Skip to main content

Ganglioside Storage Diseases: On the Road to Management

  • Chapter
  • First Online:
Glycobiology of the Nervous System

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 9))

Abstract

Although the biochemical and genetic basis for the GM1 and GM2 gangliosidoses has been known for decades, effective therapies for these diseases remain in early stages of development. The difficulty with many therapeutic strategies for treating the gangliosidoses comes largely from their inability to remove stored ganglioside once it accumulates in central nervous system (CNS) neurons and glia. This chapter highlights advances made using substrate reduction therapy and gene therapy in reducing CNS ganglioside storage. Information obtained from mouse and feline models provides insight on therapeutic strategies that could be effective in human clinical trials. In addition, information is presented showing how a calorie-restricted diet might facilitate therapeutic drug delivery to the CNS. The development of multiple new therapeutic approaches offers hope that longer-term management of these diseases can be achieved. It is also clear that multiple therapeutic strategies will likely be needed to provide the most complete management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6S-NBI-DGJ:

Bicyclic 1-deoxygalactonojirimycin

AAV:

Adeno-associated virus

AL:

Ad libitum

CB:

Cerebroside

CNS:

Central nervous system

CR:

Caloric restriction

GalCer:

Galactosylceramide

GlcCer:

Glucosylceramide

GlcT:

Glucosyltransferase-1

GSL:

Glycosphingolipid

KD-R:

Restricted ketogenic diet

LacCer:

Lactosylceramide

NB-DGJ:

N-butyldeoxygalactonojirimycin

NB-DNJ:

N-butyldeoxynojirimycin

NN-DGJ:

N-nonyl-deoxygalactonojirimycin

PDMP:

d-threo-1-phenyl-2-decanoylamino-3-morpholino-propanol

PNS:

Peripheral nervous system

SD:

Sandhoff disease

SRT:

Substrate reduction therapy

TSD:

Tay-Sachs disease

References

  • Andersson U, Smith D, Jeyakumar M, Butters TD, Borja MC, Dwek RA, et al. Improved outcome of N-butyldeoxygalactonojirimycin-mediated substrate reduction therapy in a mouse model of Sandhoff disease. Neurobiol Dis. 2004;16(3):506–15.

    Article  CAS  PubMed  Google Scholar 

  • Arthur JR, Lee JP, Snyder EY, Seyfried TN. Therapeutic effects of stem cells and substrate reduction in juvenile Sandhoff mice. Neurochem Res. 2012;37(6):1335–43.

    Article  CAS  PubMed  Google Scholar 

  • Arthur JR, Wilson MW, Larsen SD, Rockwell HE, Shayman JA, Seyfried TN. Ethylenedioxy-PIP2 oxalate reduces ganglioside storage in juvenile Sandhoff disease mice. Neurochem Res. 2013;38(4):866–75. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed  Google Scholar 

  • Badie B, Schartner JM, Hagar AR, Prabakaran S, Peebles TR, Bartley B, et al. Microglia cyclooxygenase-2 activity in experimental gliomas: possible role in cerebral edema formation. Clin Cancer Res. 2003;9(2):872–7.

    CAS  PubMed  Google Scholar 

  • Baek RC, Kasperzyk JL, Platt FM, Seyfried TN. N-butyldeoxygalactonojirimycin reduces brain ganglioside and GM2 content in neonatal Sandhoff disease mice. J Neurochem. 2004;90 Suppl 1:89.

    Google Scholar 

  • Baek RC, Kasperzyk JL, Platt FM, Seyfried TN. N-butyldeoxygalactonojirimycin reduces brain ganglioside and GM2 content in neonatal Sandhoff disease mice. Neurochem Int. 2008;52(6):1125–33.

    Article  CAS  PubMed  Google Scholar 

  • Baek RC, Martin DR, Cox NR, Seyfried TN. Comparative analysis of brain lipids in mice, cats, and humans with Sandhoff disease. Lipids. 2009;44(3):197–205.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baek RC, Broekman ML, Leroy SG, Tierney LA, Sandberg MA, d’Azzo A, et al. AAV-mediated gene delivery in adult GM1-gangliosidosis mice corrects lysosomal storage in CNS and improves survival. PLoS One. 2010;5(10):e13468. Research Support, N.I.H., Extramural.

