Introduction to Cells Comprising the Nervous System

  • Douglas G. Peters
  • James R. Connor
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 9)


The brain consists of neurons and glial cells. Neurons are responsible for integrating input and responding to stimuli from both the internal and the external environment. The integration occurs via electrical and chemical signals that impinge on the receptive area of neurons known as dendrites, and the response is via propagation of an axonal potential. Glial cells have three functionally distinct subtypes, astrocytes, oligodendrocytes, and microglia. Astrocytes perform a variety of functions responsible for maintaining homeostasis in the brain through functions such as formation of the blood–brain barrier, preserving osmolarity, and the uptake, degradation, and secretion of neurotransmitters. Oligodendrocytes are responsible for the production of myelin, a lipid-rich substance that encapsulates neuronal axons. Microglia are responsible for immune surveillance and remodeling of the CNS during both normal development and injury. Together the cells of the brain form a highly metabolic and dynamic unit with robust requirements for oxygen and nutrients.


Neuron Axon Glia Oligodendrocyte Myelin Astrocyte Microglia 



Adenosine triphosphate


Central nervous system


Glial fibrillary acidic protein


Myelin-associated glycoprotein


Microglia-associated protein


Myelin basic protein


Oligodendrocyte precursor cell


Rough endoplasmic reticulum



  1. Butt AM. Structure and function of oligodendrocytes. In: Kettenmann H, Ransom BR, editors. Neuroglia. 3rd ed. New York: Oxford University Press; 2012. p. 62–73.CrossRefGoogle Scholar
  2. Connor JR, Diamond MC, Connor JA, Johnson RE. A Golgi study of the dendritic morphology of socially reared aged rats. Exp Neurol. 1981;73:525–33.PubMedCrossRefGoogle Scholar
  3. Crain JM, Nikodemova M, Watters JJ. Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice. J Neurosci Res. 2013;91(9):1143–51.PubMedCrossRefGoogle Scholar
  4. Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G. Axon physiology. Physiol Rev. 2011;91:555–602.PubMedCrossRefGoogle Scholar
  5. Derecki NC, Cronk JC, Lu Z, Xu E, Abbott SB, Guyenet PG, Kipnis J. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature. 2012;484(7392):105–9.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Fogel AI, Li Y, Giza J, Wang Q, Lam TT, Modis Y, Biederer T. N-glycosylation at the SynCAM (synaptic cell adhesion molecule) immunoglobulin interface modulates synaptic adhesion. J Biol Chem. 2010;285(45):34864–74.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Ge WP, Zhou W, Lou Q, Jan LY, Jan YN. Dividing glia cells maintain differentiated properties including complex morphology and functional synapses. Proc Natl Acad Sci U S A. 2009;106(1):328–33.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Ge WP, Miyawaki A, Gage FH, Jan YN, Jan LY. Local generation of glia is a major astrocyte source in postnatal cortex. Nature. 2012;484(7394):376–80.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Graeber MB, Streit WJ. Microglia: active sensor and versatile effector cells in the pathologic brain. Nat Neurosci. 2010;10:1387–94.Google Scholar
  10. Grant G. How the 1906 Nobel Prize in physiology or medicine was shared between Golgi and Cajal. Brain Res Rev. 2007;55(2):490–8.PubMedCrossRefGoogle Scholar
  11. Hart GW, Housley MP, Slawson C. Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature. 2007;446(7139):1017–22.PubMedCrossRefGoogle Scholar
  12. Kettenmann H, Verkhratsky A. Neuroglia: 150 years later. Trends Neurosci. 2008;31(12):653–9.PubMedCrossRefGoogle Scholar
  13. Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, Sakamoto K, Hirakawa A, Takeuchi H, Suzumura A, Ishiguro N, Kadomatsu K. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis. 2013;4:e525.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature. 2012;487(7408):442–8.CrossRefGoogle Scholar
  15. Li Y, Liu L, Barger SW, Griffith WS. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-mapk pathway. J Neurosci. 2003;23:1605–11.PubMedCentralPubMedGoogle Scholar
  16. Merkle FT, Mirzadeh Z, Alvarez-Buylla A. Mosaic organization of neural stem cells in the adult brain. Science. 2007;317(5836):381–4.PubMedCrossRefGoogle Scholar
  17. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJ, ffrench-Constant C. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci. 2013;16(9):1211–8.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Miyamoto A, Wake H, Moorhouse AJ, Nabekura J. Microglia and synapse interactions: fine tuning neural circuits and candidate molecules. Front Cell Neurosci. 2013;7:70.PubMedCentralPubMedGoogle Scholar
  19. Morrison BM, Lee Y, Rothstein JD. Oligodendroglia: metabolic supporters of axons. Trends Cell Biol. 2013;23(12):644–51.PubMedCrossRefGoogle Scholar
  20. Nave KA. Myelination and support of axonal integrity by glia. Nature. 2010;468(7321):244–52.PubMedCrossRefGoogle Scholar
  21. Neumann H, Wekerle H. Brain microglia: watchdogs with pedigree. Nat Neurosci. 2013;16(3):253–5.PubMedCrossRefGoogle Scholar
  22. Nimmerjahn A, Kirchoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.PubMedCrossRefGoogle Scholar
  23. O’Rourke NA, Weilelr NC, Micheva KD, Smith SJ. Deep molecular diversity of mammalian synapses: why it matters and how to measure it. Nat Rev Neurosci. 2012;13(6):365–79.PubMedCentralPubMedGoogle Scholar
  24. Pascual O, Ben Achour S, Rostaing P, Triller A, Bessis A. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci U S A. 2012;109(4):E197–205.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Prinz M, Mildner A. Microglia in the CNS: Immigrants from another world. Glia. 2011;59:177–87.PubMedCrossRefGoogle Scholar
  26. Quarles RH. Myelin-associated glycoprotein (MAG): past, present, and beyond. J Neurochem. 2007;100(6):1431–48.PubMedGoogle Scholar
  27. Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S. Direct immunogold labeling of aquaporin-4 in square arrays of astrocytes and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci U S A. 1998;95(20):11981–6.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Rolls A, Shechter R, Schwartz M. The bright side of the glial scar in CNS repair. Nat Rev Neurosci. 2009;10(3):235–41.PubMedCrossRefGoogle Scholar
  29. Sergeant N, Bretteville A, Hamdane M, Caillet-Boudin ML, Grognet P, Bombois S, et al. Biochemistry of Tau in Alzheimer’s disease and related neurological disorders. Expert Rev Proteomics. 2008;5(2):207–24.PubMedCrossRefGoogle Scholar
  30. Sheng Z, Cai Q. Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci. 2012;13(2):77–93.PubMedCrossRefGoogle Scholar
  31. Sofroniew M, Vinters H. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):7–35.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Soulet D, Rivest S. Bone-marrow-derived microglia: myth or reality? Curr Opin Pharmacol. 2008;8(4):508–18.PubMedCrossRefGoogle Scholar
  33. Uylings HBM, Kuypers K, Diamond MC, Veltman WAM. Effects of differential environments on plasticity of dendrites of cortical pyramidal neurons in adult rats. Exp Neurol. 1978;62(3):658–77.PubMedCrossRefGoogle Scholar
  34. Wloga D, Gaertig J. Post-translational modifications of microtubules. J Cell Sci. 2010;123:3447–55.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of NeurosurgeryPenn State Milton S. Hershey Medical CenterHersheyUSA

Personalised recommendations