, D., and Jacob, R. (2013). PH-dependent recycling of galectin-3 at the apical membrane of epithelial cells. Traffic.

    Google Scholar 

  • Takaku, S., Yanagisawa, H., Watabe, K., Horie, H., Kadoya, T., Sakumi, K., Nakabeppu, Y., Poirier, F., and Sango, K. (2013). GDNF promotes neurite outgrowth and upregulates galectin-1 through the RET/PI3K signaling in cultured adult rat dorsal root ganglion neurons. Neurochem Int 62, 330–339.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi, O., and Akira, S. (2009). Innate immunity to virus infection. Immunological reviews 227, 75–86.

    Article  CAS  PubMed  Google Scholar 

  • Thomsen, M.K., Hansen, G.H., and Danielsen, E.M. (2009). Galectin-2 at the enterocyte brush border of the small intestine. Mol Membr Biol 26, 347–355.

    Article  CAS  PubMed  Google Scholar 

  • Toscano, M.A., Bianco, G.A., Ilarregui, J.M., Croci, D.O., Correale, J., Hernandez, J.D., Zwirner, N.W., Poirier, F., Riley, E.M., Baum, L.G., et al. (2007). Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat Immunol 8, 825–834.

    Article  CAS  PubMed  Google Scholar 

  • Velasco, S., Díez-Revuelta, N., Hernández-Iglesias, T., Kaltner, H., André, S., Gabius, H.-J., and Abad-Rodríguez, J. (2013). Neuronal Galectin-4 is required for axon growth and for the organization of axonal membrane L1 delivery and clustering. J Neurochem 125, 49–62.

    Article  CAS  PubMed  Google Scholar 

  • Vidal, P.M., Lemmens, E., Dooley, D., and Hendrix, S. (2013). The role of “anti-inflammatory” cytokines in axon regeneration. Cytokine & growth factor reviews 24, 1–12.

    Article  CAS  Google Scholar 

  • Wei, Q., Eviatar-Ribak, T., Miskimins, W.K., and Miskimins, R. (2007). Galectin-4 is involved in p27-mediated activation of the myelin basic protein promoter. J Neurochem 101, 1214–1223.

    Article  CAS  PubMed  Google Scholar 

  • Willing, A., and Friese, M.A. (2012). CD8-mediated inflammatory central nervous system disorders. Current opinion in neurology 25, 316–321.

    Article  CAS  PubMed  Google Scholar 

  • Wolf, S.A., Steiner, B., Akpinarli, A., Kammertoens, T., Nassenstein, C., Braun, A., Blankenstein, T., and Kempermann, G. (2009a). CD4-positive T lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J Immunol 182, 3979–3984.

    Article  CAS  PubMed  Google Scholar 

  • Wolf, S.A., Steiner, B., Wengner, A., Lipp, M., Kammertoens, T., and Kempermann, G. (2009b). Adaptive peripheral immune response increases proliferation of neural precursor cells in the adult hippocampus. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 23, 3121–3128.

    Article  CAS  Google Scholar 

  • Yamane, J., Nakamura, M., Iwanami, A., Sakaguchi, M., Katoh, H., Yamada, M., Momoshima, S., Miyao, S., Ishii, K., Tamaoki, N., et al. (2010). Transplantation of galectin-1-expressing human neural stem cells into the injured spinal cord of adult common marmosets. J Neurosci Res 88, 1394–1405.

    CAS  PubMed  Google Scholar 

  • Yan, Y.-P., Lang, B.T., Vemuganti, R., and Dempsey, R.J. (2009). Galectin-3 mediates post-ischemic tissue remodeling. Brain Res 1288, 116–124.

    Article  CAS  PubMed  Google Scholar 

  • Yang, R.-Y., Hsu, D.K., Yu, L., Chen, H.-Y., and Liu, F.-T. (2004). Galectin-12 is required for adipogenic signaling and adipocyte differentiation. J Biol Chem 279, 29761–29766.

    Article  CAS  PubMed  Google Scholar 

  • Ye, Z., and Ting, J.P. (2008). NLR, the nucleotide-binding domain leucine-rich repeat containing gene family. Current opinion in immunology 20, 3–9.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, H., Imaizumi, T., Kumagai, M., Kimura, K., Satoh, C., Hanada, N., Fujimoto, K., Nishi, N., Tanji, K., Matsumiya, T., et al. (2001). Interleukin-1beta stimulates galectin-9 expression in human astrocytes. Neuroreport 12, 3755–3758.

    Article  CAS  PubMed  Google Scholar 

  • Yu, F., Finley, R.L., Jr., Raz, A., and Kim, H.R. (2002). Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation. J Biol Chem 277, 15819–15827.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, C., Anderson, A.C., Schubart, A., Xiong, H., Imitola, J., Khoury, S.J., Zheng, X.X., Strom, T.B., and Kuchroo, V.K. (2005). The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6, 1245–1252.

    Article  CAS  PubMed  Google Scholar 

  • Ziv, Y., Ron, N., Butovsky, O., Landa, G., Sudai, E., Greenberg, N., Cohen, H., Kipnis, J., and Schwartz, M. (2006). Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nature neuroscience 9, 268–275.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Tong Liu M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chen, HL., Liao, F., Lin, TN., Liu, FT. (2014). Galectins and Neuroinflammation. In: Yu, R., Schengrund, CL. (eds) Glycobiology of the Nervous System. Advances in Neurobiology, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1154-7_24

Download citation

Publish with us

Policies and ethics