    Article  PubMed Central  PubMed  Google Scholar 

  • Baker Jr HJ, Lindsey JR, McKhann GM, Farrell DF. Neuronal GM1 gangliosidosis in a Siamese cat with beta-galactosidase deficiency. Science. 1971;174(4011):838–9. New York, NY.

    Article  CAS  PubMed  Google Scholar 

  • Bradbury AM, Cochran JN, McCurdy VJ, Johnson AK, Brunson BL, Gray-Edwards H, et al. Therapeutic response in feline sandhoff disease despite immunity to intracranial gene therapy. Mol Ther. 2013;21(7):1306–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brigande JV, Platt FM, Seyfried TN. Inhibition of glycosphingolipid biosynthesis does not impair growth or morphogenesis of the postimplantation mouse embryo. J Neurochem. 1998;70:871–82.

    Article  CAS  PubMed  Google Scholar 

  • Broekman ML, Baek RC, Comer LA, Fernandez JL, Seyfried TN, Sena-Esteves M. Complete correction of enzymatic deficiency and neurochemistry in the GM1-gangliosidosis mouse brain by Neonatal Adeno-associated virus-mediated gene delivery. Mol Ther. 2007;15(1):30–7.

    Article  CAS  PubMed  Google Scholar 

  • Butters TD, Dwek RA, Platt FM. Therapeutic applications of imino sugars in lysosomal storage disorders. Curr Top Med Chem. 2003;3(5):561–74.

    Article  CAS  PubMed  Google Scholar 

  • Cachon-Gonzalez MB, Wang SZ, Lynch A, Ziegler R, Cheng SH, Cox TM. Effective gene therapy in an authentic model of Tay-Sachs-related diseases. Proc Natl Acad Sci U S A. 2006;103(27):10373–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cachon-Gonzalez MB, Wang SZ, McNair R, Bradley J, Lunn D, Ziegler R, et al. Gene transfer corrects acute GM2 gangliosidosis–potential therapeutic contribution of perivascular enzyme flow. Mol Ther. 2012;20(8):1489–500. Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chavany C, Jendoubi M. Biology and potential strategies for the treatment of GM2 gangliosidoses. Mol Med Today. 1998;4(4):158–65.

    Article  CAS  PubMed  Google Scholar 

  • Chen JZ, Gokden N, Greene GF, Green B, Kadlubar FF. Simultaneous generation of multiple mitochondrial DNA mutations in human prostate tumors suggests mitochondrial hyper-mutagenesis. Carcinogenesis. 2003;24(9):1481–7.

    Article  CAS  PubMed  Google Scholar 

  • Cork LC, Munnell JF, Lorenz MD, Murphy JV, Baker HJ, Rattazzi MC. GM2 ganglioside lysosomal storage disease in cats with beta-hexosaminidase deficiency. Science. 1977;196(4293):1014–7. New York, NY.

    Article  CAS  PubMed  Google Scholar 

  • Denny CA, Kasperzyk JL, Gorham KN, Bronson RT, Seyfried TN. Influence of caloric restriction on motor behavior, longevity, and brain lipid composition in Sandhoff disease mice. J Neurosci Res. 2006;83(6):1028–38.

    Article  CAS  PubMed  Google Scholar 

  • Denny CA, Alroy J, Pawlyk BS, Sandberg MA, d’Azzo A, Seyfried TN. Neurochemical, morphological, and neurophysiological abnormalities in retinas of Sandhoff and GM1 gangliosidosis mice. J Neurochem. 2007;101(5):1294–302.

    Article  CAS  PubMed  Google Scholar 

  • Denny CA, Heinecke KA, Kim YP, Baek RC, Loh KS, Butters TD, et al. Restricted ketogenic diet enhances the therapeutic action of N-butyldeoxynojirimycin towards brain GM2 accumulation in adult Sandhoff disease mice. J Neurochem. 2010;113(6):1525–35.

    CAS  PubMed  Google Scholar 

  • Duan W, Guo Z, Jiang H, Ware M, Li XJ, Mattson MP. Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc Natl Acad Sci U S A. 2003;100(5):2911–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ebato H, Seyfried TN, Yu RK. Biochemical study of heterosis for brain myelin content in mice. J Neurochem. 1983;40(2):440–6.

    Article  CAS  PubMed  Google Scholar 

  • Ellinwood NM, Vite CH, Haskins ME. Gene therapy for lysosomal storage diseases: the lessons and promise of animal models. J Gene Med. 2004;6(5):481–506.

    Article  CAS  PubMed  Google Scholar 

  • Fischer PB, Collin M, Karlsson GB, James W, Butters TD, Davis SJ, et al. The alpha-glucosidase inhibitor N-butyldeoxynojirimycin inhibits human immunodeficiency virus entry at the level of post-CD4 binding. J Virol. 1995;69(9):5791–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Folkerth RD, Alroy J, Bhan I, Kaye EM. Infantile G(M1) gangliosidosis: complete morphology and histochemistry of two autopsy cases, with particular reference to delayed central nervous system myelination. Pediatr Dev Pathol. 2000;3(1):73–86.

    Article  CAS  PubMed  Google Scholar 

  • Freeman JM, Kossoff EH. Ketosis and the ketogenic diet, 2010: advances in treating epilepsy and other disorders. Adv Pediatr. 2010;57(1):315–29.

    Article  PubMed  Google Scholar 

  • Giraudo CG, Maccioni HJ. Ganglioside glycosyltransferases organize in distinct multienzyme complexes in CHO-K1 cells. J Biol Chem. 2003;278(41):40262–71.

    Article  CAS  PubMed  Google Scholar 

  • Gravel RA, Clarke JTR, Kaback MM, Mahuran D, Sandhoff K, Suzuki K. The GM2 gangliosidoses. In: Scriver CR, Beaudet al, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease. 7th ed. New York: McGraw-Hill, Inc; 1995. p. 2839–79.

    Google Scholar 

  • Greene AE, Todorova MT, McGowan R, Seyfried TN. Caloric restriction inhibits seizure susceptibility in epileptic EL mice by reducing blood glucose. Epilepsia. 2001;42(11):1371–8.

    Article  CAS  PubMed  Google Scholar 

  • Greene AE, Todorova MT, Seyfried TN. Perspectives on the metabolic management of epilepsy through dietary reduction of glucose and elevation of ketone bodies. J Neurochem. 2003;86(3):529–37.

    Article  CAS  PubMed  Google Scholar 

  • Hahn CN, del Pilar MM, Schroder M, Vanier MT, Hara Y, Suzuki K, et al. Generalized CNS disease and massive GM1-ganglioside accumulation in mice defective in lysosomal acid beta-galactosidase. Hum Mol Genet. 1997;6(2):205–11.

    Article  CAS  PubMed  Google Scholar 

  • Hauser EC, Kasperzyk JL, d’Azzo A, Seyfried TN. Inheritance of lysosomal acid beta-galactosidase activity and gangliosides in crosses of DBA/2J and knockout mice. Biochem Genet. 2004;42(7–8):241–57.

    Article  CAS  PubMed  Google Scholar 

  • Hayase T, Shimizu J, Goto T, Nozaki Y, Mori M, Takahashi N, et al. Unilaterally and rapidly progressing white matter lesion and elevated cytokines in a patient with Tay-Sachs disease. Brain Dev. 2010;32(3):244–7. Case Reports.

    Article  PubMed  Google Scholar 

  • Jeyakumar M, Butters TD, Cortina-Borja M, Hunnam V, Proia RL, Perry VH, et al. Delayed symptom onset and increased life expectancy in Sandhoff disease mice treated with N-butyldeoxynojirimycin. Proc Natl Acad Sci U S A. 1999;96(11):6388–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jeyakumar M, Smith D, Eliott-Smith E, Cortina-Borja M, Reinkensmeier G, Butters TD, et al. An inducible mouse model of late onset Tay-Sachs disease. Neurobiol Dis. 2002;10(3):201–10.

    Article  CAS  PubMed  Google Scholar 

  • Jeyakumar M, Thomas R, Elliot-Smith E, Smith DA, van der Spoel AC, d’Azzo A, et al. Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. Brain. 2003;126(Pt 4):974–87.

    Article  CAS  PubMed  Google Scholar 

  • Kasperzyk JL, El-Abbadi MM, Hauser EC, D’Azzo A, Platt FM, Seyfried TN. N-butyldeoxygalactonojirimycin reduces neonatal brain ganglioside content in a mouse model of GM1 gangliosidosis. J Neurochem. 2004;89(3):645–53.

    Article  CAS  PubMed  Google Scholar 

  • Kasperzyk JL, d’Azzo A, Platt FM, Alroy J, Seyfried TN. Substrate reduction reduces gangliosides in postnatal cerebrum-brainstem and cerebellum in GM1 gangliosidosis mice. J Lipid Res. 2005;46(4):744–51.

    Article  CAS  PubMed  Google Scholar 

  • Kaye EM, Alroy J, Raghavan SS, Schwarting GA, Adelman LS, Runge V, et al. Dysmyelinogenesis in animal model of GM1 gangliosidosis. Pediatr Neurol. 1992;8(4):255–61.

    Article  CAS  PubMed  Google Scholar 

  • Klima H, Tanaka A, Schnabel D, Nakano T, Schroder M, Suzuki K, et al. Characterization of full-length cDNAs and the gene coding for the human GM2 activator protein. FEBS Lett. 1991;289(2):260–4. Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.

    Article  CAS  PubMed  Google Scholar 

  • Kolodny EH, Neudorfer O, Gianutsos J, Zaroff C, Barnett N, Zeng B, et al. Late-onset Tay-Sachs disease: Natural history and treatment with OGT 918. J Neurochem 2004 (Suppl.) (in press).

    Google Scholar 

  • Kossoff EH, Hartman AL. Ketogenic diets: new advances for metabolism-based therapies. Curr Opin Neurol. 2012;25(2):173–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kroll RA, Pagel MA, Roman-Goldstein S, Barkovich AJ, D’Agostino AN, Neuwelt EA. White matter changes associated with feline GM2 gangliosidosis (Sandhoff disease): correlation of MR findings with pathologic and ultrastructural abnormalities. AJNR Am J Neuroradiol. 1995;16(6):1219–26.

    CAS  PubMed  Google Scholar 

  • Kyrkanides S, Miller JH, Brouxhon SM, Olschowka JA, Federoff HJ. Beta-hexosaminidase lentiviral vectors: transfer into the CNS via systemic administration. Brain Res Mol Brain Res. 2005;133(2):286–98.

    Article  CAS  PubMed  Google Scholar 

  • Kyrkanides S, Yang M, Tallents RH, Miller JN, Brouxhon SM, Olschowka JA. The trigeminal retrograde transfer pathway in the treatment of neurodegeneration. J Neuroimmunol. 2009;209(1–2):139–42. Research Support, N.I.H., Extramural.

    Article  CAS  PubMed  Google Scholar 

  • Lachmann RH. Miglustat. Oxford glycosciences/actelion. Curr Opin Investig Drugs. 2003;4(4):472–9.

    CAS  PubMed  Google Scholar 

  • Lacorazza HD, Flax JD, Snyder EY, Jendoubi M. Expression of human beta-hexosaminidase alpha-subunit gene (the gene defect of Tay-Sachs disease) in mouse brains upon engraftment of transduced progenitor cells. Nat Med. 1996;2(4):424–9.

    Article  CAS  PubMed  Google Scholar 

  • Larsen SD, Wilson MW, Abe A, Shu L, George CH, Kirchhoff P, et al. Property-based design of a glucosylceramide synthase inhibitor that reduces glucosylceramide in the brain. J Lipid Res. 2012;53(2):282–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JP, Jeyakumar M, Gonzalez R, Takahashi H, Lee PJ, Baek RC, et al. Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nat Med. 2007;13(4):439–47.

    Article  CAS  PubMed  Google Scholar 

  • Lee MC, El-Abbadi M, Orosz CG, Yates AJ, Seyfried TN. A spontaneous metastatic brain tumor in the VM mouse: histological characteristics and ganglioside composition. 1998 (submitted).

    Google Scholar 

  • Li SC, Nakamura T, Ogamo A, Li YT. Evidence for the presence of two separate protein activators for the enzymic hydrolysis of GM1 and GM2 gangliosides. J Biol Chem. 1979;254(21):10592–5. Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.

    CAS  PubMed  Google Scholar 

  • Martin DR, Krum BK, Varadarajan GS, Hathcock TL, Smith BF, Baker HJ. An inversion of 25 base pairs causes feline GM2 gangliosidosis variant. Exp Neurol. 2004;187(1):30–7. Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.

    Article  CAS  PubMed  Google Scholar 

  • Martin DR, Rigat BA, Foureman P, Varadarajan GS, Hwang M, Krum BK, et al. Molecular consequences of the pathogenic mutation in feline GM1 gangliosidosis. Mol Genet Metab. 2008;94(2):212–21. Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McNally MA, Baek RC, Avila RL, Seyfried TN, Strichartz GR, Kirschner DA. Peripheral nervous system manifestations in a Sandhoff disease mouse model: nerve conduction, myelin structure, lipid analysis. J Negat Results Biomed. 2007;6:8. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t.

    Article  PubMed Central  PubMed  Google Scholar 

  • Migita M, Medin JA, Pawliuk R, Jacobson S, Nagle JW, Anderson S, et al. Selection of transduced CD34+ progenitors and enzymatic correction of cells from Gaucher patients, with bicistronic vectors. Proc Natl Acad Sci U S A. 1995;92(26):12075–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moyses C. Substrate reduction therapy: clinical evaluation in type 1 Gaucher disease. Philos Trans R Soc Lond B Biol Sci. 2003;358(1433):955–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mulrooney TJ, Marsh J, Urits I, Seyfried TN, Mukherjee P. Influence of caloric restriction on constitutive expression of NF-kappaB in an experimental mouse astrocytoma. PLoS One. 2011;6(3):e18085.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Myerowitz R, Lawson D, Mizukami H, Mi Y, Tifft CJ, Proia RL. Molecular pathophysiology in Tay-Sachs and Sandhoff diseases as revealed by gene expression profiling. Hum Mol Genet. 2002;11(11):1343–50.

    Article  CAS  PubMed  Google Scholar 

  • Neises GR, Woodman PG, Butters TD, Ornberg RL, Platt FM. Ultrastructural changes in the Golgi apparatus and secretory granules of HL-60 cells treated with the imino sugar N-butyldeoxynojirimycin. Biol Cell. 1997;89(2):123–31.

    Article  CAS  PubMed  Google Scholar 

  • Norflus F, Tifft CJ, McDonald MP, Goldstein G, Crawley JN, Hoffmann A, et al. Bone marrow transplantation prolongs life span and ameliorates neurologic manifestations in Sandhoff disease mice. J Clin Invest. 1998;101(9):1881–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Brien JS. b-Galactosidase deficiency (GM1 gangliosidosis, galactosialidosis, and Morquio syndrome type B); ganglioside sialidase deficiency (Mucolipidosis IV). In: Scriver CR, Beaudet al, Sly WS, Valle D, editors. The metabolic basis of inherited disease. 6th ed. New York: McGraw-Hill Inc.; 1989. p. 1797–806.

    Google Scholar 

  • Paller AS, Arnsmeier SL, Chen JD, Woodley DT. Ganglioside GT1b inhibits keratinocyte adhesion and migration on a fibronectin matrix. J Invest Dermatol. 1995;105(2):237–42.

    Article  CAS  PubMed  Google Scholar 

  • Platt FM, Walkley SU. Lysosomal disorders of the brain. New York: Oxford University Press; 2004.

    Book  Google Scholar 

  • Proia RL. Glycosphingolipid functions: insights from engineered mouse models. Philos Trans R Soc Lond B Biol Sci. 2003;358(1433):879–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Radin NS. Inhibitors and stimulators of glucocerebroside metabolism. Prog Clin Biol Res. 1982;95:357–83.

    CAS  PubMed  Google Scholar 

  • Rigat BA, Tropak MB, Buttner J, Crushell E, Benedict D, Callahan JW, et al. Evaluation of N-nonyl-deoxygalactonojirimycin as a pharmacological chaperone for human GM1 gangliosidosis leads to identification of a feline model suitable for testing enzyme enhancement therapy. Mol Genet Metab. 2012;107(1–2):203–12. Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sandhoff K, Harzer K. Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis. J Neurosci. 2013;33(25):10195–208. Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed  Google Scholar 

  • Sango K, Johnson ON, Kozak CA, Proia RL. Beta-1,4-N-Acetylgalactosaminyltransferase involved in ganglioside synthesis: cDNA sequence, expression, and chromosome mapping of the mouse gene. Genomics. 1995;27(2):362–5.

    Article  CAS  PubMed  Google Scholar 

  • Sango K, McDonald MP, Crawley JN, Mack ML, Tifft CJ, Skop E, et al. Mice lacking both subunits of lysosomal b-hexosaminidase display gangliosidosis and mucopolysaccharidosis. Nat Genet. 1996;14:348–52.

    Article  CAS  PubMed  Google Scholar 

  • Sano R, Annunziata I, Patterson A, Moshiach S, Gomero E, Opferman J, et al. GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca(2+)-dependent mitochondrial apoptosis. Mol Cell. 2009;36(3):500–11. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schnaar RL. Glycolipid-mediated cell-cell recognition in inflammation and nerve regeneration. Arch Biochem Biophys. 2004;426(2):163–72.

    Article  CAS  PubMed  Google Scholar 

  • Sekine M, Ariga T, Miyatake T, Kase R, Suzuki H, Yamakawa T. Gangliosides and neutral glycolipids in guinea pig adrenal glands. J Biochem. 1984;96:237–44.

    CAS  PubMed  Google Scholar 

  • Seyfried TN. Ganglioside abnormalities associated with failed neural differentiation in a T-locus mutant mouse embryo. Dev Biol. 1987;123(1):286–91.

    Article  CAS  PubMed  Google Scholar 

  • Takai T, Higaki K, Aguilar-Moncayo M, Mena-Barragan T, Hirano Y, Yura K, et al. A bicyclic 1-deoxygalactonojirimycin derivative as a novel pharmacological chaperone for GM1 gangliosidosis. Mol Ther. 2013;21(3):526–32. Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Der Voorn JP, Kamphorst W, Van Der Knaap MS, Powers JM. The leukoencephalopathy of infantile GM1 gangliosidosis: oligodendrocytic loss and axonal dysfunction. Acta Neuropathol (Berl). 2004;107(6):539–45.

    Article  Google Scholar 

  • Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 1993;3(2):97–130.

    Article  CAS  PubMed  Google Scholar 

  • Veech RL. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids. 2004;70(3):309–19.

    Article  CAS  PubMed  Google Scholar 

  • von Specht BU, Geiger B, Arnon R, Passwell J, Keren G, Goldman B, et al. Enzyme replacement in Tay-Sachs disease. Neurology. 1979;29:848–54.

    Article  Google Scholar 

  • Vunnam RR, Radin NS. Analogs of ceramide that inhibit glucocerebroside synthetase in mouse brain. Chem Phys Lipids. 1980;26(3):265–78.

    Article  CAS  PubMed  Google Scholar 

  • Weindruch R, Kemnitz JW, Uno H. Interspecies variations in physiologic and antipathologic outcomes of dietary restriction (1988).

    Google Scholar 

  • Yu RK. Development regulation of ganglioside metabolism. Prog Brain Res. 1993;101:31–44.

    Article  Google Scholar 

  • Yu RK, Tsai YT, Ariga T, Yanagisawa M. Structures, biosynthesis, and functions of gangliosides-an overview. J Oleo Sci. 2011;60(10):537–44. Research Support, N.I.H., Extramural.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou W, Mukherjee P, Kiebish MA, Markis WT, Mantis JG, Seyfried TN. The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutr Metab (Lond). 2007;4:5.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Institutes of Health Grants R01NS-055195 (TNS), R21NS053993 (MSE), and U01-NS064096 (TNS, DRM, MSE), the Boston College Research Expense Fund, the Scott-Ritchey Research Center, the Lysosomal Storage Disease Research Consortium, and the National Tay-Sachs and Allied Diseases Association, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas N. Seyfried .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seyfried, T.N., Rockwell, H.E., Heinecke, K.A., Martin, D.R., Sena-Esteves, M. (2014). Ganglioside Storage Diseases: On the Road to Management. In: Yu, R., Schengrund, CL. (eds) Glycobiology of the Nervous System. Advances in Neurobiology, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1154-7_22

Download citation

Publish with us

Policies and ethics